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ABSTRACT
Predicting the number of clock cycles a processor takes to
execute a block of assembly instructions in steady state (the
throughput) is important for both compiler designers and per-
formance engineers. Building an analytical model to do so is
especially complicated in modern x86-64 Complex Instruc-
tion Set Computer machines with sophisticated processor mi-
croarchitectures in that it is tedious, error-prone, and must be
manually updated. In this paper we present Ithemal, the first
tool which learns to predict the throughput of a set of instruc-
tions. Ithemal uses a hierarchical LSTM–based approach to
predict throughput of instructions in a basic block. We show
that Ithemal is more accurate than state-of-the-art analytical
tools (less than half the error) currently used in compiler
backends and static machine code analyzers. Ithemal is also
able to predict throughput just as fast as the analytical tools,
and is easily ported across a variety of microarchitectures
with minimal effort.

1. INTRODUCTION
The throughput of a sequence of instructions—the number

processor clock cycles taken to execute the sequence when
looped in steady state—determines how fast those instruc-
tions can process data. Accurately predicting the throughput
of a basic block is important for many systems to be able to
predict and optimize runtime performance, for example in
compiler algorithms such as genetic algorithm based register
allocation [1] and reinforcement learning based instruction
scheduling [2].

The alternative – measuring throughput on demand by exe-
cuting the basic block – is too expensive for most compilers.
In practice, most systems employ analytical models to pre-
dict throughput. For instance, the LLVM compiler team [3]
recently merged1 a command-line tool, llvm-mca [4], that
exposes a machine model for throughput estimation. Intel
has also released a closed-source machine code analyzer,
IACA [5], which relies on internal knowledge of Intel’s pro-
cessor design. These models are typically an order of magni-
tude faster than measuring a basic block’s throughput. How-
ever, manually writing an accurate and complete model is
tedious, error-prone, and exceedingly difficult without knowl-
edge of the exact mechanisms of the processor.

In the hunt for accuracy, developers build complicated
models which must make significant tradeoffs with the model’s
portability and speed.
1lists.llvm.org/pipermail/llvm-dev/2018-March/121490.html

• Accuracy. Modern x86-64 Complex Instruction Set
Computer (CISC) processors contain many hardware
optimizations that significantly complicate building ac-
curate analytical models. They execute sequences of
instructions in heavily piplined, out-of-order and super-
scalar execution units with latent vendor-specific opti-
mizations. This makes the prediction problem highly
complex and non-linear.
• Portability. Manually writing a throughput estimator

to support different microarchitectures requires rewrit-
ing instruction tables, resource utilization charts, and
modeling microarchitectural optimizations, all of which
are tedious and error-prone. Ideally, the throughput es-
timator should be able to automatically capture such
intricacies with minimal human intervention.
• Speed. A throughput estimator also needs to be fast.

Compilers need to search through many code blocks
before emitting the fastest version of a given instruction
sequence. Running the basic blocks to get the ground
truth throughput requires sandboxing and many itera-
tions of execution to arrive at a consistent steady-state
throughput estimate, which can be impractical for sys-
tems performing fast searches [6].

1.1 Ithemal: A Data Driven Approach
In this paper we introduce Ithemal (Instruction THrough-

put Estimator using MAchine Learning), which takes a novel
data–driven approach to predicting throughput for a block
of instructions, inspired by recent advances in Deep Neural
Networks (DNNs). Ithemal models the throughput estima-
tion problem as a regression task and leverages a DNN to
learn to predict throughput by using a large corpus of labeled
data, mapping assembly sequences to real valued through-
puts. More concretely, Ithemal uses a hierarchical multiscale
RNN [7, 8, 9], which generates an independent embedding
for each instruction, then sequentially combines the instruc-
tion embeddings to predict throughput.

We show that Ithemal’s learned model is significantly more
accurate than the analytical models, dropping the mean abso-
lute percent error by more than 50% across all benchmarks,
while still delivering fast estimation speeds.

To generate high-quality predictions, Ithemal needs only
training data and a specification of the ISA, including the
specification of instructions and their explicit and implicit
operands (for instance, the instruction push rax in x86-64
pushes the register rax on to the stack and also implicitly
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Figure 1: Ithemal System Architecture

modifies the stack pointer register, rsp). Unlike analytical
models, Ithemal learns any salient microarchitectural details
that contribute to throughput on its own, without any explicit
specification or modeling.

For example, consider the instruction vxorps xmm0, xmm0,
xmm0 which zeros out register xmm0. Intel microprocessors
identify such zeroing idioms and execute it in a separate opti-
mized data path. The true throughput for 100 iterations of this
instruction is measured at 32 clock cycles. However, llvm-
mca reports a throughput of 100, where as Ithemal which
is intrinsically learned from data predicts 35 cycles. This
simple example is one of many where the data-driven model
is able to saliently capture microarchitectural optimizations.

