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ABSTRACT

Deep quantization of neural networks (below eight bits) offers
significant promise in reducing their compute and storage cost.
Albeit alluring, without special techniques for training and
optimization, deep quantization results in significant accu-
racy loss. To further mitigate this loss, we propose a novel
sinusoidal regularization, called SinReQ, for deep quantized
training. SinReQ adds a periodic term to the original objec-
tive function of the underlying training algorithm. SinReQ
exploits the periodicity, differentiability, and the desired con-
vexity profile in sinusoidal functions to automatically propel
weights towards values that are inherently closer to quanti-
zation levels. Since, this technique does not require invasive
changes to the training procedure, SinReQ can harmoniously
enhance quantized training algorithms. SinReQ offers gen-
erality and flexibility as it is not limited to a certain bitwidth
or a uniform assignment of bitwidths across layers. We carry
out experimentation using the CIFAR-10, ResNet-20, SVHN,
and VGG-11 DNNs with three to five bits for quantization
and show the versatility of SinReQ in enhancing multiple
quantized training algorithms, DoReFa [1] and WRPN [2].
Averaging across all the bit configurations shows that SinReQ
closes the accuracy gap between these two techniques and the
full-precision runs by 35.7% and 37.1%, respectively. That is
improving the absolute accuracy of DoReFa and WRPN up to
5.3% and 2.6%, respectively.

1. INTRODUCTION

Despite the success of DNNs in various domains [3, 4,
5], their compute efficiency hinders effective deployment in
resource-limited platforms [6]. Quantization, in general, and
deep quantization, in particular, aim to not only reduce the
compute requirements of DNNs but also significantly reduce
their memory footprint [1, 2, 7, 8]. Nevertheless, without spe-
cialized training and optimization training algorithms, quanti-
zation can diminish the accuracy. As such, several techniques
have been proposed that aim to train DNNs in quantized mode
with as low as possible loss in accuracy [9, 10, 11, 12]. How-
ever, eliminating the loss has proven to be illusive.

This paper aims to provide a new mechanism that enhances
these techniques and significantly closes the remaining gap
between deeply quantized and full precision networks. As

such, we propose a sinusoidal regularization technique, a dif-
ferentiable loss, that naturally pushes the weight values toward
the quantization levels exploiting the inherent periodicity of si-
nusoidal functions. As such, quantized training algorithms [1,
2] that still use some form of backpropagation [13] can effec-
tively utilize the proposed mechanism to further enhance their
performance in accuracy recovery.

SinReQ offers generality and can be used with different
bitwidths by setting the periodicity of the regularizer accord-
ing to the desired bitwidth. Moreover, the proposed technique
is flexible and a dedicated sinusoidal term for each layer with
different periods can enable heterogenous quantization across
the layers. The SinReQ regularization can also be applied for
training a model from scratch, or for fine-tuning a pretrained
model. We evaluate SinReQ using different bitwidth assign-
ments across different DNNs (CIFAR-10, ResNet-20, SVHN,
and VGG-11). To show the versatility of SinReQ, it is used
with two different quantized training algorithms, DoReFa [1]
and WRPN [2]. Over all the bitwidth assignments, the pro-
posed regularization, improves the top-1 accuracy of DoReFa
and WRPN up to 5.3% and 2.6%, respectively. That is, on
average, closing the gap between the quantized network and
a full-precision netwrok by 35.7% in the case of DoReFa and
37.1% in the case of WRPN.

2. RELATED WORK

SinReQ, which is a regularization technique, is complemen-
tary to the previously proposed quantized training [9, 10, 11,
12] and binarization [14, 15] algorithms and can potentially
augment their training procedure. Additionally, there is a line
of research that aims to incorporate the distance between the
quantized levels and the full-precision weights in the training
loss [16, 17, 18, 19, 20]. In contrast, SinReQ, utilizes the pe-
riodic nature of sinusoidal function to push the weight values
to the quantization levels possible by the allocated bitwidth to
each layer.

Training algorithms for quantized neural networks..
There have been several techniques [1, 21, 2] that train a
neural network in a quantized domain after the bitwidth of the
layers is determined manually. DoReFa quantizes weights,
activations and gradients of neural networks using different
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bitwidths. They suggest maintaining a high-precision floating
point copy of the weights while feeding quantized weights into
backprop. WRPN introduces a scheme to train networks from
scratch using reduced-precision activations by decreasing the
precision of both activations and weights and increasing the
number of filter maps in a layer. [21] performs the training
phase of the network in full precision, but for inference uses
ternary weight assignments. For this assignment, the weights
are quantized using two scaling factors which are learned dur-
ing training phase. SinReQ is a complimentary method that
can potentially enhance these algorithms. The paper demon-
strates this feature concretely in the context of DoReFa and
WRPN training algorithms.

