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ABSTRACT
Today’s Internet must support applications with increasingly
dynamic and heterogeneous connectivity requirements, such
as video streaming, virtual reality (VR), and the Internet of
Things. Yet current network management practices generally
rely on pre-specified flow configurations, which may not be
able to cope with dynamic flow priorities or changing net-
work conditions, e.g., on volatile wireless links. In this work,
we instead propose a model-free learning approach to find
the optimal network policies for current flow requirements.
This approach is attractive as comprehensive models do not
exist for how different protocol choices affect flow perfor-
mance, which may further be affected by dynamically chang-
ing network conditions. However, it raises new technical
challenges: policy configurations can affect the performance
of multiple flows sharing the network resources, and this
flow coupling cannot be readily handled by existing online
learning algorithms. In this work, we extend multi-armed
bandit frameworks to propose new online learning algorithms
for protocol selection with provably sublinear regret under
certain conditions. We validate the algorithm performance
through testbed experiments, demonstrating the superiority
and scalability of our proposed algorithms.

1. INTRODUCTION
The Internet today is diversifying in terms of both the

applications and devices that it aims to support, as well as
the means for doing so. Applications like virtual reality, for
instance, require increasingly low latencies [1], while the
Internet-of-Things has dramatically expanded the range of
devices connected to the Internet [2]. Yet this heterogeneity
comes with challenges: it is far from clear how the network
can enforce heterogeneous application requirements when the
applications share limited bandwidth on heterogeneous net-
work links. Current network management practices generally
rely on static pre-configurations, e.g., pre-specifying the rout-
ing algorithms, or require manual intervention to change the
preset network policies [3], e.g., network functions virtualiza-
tion (NFV) and the RAN (radio access network) Intelligent
Controller [4]. Comprehensive models for flow performance
under different policies generally do not exist, and it is un-
clear which policies can actually optimize over all possible

scenarios and combinations of flow requirements.
In this work, we recognize that pre-specified policies are

likely insufficient to handle all possible scenarios, and we fo-
cus on the selection of protocols for flows at a given network.
We suppose that a given set of protocols is available and that
each flow’s achieved performance depends on the protocols
chosen for all flows on shared links, in an unknown manner
that depends on prevailing network conditions. We develop
algorithms that learn this unknown relationship between pro-
tocol choices and flow performance and demonstrate that they
learn the optimal assignment of protocols to flows over time.

1.1 Our Contributions
We derive and validate, analytically and empirically, the

first algorithms that can learn the assignment of protocols
to flows that maximizes aggregate flow performance. We
define “performance” as the total flow completion time, but
our framework generalizes to other objectives. In doing so,
we solve several research challenges:

Unpredictable, time-varying network conditions. The
exact relationship between protocol selection and flow perfor-
mance depends on the presence of background traffic and the
overall network conditions: e.g., on an unreliable wireless
link, conventional TCP may not perform well [5]; and back-
ground flows may take up an unknown amount of bandwidth.

Competition between different flows. When different
protocols may be used for different flows, the choice of proto-
col for one flow affects the performance of other flows on the
same link. This coupling between flows that may arrive at dif-
ferent times is particularly hard to manage given the absence
of models for how protocol choices affect flow performance
and the nonlinearity of our objective function.

A large set of protocol choices. The number of possible
protocol assignments to flows can be exponential with the
number of possible protocol choices when we allow different
protocol decisions for different flows. Therefore, we cannot
sample all possible protocol assignments.

We take the first steps towards meeting these challenges
with a new extension of the multi-armed bandit (MAB) frame-
work [6]. As flows arrive and depart, we select “arms” (proto-
col combinations) and decode each arm’s “reward” from the
transmission rates achieved by all present flows. We use the
historical rewards from prior flows to learn a set of protocol

1



candidates and then execute an online protocol selection to
minimize the aggregate flow completion times. While MAB
algorithms can learn arbitrary distributions of arm rewards,
they do not address our challenges: an exponential number of
protocol combinations for different flows, a highly nonlinear
objective function depending on past protocol selections, or
constraints (bandwidth capacities) on the achievable reward
that may be unknown or adversarial.

2. PROBLEM FORMULATION
We consider a communication network described by a

graph G(V ,L ), with links L and terminals (nodes) V ,
which correspond to the locations of routers in the network.
We divide time into discrete slots, each of which lasts ε sec-
onds (ε > 0); in practice, ε would depend on the type of
protocol used. Each link l, which may be a virtual link in
an overlay network, has a bandwidth capacity Blt (bps) in
time slot t, which is not known before time t. Suppose n flow
requests (e.g., downloads of files or videos to be streamed
offline) each arrive at the network at time ti over the lifetime
of the system, T . Each flow i has a source and destination
in V , a fixed path Pi that is exogenously determined at the
time of its arrival, and a fixed size πi, i.e., the amount of data
(in bytes), to transfer along Pi. We consider joint path and
protocol selection in our technical report [7].