Ithemal demonstrates that future systems can leverage data–
driven techniques to either augment or fully replace manually
developed throughput estimators. We have open-sourced our
implementation of Ithemal at https://github.com/psg-
mit/Ithemal in the hope that performance engineers and
compiler designers can use and improve upon our approach.

2. MODEL ARCHITECTURE
Figure 1 presents the high-level design of Ithemal’s ap-

proach. We model the problem of throughput estimation
as a regression problem: given the assembly input, Ithemal
predicts the throughput of the instruction sequence as a real-
valued number. At the core of Ithemal is a hierarchical multi-
scale RNN [10, 11] that sequentially processes all instructions
in the basic block and outputs an embedding, which Ithemal
then uses to directly estimate the throughput. Altogether, we
decompose the end-to-end model into the following stages:
canonicalization, embedding and estimation.

2.1 Canonicalization
The canonicalization stage converts the assembly input into

a more structured form, dictated by the syntax of the assem-
bly instructions. Ithemal takes a compiled assembly block,
disassembles it, and maps it to a list of instructions. Each in-
struction consists of a list of tokens representing its operation
code (opcode, e.g. add), source operands, and destination
operands, separated by distinguished delimiter tokens. For
example, consider the instruction mul ecx, which multiplies
the value in register ecx with eax, and places the result into

registers edx and eax. Note that the source operand eax and
both of the destination operands eax and edx are implicit
in the Intel syntax mul ecx. The final canonicalized set of
tokens for the instruction is:

(mul, <S>, eax, ecx, <D>, edx, eax, <E>)

where the bracketed tokens are the delimiters representing the
break between the opcode, source, and destination operands.

Assembly code permits constants and memory operands.
We map all constants (e.g. integer constants, absolute mem-
ory addresses, etc.) to a single CONST token. We demarcate
memory operands (consisting of a base address, and an op-
tional offset and displacement) by surrounding them with <M>
and </M> delimiter tokens.

2.2 Embedding
Ithemal’s embedding stage takes a canonicalized token

stream of instructions, and for each instruction produces an
embedding: a representation of an instruction as a real-valued
vector in a high-dimensional space. The first step is the
token layer, which maps a given token to an embedding. We
implement the token layer by mapping each token in the
sequence to an n-dimensional vector by learning a linear
transformation of the one-hot token vectors (this is equivalent
to learning a lookup table).

Ithemal then maps the sequence of token embeddings to
an embedding for each instruction in the basic block. We
call this the instruction layer. Because each instruction can
have a variable number of tokens depending on its number
of source and destination operands, the size of the input to
the embedding stage is variable. We therefore implement
the instruction layer with a sequential Recurrent Neural Net-
work (RNN) architecture with Long Short Term Memory
(LSTM) [12] cells.

Figure 1 presents the operation of our RNN-based instruc-
tion embedding approach on a small example. The bottom-
most row shows the assembly input. The second row shows
the tokens for each instruction. The third row (the token
layer) shows the token embeddings, e.g. vmov, which are
mapped directly from each syntactic token. The fourth row
(the instruction layer) shows applying a LSTM to reduce the
token embeddings into the final instruction embedding, hmov.
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2.3 Prediction
The final prediction comes from the prediction layer, which

maps a basic block (a sequence of instruction embeddings) to
a throughput value. This is again implemented with an RNN
with LSTM cells, which has entirely disjoint weights from
the LSTM in the instruction layer. This corresponds to the
topmost layer in Figure 1. Using the final output from the
instruction LSTM (hblock), Ithemal predicts the basic block’s
throughput with a linear layer. Specifically, Ithemal computes
w ·hblock+b, where w is a learned weight vector and b is a
bias. This produces a final real-valued number that represents
the network’s throughput prediction.

3. DATA AND TRAINING
We collected a dataset of basic blocks from well-known

programs and benchmark suites, and timed them with a proce-
dure that matches the assumptions of the baseline analytical
models. We then train Ithemal using standard supervised
learning techniques.

3.1 Dataset
We designed the dataset to include a diverse set of ap-

plications with different performance characteristics while
covering a wide range of x86-64 instructions. It consists of
performance critical applications used for benchmarking com-
piler optimizations (e.g., SPEC2006 [13], SPEC2017 [14],
NAS [15] benchmarks) as well as end user applications used
in day-to-day computing (e.g., firefox, open-office, gimp)

To extract each application’s basic blocks, we first compile
each application using GCC 4.9.4 with the -O3 optimiza-
tion level targeting an Intel Haswell processor. Next, we
run each application under its standard inputs and dump the
encoded bytes of the executed x86-64 basic blocks using
DynamoRIO [16]. Finally, we de-duplicate the dataset by
removing basic blocks with same encoded byte patterns.