Binarized and ternarized neural networks..

Extensive work, [22, 15, 23] focus on binarized neural net-
works, which impose accuracy loss but reduce the bitwidth
to lowest possible level. In BinaryNet [ 14], an extreme case,
a method is proposed for training binarized neural networks
which reduce memory size, accesses and computation inten-
sity at the cost of accuracy. XNOR-Net [15] leverages binary
operations (such as XNOR) to approximate convolution in
binarized neural networks. On the other side, in a weight
ternarized network, zero is used as an additional quantized
value. [23] introduces ternary-weight networks, in which the
weights are quantized to -1, 0, +1 values by minimizing the
Euclidian distance between full-precision weights and their
ternary assigned values. In [24] different scaling factors are
introduced to the ternarized weights. The scaling parameters
are learned by gradient descent. None of these techniques
propose sinusoidal regularization to make the weight values
more quantization friendly as training progresses.

Loss-aware weight quantization..

Recent works pursued loss-aware minimization approaches
for quantization. [17, 18] developed approximate solutions
using proximal Newton algorithm to minimize the loss func-
tion directly under the constraints of low bitwidth weights.
[19] proposed to learn the quantization of DNN5s through reg-
ularization by introducing a learnable regularization coeffi-
cient to find low bitwidth models efficiently in training. [20]
proposed an adaptive technique to jointly train a quantized,
bit-operation-compatible DNN and its associated quantizers,
as opposed to using fixed, handcrafted quantization schemes
such as uniform or logarithmic quantization. Although these
techniques use regularization to guide the process of quantized
training, they don not explore the use of periodic differentiable
trigonometric functions.

3. SINUSOIDAL REGULARIZATION FOR
AUTOMATIC QUANTIZATION DURING
TRAINING

Our proposed method SinReQ exploits weight regulariza-
tion in order to automatically quantize a neural network while
training. To that end, Sections 3.1 to 3.3 describe the role of
regularization in neural networks and then Section 3.4 explains
SinReQ in more detail.

3.1 Loss Landscape of Neural Networks

Neural networks’ loss landscapes are known to be highly

non-convex and generally very poorly understood. It has been
empirically verified that loss surfaces for large neural net-
works have many local minima that are essentially equivalent
in terms of test error [25], [26]. Moreover, converging to one
of the many good local minima proves to be more useful as
compared to struggling to find the global minimum of the
accuracy loss on the training set (which often leads to overfit-
ting). This opens up and encourages a possibility of adding
extra custom objectives to optimize for during the training
process, in addition to the original objective (i.e., the accuracy
loss). The added custom objective could be with the purpose
of increasing generalization performance or imposing some
preference on the weights values. Regularization is one of the
major techniques that makes use of such facts as discussed in
the following subsection.

3.2 Regularization in Neural Networks

Neural networks often suffer from redundancy of param-
eterization and consequently they commonly tend to overfit.
Regularization is one of the commonly used techniques to
enhance generalization performance of neural networks. Reg-
ularization effectively constrains weight parameters by adding
aterm (regularizer) to the objective function that captures the
desired constraint in a soft way. This is achieved by imposing
some sort of preference on weight updates during the opti-
mization process. As a result, regularization seamlessly leads
to unconditionally constrained optimization problem instead
of explicitly constrained which, in most cases, is much more
difficult to solve.

3.3 Classical regularization: weight decay.

The most commonly used regularization technique is known
as weight decay, which aims to reduce the network complexity
by limiting the growth of the weights. It is realized by adding
a term to the objective function that penalizes large weight
values

E(w)=Eo(w)+ g A w7 1)

where E,, is the original loss measure, and A is a parameter gov-
erning how strongly large weights are penalized. w; is a vector
of all weights for layer i of the network while summation of
i is over all the layers in the network.

3.4 Periodic Regularization: SinReQ.

In this work, we propose a new type of regularization that is
friendly to quantization. The proposed regularization is based
on a periodic function (sinusoidal) that provides a smooth and
differentiable loss to the original objective, Figure 1 (a). The
periodic regularizer has a periodic pattern of minima that corre-
spond to the desired quantization levels. Such correspondence
is achieved by matching the period to the quantization step
based on a particular number of bits for a given layer.

1 1 . wj
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where E, is the original loss measure, and 7L,1 is SinReQ regu-
larization strength that is a parameter governing how strongly
weight quantization errors are penalized. For the sake of sim-
plicity and clarity, Figure 1 (b) and (c) depict a geometrical
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Figure 1: (a) Generalized SinReQ profile adapting for arbitrary bitwidths including binary and ternary quantization. (b) and (c)
depict a geometrical sketch for a hypothetical loss surface (original objective function to be minimized) and an extra regulariza-
tion term in 2-D weight space for weight decay and SinReQ respectively. w,,, is the optimal point just for the loss function alone.