Protocol selection. Different types of protocols may be
selected by different entities in a network, whether set on a
link-by-link basis by intermediate routers for all flows on the
same link (e.g., MAC protocols), or by each flow’s source for
its entire path (e.g., TCP/UDP protocols). To accommodate
both per-link and per-flow protocol selection, we suppose
we have a total of M protocol choices on each link for each
flow.1 We then define a binary indicator variable xilm, to
represent whether protocol m ∈ [M] is chosen (xilm = 1) for
flow i on link l, or not (xilm = 0). Since flows can use only
one protocol on each link at a time, our protocol decisions
have to satisfy the constraint ∑m∈[M] xilm = 1, ∀l ∈Pi, i∈ [n].
Choosing the same protocol for all flows on a given link can
be enforced via additional (linear) constraints on the protocol
choices {xilm}. Our goal is to select the protocols for each
flow so as to minimize the flows’ overall completion time.

Table 1 summarizes the network topology and protocol
choices for four different use cases. By a “link” in the net-
work, we mean a subset of the network over which a single
protocol is chosen for each flow. For instance, a “link” is a
wireless link between UEs and a base station in a wireless set-
ting, or a domain within a network slice that is configured [8]
to enforce slice performance requirements. Transport proto-
cols can also be deployed on a link-by-link basis in overlay
networks via network proxies that forward packets according
to the best transport-layer protocol for the next link, e.g., as
Dropbox and Google do in their datacenter networks [9, 10]
or as may be necessary for edge computing involving wired
and wireless network links [11, 12].

Total completion time minimization. Let rilt(xl) denote
the transmission rate achieved on link l for flow i at time
slot t, which is revealed after we choose the protocols for

1We assume for notational simplicity that the protocol choices are
the same for each link; our results still hold if they are not.

Table 1: Outline of formulation use cases.

Use case Topology Example
protocols

Selection
type

5G Single link Control chan-
nel size

Per-flow,
Per-link

MAC Single link CSMA/CD,
CSMA/CA

Per-link

Network
slicing

Arbitrary Slice resource
reservation,
priority class

Per-flow,
per-link over
domains

Transport
layer

Arbitrary TCP CUBIC,
TCP Reno,
UDP

Per-flow,
per-link w/
proxies

flow i. As different flows may share one or more links and
compete for the bandwidth on each link, rilt(xl) is a function
of decisions for all alive flows on l at t. Let δil(xl) denote
the transmission delay on each link l of flow i. We have
δil(xl)=maxti≤t≤+∞ t ·1(∑ti≤t ′≤t εrilt ′ (xl)≤ πi), where 1(X)

equals 1 if X is true; and 0 otherwise. Further, let ψi denote
the propagation delay on link l for each flow and τi(x) denote
the completion time of flow i, i.e., its arrival time plus the
total delay of serving flow i. We have

τi(x) = ti +max
l∈Pi

δil(xl)+ ∑
l∈Pi

ψl (1)

Since our protocol choices do not affect the propagation delay,
minimizing (1) is equivalent to minimizing maxl∈Pi δil(xl).
Let At (Alt) denote the set of flows that have arrived but
not yet finished by time t (on link l), i.e., flows i that satisfy
ti ≤ t ≤ ti+τi(x). We refer to these as “alive” flows. Our goal
is to minimize the total completion time of n flows, subject
to a bandwidth capacity constraint on each link in each time
slot. Our online optimization problem is then

minimize ∑
i∈[n]

τi(x) (2)

subject to: ∑
i∈Alt

rilt(xl)≤ Blt , ∀l ∈Pi, i ∈ [n], t ∈ [T ] (3)

∑
ti≤t≤τi(x)

rilt(xl)≥ πi, ∀l ∈Pi, i ∈ [n] (4)

This problem is difficult to solve due to unknown bandwidth
capacities Blt and rate functions rilt . We aim to first un-
derstand the fluctuations of rilt and then adopt a learning
approach to adapt our protocol decisions in real time.

3. ONLINE PROTOCOL SELECTION
Our key insight in solving the optimization problem (2)

– (4) is to understand and exploit the relationship among
transmission rates, joint protocol decisions of flows, and
bandwidth capacities. We formulate a general stochastic
model to characterize the rates rilt in Section 3.1 and then
adapt a multi-armed bandit approach to learn the rates and
select the protocols in Sections 3.2 and 3.3.