3.2 Throughput Profiling
IACA and llvm-mca predict the steady-state throughput of

a basic block, under the assumptions that all memory accesses
result in L1 cache hits and that the execution environment is
non-preemptive. To collect compatible throughput numbers,
we profile the execution of a loop that executes each basic
block in isolation 100 times (enough to reach the steady-
state behavior; 100 iterations is also the default value used
by llvm-mca). We measure throughput in terms of clock
cycles. Our timing script ensures that almost all memory
accesses have a L1 cache hit. Additionally, we measure
L1 instruction and data cache misses and software context
switches to detect and filter out invalid executions that do not
conform to the assumptions made by IACA and llvm-mca in
their predictions.

Using this methodology, we collected valid throughput
values for the Intel Ivy Bridge (Intel(R) Xeon(R) CPU E5-
2695 v2), Haswell (Intel(R) Xeon(R) CPU E5-2680 v3)
and Skylake (Intel(R) Xeon(R) W-2123 CPU) microarchi-
tectures. Data collection takes approximately 4-5 days for
each microarchitecture. The final Haswell dataset, which
is de-duplicated across benchmarks, constitutes 1,416,473
unique basic blocks.

3.3 Training and Methodology
We implemented our neural network model in PyTorch

(0.4.0a0+59bda9a). The learnable parameters in Ithemal in-
clude the token embeddings, the token LSTM and instruction
LSTM parameters, and the affine coefficients in the final lin-
ear layer. For our loss function we use a normalized error
metric, based on the L1 norm:

L (pred,actual) =
|pred−actual|

actual

We randomly assign 80% of the collected blocks to the
train set and 20% to the test set. We use Asynchronous
Stochastic Gradient Descent [17, 18] with a batch size of 4 to
train the model, using 6 parallel trainers, an initial learning
rate of 0.1, and a momentum of 0.9. Each epoch after the first
two, we decay the learning rate by a factor of 1.2. To handle
NaN gradients, any trainer that encounters a NaN is halted for
the remainder of the epoch. Training runs until all trainers
have halted.

4. EVALUATION
We have evaluated Ithemal against two state-of-the-art,

hand-written analytical models: IACA [5] (v3.0-28-g1ba2cbb)
and llvm-mca [4] (LLVM 8.0.0). Both of these models are
designed to model the complexities of modern processors (in-
cluding pipelining, superscalar, and out-of-order units). We
show that our data–driven model beats the accuracy of these
sophisticated hand-written models (Section 4.1) while main-
taining just as fast prediction speeds. Further, we show that
our approach is portable across different microarchitectures
in Section 4.2 by showing that Ithemal learns a model that
outperforms IACA and llvm-mca without any neural network
architecture or hyperparameter modifications.

4.1 Accuracy
We evaluate the accuracy of each model against the ac-

tual throughput values for Intel’s Haswell, Ivy Bridge, and
Skylake microarchitectures. The version of IACA we use
does not support throughput estimation for Ivy Bridge; we
therefore evaluate accuracy only for Ithemal and llvm-mca
for Ivy Bridge. We prepared train and test sets for each
microarchitecture according to the description in Section 3.3.

Table 1 presents the results of our accuracy comparison.
We report the average error with respect to the ground truth of
each tool for each microarchitecture. We also report both the
Spearman and Pearson correlation of each tool’s predictions
with the ground truth.

Ithemal is more accurate in its throughput predictions for
basic blocks across all three microarchitectures. Our model’s
predictions are closer to the ground truth than both IACA and
LLVM in 74% of the blocks in the Haswell test set. Ithemal’s
predictions also have a higher correlation with the ground
truth values for both the Spearman (rank correlation) and
Pearson (linear correlation) metrics. The higher Spearman
correlation is especially useful because it directly corresponds
to higher utility for use within an optimizing compiler (such
as an instruction scheduling pass). Specifically, compilers
typically only need to determine which of two (or more)
optimized configurations of a basic block is the fastest, and
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do not calculate each block’s absolute performance.
Further, Ithemal’s prediction speed (560 instructions/s)

is as fast as llvm-mca (492 instructions/s) and IACA (541
instructions/s) in our measurements, and is significantly faster
than empirical evaluation of basic blocks (13 instructions/s).
Hence, Ithemal functions as an equivalently performant and
more accurate drop-in replacement for llvm-mca and IACA
in systems which only need throughput estimations, while
still performing significantly faster than empirical evaluation.