Table 1: Summary of results comparing state-of-the-art
methods DoReFa, and WRPN with and without SinReQ for
different neural networks

Top1 Accuracy (%)

Full Precision

Network Weights DoReFa WRPN Accuracy
eter Bitwidth DoRefa +SinReQ WRPN +SinReQ (%)
3 bits 58.80 63.28 55.26 56.46
CIFAR10 4 bits 65.54 70.88 68.72 70.84 74.91
5 bits 73.12 74.10 73.94 74.82
3 bits 88.40 90.2 88.12 90.13
SVHN 4 bits 93.81 94.70 93.22 94.31 97.12
5 bits 96.76 96.89 96.51 96.87
3 bits 87.08 88.7 76.22 78.39
ResNet-20 .
on CIFAR0 4 bits 90.16 91.20 82.10 84.72 93.53
5 bits 90.58 91.82 89.08 91.67

sketch for a hypothetical loss surface (original objective func-
tion to be minimized) and an extra regularization term in 2-D
weight space. For weight decay regularization, in Figure 1 (b),
the faded circular contours show that as we get closer to the
origin, the regularization loss is minimized. w,,, is the opti-
mum just for the loss function alone and the overall optimum
solution is achieved by striking a balance between the original
loss term and the regularization loss term.

In a similar vein, Figure 1 (c) shows a representation of the
proposed regularization. A periodic pattern of minima pockets
are seen surrounding the original optimum point. The objec-
tive of the optimization problem is to find the best solution that
is the closest to one of those minima pockets where weight
values are nearly matching the desired quantization levels,
hence the name quantization-friendly. Algorithm 1 details
the implementation procedure of SinReQ regularization using
LeNet as an example.

4. EVALUATION: SINREQ IN ACTION

To demonstrate the effectiveness of our proposed sinusoidal
regularization, we evaluated it on three neural networks (CI-
FAR10, SVHN, and ResNet-20) Here, we focus on fine-tuning
from a pretrained models as compared to training from scratch.

4.1 Experimental Setup.

We implemented our technique inside Distiller [27], an open
source framework for compression by Intel Nervana. The re-

Algorithm 1 SinReQ implementation on LeNet

1: gbits + number of quantization bits; gbits € {1,2,3,...}

2: A, < regularization strength
> Set the quantization step based on
the used quantization technique
> for DoReFa quantization

3: step+1/(29%5—0.5) , A« step/2
> for WRPN quantization

4: step<—1/(29%5—1.0) ,A<-0
> For each layer in the network,
calculate the sinreqg loss
> Layer convl

5: kernel <—convl.float_weight

6: sinreqe,1 < reduce_mean(sin> (1 x (kernel +A)) /step)
> Layer conv2

7: kernel <—comv2.float_weight

8: sinreqey < reduce_mean(sin® (1t x (kernel +A)) /step)
> Layer fcl

9: kernel < fcl.float_weight

10: sinreq sc1 < reduce_mean(sin® (7 x (kernel+A))/step)
> Layer fc2

11: kernel < fc2.float_weight

12: sinreqs < reduce_mean(sin® (1 x (kernel +A)) /step)
> Sum over all layers

13: sinreq_loss = sinreqcy1 + sinrequn + sinreqr. +
sinreqfco
> Calculate the overall loss

14: LOSS =original_loss+ A, x sinreq_loss

ported accuracies for DoReFa and WRPN are with the built-in
implementations in Distiller, which may not exactly match the
accuracies reported in their respective papers. However, an
independent implementation from a major company provides
an unbiased foundation for the comparisons.

4.2 Semi-quantized weight distributions.
Figure 2 shows the evolution of weights distributions over
fine-tuning epochs for different layers of (a) CIFAR10 and (b)
SVHN networks at different bitwidths (3, 4, and 5 bits). The
high-precision weights form clusters and gradually converge
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Figure 2: Evolution of weight distributions over training
epochs (with the proposed regularization) at different
layers and bitwidths for CIFAR10 and SVHN.(a) CIFAR10,
second convolution layer with 3 bits, top row: mid-rise
type of quantization (shifting by half a step to exclude zero
as a quantization level); bottom row: mid-tread type of
quantization (zero is included as a quantization level). (b)
SVHN, top row: first convolution layer with 4 bits; bottom
row: first fully connected layer with 5 bits.
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around the quantization centroids (i.e., levels) as regulariza-
tion loss is minimized along with the main accuracy loss. The
rate of convergence to the target quantization levels depends
on (i) the number of fine-tuning epochs, (2) the regularization
strength (4,). It is worth noting that A, is a hyper-parameter
that controls the tradeoff between the accuracy loss and the reg-
ularization loss. Fixed value can be presumed ahead of training
or fine-tuning, however careful setting of such parameter can
yield optimum results. [19] considers the regularization coef-
ficient as a learnable parameter.