Micro-
architecture

Method Error Spearman
Correlation

Pearson
Correlation

Ivy Bridge llvm-mca 0.181 0.902 0.777
Ithemal 0.089 0.955 0.913

Haswell llvm-mca 0.200 0.890 0.790
IACA 0.209 0.917 0.833
Ithemal 0.089 0.960 0.918

Skylake llvm-mca 0.239 0.852 0.729
IACA 0.167 0.926 0.835
Ithemal 0.079 0.960 0.895

Table 1: Average error for different models and microarchi-
tectures

4.2 Portability
We designed and trained Ithemal on Haswell and validated

our architecture and hyperparameters by re-training on Sky-
lake. Without any changes to its structure or training regime,
we then trained and evaluated Ithemal on the Ivy Bridge
dataset. Table 1 summarizes the average errors for each mi-
croarchitecture. Ithemal learns to estimate throughput values
for each microarchitecture with a maximum average error of
0.089 across all datasets. The hand-written models exhibit a
minimum average error of 0.167.

In sum, Ithemal provides state-of-the-art prediction perfor-
mance; its results beat the baselines across the board. More-
over, Ithemal does so without requiring a user to provide
information about the processor’s underlying microarchitec-
ture, whereas these analytical models require significant re-
engineering for each microarchitecture of interest.

5. DISCUSSION
Compiler optimization passes rely on performance models

of the target architecture to perform both back-end optimiza-
tions like instruction selection and register allocation, and
middle-end optimizations like SLP vectorization [19], loop
vectorization, loop unrolling, inlining, and more. Inaccurate
performance models may drive the compiler into making sub-
optimal decisions with little (or even negative) correlation
with real-world timing. Unfortunately, as we have shown,
analytical performance models of x86 code are highly inac-
curate compared to learned solutions.

This is a serious problem for back-end optimizations, but
it is exacerbated by the even simpler models often used in
compiler middle-ends. For instance, LLVM’s TargetTrans-
formInfo interface defines a linear cost model which as-
sumes that all instructions are independent and have no mi-
croarchitectural interactions. While Ithemal is not an IR-level
tool, it does show that complex performance models of code
are learnable from raw data without needing any baked-in
domain knowledge.

Unfortunately, despite Ithemal outperforming other state-
of-the-art analytical models, new performance models are not
enough. Many cost-model-driven optimization algorithms
rely on linear cost models, and do not have obvious analogues
for nonlinear models like Ithemal or even llvm-mca or IACA.
To fully take advantage of learned cost models, we must also
develop new compilation techniques which can handle the
relaxed assumptions inherent in more accurate cost models.

Further work is also necessary to relax even more of the
assumptions in Ithemal. Ithemal, along with comparable
analytical throughput prediction tools, only models the first-
order performance characteristics of basic blocks. However,
performance of memory bound applications depends heavily
on memory access patterns. With emerging techniques that
learn memory access patterns [20], we expect to be able to
build more complete learned performance that model both
compute and memory intensive workloads.

6. RELATED WORK
Apart from state-of-the-art tools like llvm-mca and IACA,

other analytical models exist for throughput estimation [21]
of instructions. OSACA [22] is an open source analytical
model similar to llvm-mca and IACA, which automates some
of the collection of the tabular data which is plugged into
the model. There are also analytical models such as [23]
to estimate throughput for multithreaded programs. Cycle–
accurate simulators such as ZSim [24] and Marss [25] have a
high start-up and runtime cost. All of these models require
detailed processor modeling and considerable human effort.

There has been work on developing machine learning–
based models for absolute and relative runtime estimation.
[26] introduces sparse polynomial regression to predict execu-
tion time of programs by using a set of hand–crafted features
of high level programs. [27] uses neural networks with hand-
crafted features to estimate the speedup between two code
sequences. GameTime [28, 29] uses SMT solvers to generate
inputs and game theoretic approaches to predict the distribu-
tion of runtimes of programs. These models require manual
feature engineering, and runtime predictions are done at a
coarser granularity (e.g. at the full program level). In contrast,
Ithemal automatically learns how to predict throughput of
basic blocks with minimal architecture-specific knowledge
embedded into the model.

Similar to basic block throughput estimation, various mi-
croarchitectural prediction tasks have been explored with
machine learning. For example, sequential RNN models can
be used for predicting memory access [20], and perceptron
models can be used for branch prediction [30].

7. CONCLUSION
We present Ithemal, a data–driven system for basic block

throughput estimation. Ithemal’s accuracy surpasses that of
state-of-the-art, hand-written analytical models; it achieves
its accuracy by leveraging a deep neural network designed to
capture the behavior of modern processors. Ithemal demon-
strates that future compilation and performance engineering
tools can be augmented with data–driven approaches to im-
prove their performance and portability.
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