4.3 Arbitrary-bitwidth quantization.

Considering the following sinusoidal regularizer, with step,,
denoting the quantization step, and A is an offset.

R(W)= ),q;sinz (W>

stepy
SinReQ provides generality in two aspects. First, the flexibil-
ity to adapt for arbitrary number of bits. The parameter step,
controls the periodicity of the sinusoidal function. Thus, for
any arbitrary bitwidth (gbits), step, can be tuned to match the
respective quantization step. For uniform quantization:

3)

Stepq — 2fqbits _ 1

The second aspect of generality is the seamless accommo-
dation for different quantization styles. There are two styles of
uniform quantization: mid-tread and mid-rise. In mid-tread,
zero is considered as a quantization level, while in mid-rise,
quantization levels are shifted by half a step such that zero is
not included. Ternary quantization, using {—1,0,1}, is an ex-
ample of the former, while binary quantization, using {—1,1},
is an example of the latter. Figure 2 (a) shows the second conv
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Figure 3: Convergence behavior: accuracy and SinReQ
regularization loss over fine-tuning epochs for (a) CIFAR10,
(b) SVHN. Comparing convergence behavior with and
without SinReQ during training from scratch (a) accuracy,
(b) training loss

layer of CIFARI10 at 3 bits, top row: mid-rise quantization,
and bottom row: mid-tread quantization.

4.4 Layer-wise optimization.

As different layers have different levels of sensitivity to the
quantization bitwidth [28], enabling layer-wise quantization
opens the possibility for heterogenous bitwidth quantization
and consequently more optimized quantized networks. This
can be achieved by adding a custom regularizer (as shown in
equation 3) for each layer and sum over all layers. Then, we
add the regularization losses of all layers to the main accuracy
loss and pass the entire collective loss to the gradient-descent
optimizer.

4.5 Comparison to existing methods.

We assess the efficacy of SinReQ on boosting the perfor-
mance of existing methods for training quantized networks,
DoReFa, and WRPN. Table 1 summarizes the accuracies ob-
tained by DoReFa, and WRPN with and without SinReQ.
Results show that integrating SinReQ within the training algo-
rithm achieves up to 5.3%, and 2.6% accuracy improvements
to DoReFa, and WRPN methods respectively. That is averag-
ing to around 2% and 1.6% respectively.

4.6 Convergence analysis.

Figure 3 (a), and (b) show the convergence behavior of Sin-
ReQ by visualizing both accuracy and regularization loss over
finetuning epochs for two networks: CIFAR10 and SVHN.
As can be seen, the regularization loss (SinReQ Loss) is min-
imized across the finetuning epochs while the accuracy is
maximized. This demonstrates a validity for the proposed
regularization being able to optimize the two objectives si-
multaneously. Figure 3 (c), and (d) contrasts the convergence
behavior with and without SinReQ for the case of training
from scratch for VGG-11. It can be noticed that, at the onset of
training, the accuracy in the presence of SinReQ is behind that
without SinReQ. This can be explained as a result of optimiz-
ing for an extra objective in case of with SinReQ as compared
to without. Shortly thereafter, the regularization effect kicks
in and eventually achieves ~ 6% accuracy improvement. The
convergence behavior, however, is primarily controlled by the
regularization strength (4,). As briefly mentioned in section



3.4, A, € [0,00) is a hyperparameter that weights the relative
contribution of the proposed regularization objective to the
standard accuracy objective. In the context of neural networks,
it is sometimes desirable to use a separate setting of A, for
each layer of the network. Throughout our experiments, A, is
set the same across all layers and in the range of 0.5—10. We
reckon that careful setting of A, across the layers and during
the training epochs is essential for optimum results [19].

S. CONCLUSION

Deep quantization of DNNs promises to be a powerful tech-
nique in reducing their complexity. However, it comes with
the vice of loss in accuracy that needs to be remedied. This
paper provided a new approach in using sinusoidal regulariza-
tions terms to push the weight values closer to the quantized
levels. This mathematical approach is versatile and augments
other quantized training algorithms by improving the quality
of the network they train. While this technique consistently
improves the accuracy, SinReQ does not require changes to
the base training algorithm or the neural network topology.
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