3.1 Stochastic Protocol Interactions
As modeled in (6) below, the transmission rate achieved
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by each flow is proportional to the weight of its correspond-
ing protocol, divided by the total weights of other flows’
protocols. The total transmission rate on a link will be its
bandwidth capacity Blt scaled by a utilization ratio u(xl ,Blt)
(<= 1); em represents an indicator vector of length M with
a one in the mth entry. Hence,~xilt = em when protocol m is
chosen for link l in t. We assume that on each link l, the
weight vector (wlt(e1), · · · ,wlt(eM)) is i.i.d. drawn from an
unknown distribution Dw

l over t, e.g., due to fluctuations in
wireless signal strength or routing in an overlay network.

rilt(xl) =
wlt(~xilt)u(xl ,Blt)Blt

∑i′∈Alt
wlt(~xi′ lt)

(5)

where: u(xl ,Blt)≤ 1, ∑
m∈[M]

xilmt = 1, ∀l, i, t (6)

Based on this model, we choose protocols by learning the
distribution of each weight vector. We simplify u(xl ,Blt) to
be identical for all xl and Blt but allow Blt to be adversarially
chosen (arbitrarily variant over time and across links) in Sec-
tion 3.2 and adapt our algorithm for non-identical u(xl ,Blt)
and i.i.d. Blt at the end of Section 3.3.

3.2 Selection with Uniform Utilization
If a large flow and several small flows share a link, select-

ing a protocol for the big flow such that it occupies most of
the bandwidth may starve the small flows. Moreover, since
minimizing the total flow time (2) is equivalent to minimiz-
ing the number of alive flows each time, the offline optimum
would always make the flow with the shortest remaining time
finish first. Guided by this intuition, we propose to greedily
choose the protocols on each link at each time so as to mini-
mize the remaining time of the flow with the smallest amount
of un-transferred data on the link, i.e., the shortest alive flow
on the link. As shown in Alg. 1, our algorithm consists of two
parts for each time t: 1) learning: independently predicting
the weight vector on each link based on historical samples;
and 2) protocol selection: on each link, choosing the proto-
col with the biggest estimated weight for the shortest alive
flow and the one with the smallest estimated weight for all
the other alive flows. The protocol selection is triggered at
each time slot, accounting for all flows in the network at that
time. Results of selecting protocols only when a new flow
arrives or existing flow completes are given in [7].

Distributed MAB algorithm for predictions. Inspired
by classic MAB algorithms that can predict the arm with
the highest expected reward, we predict the protocols with
the highest and lowest expected weights on each link. If
we simply call a protocol decision vector for all flows an
“arm,” we obtain M|L |×|At | arms at each time t, which is too
large to effectively sample. However, if we consider each
individual protocol decision on each link as an arm and the
corresponding weight as the reward, we may not be able to
observe an “effective” reward in each time. The reason is
that the rates do not translate into weights for protocols that
are present at different times under different capacities. To
address these concerns, we let each link learn the protocol
performance independently. In fact, with our greedy strategy
of protocol selection, we only need to observe the weight
ratio of each pair of protocols on each link to predict the best

Algorithm 1: Online Protocol Selection via Learning
Bandwidth Competition – OPSBC

Input: G(V ,L ), n, α

Output: x
Initialize: x = 0, ηLCB = 1, t = 0

1 while time slot 1≤ t ≤ T starts do
2 for each link l ∈L do
3 Update π̃ilt (remaining size of each alive flow);
4 Update i∗ = argmini∈Alt

π̃ilt (shortest alive flow);
5 Choose (m∗,mb) = argmin

(m,m′ ) ηLCB
lt (m,m

′
);

/* Choose the best protocol pair */
6 Update xi∗lm∗t = 1;

/* Choose the dominant protocol in

(m∗,mb) for flow i∗ */
7 Update xilmbt = 1,∀i 6= i∗;

/* Choose the inferior protocol in

(m∗,mb) for other flows */

8 Update ηlt(m,m′) and ηLCB
lt (m∗,mb) using (8) ;

/* Receive feedback */

9 end
10 end

and worst protocols in expectation, reducing the arm space.
Let ηlt(m,m′) represent the ratio of the average flow rates
achieved by protocols m and m′ on link l in time t, i.e.,

ηlt(m,m′) =
average flow rate on l under m′ at t
average flow rate on l under m at t

. (7)

Our learning strategy is thus to run a Lower Confidence
Bound (LCB) algorithm independently on each link to esti-
mate E[ηlt(m,m′)] =: E

[
wlt (em′ )
wlt (em)

]
. Let xlt(m,m′) equal 1 if

we choose the protocol pair (m,m′); and 0 otherwise. The
LCB of E[ηlt(m,m′)], denoted by ηLCB

lt (m,m′), is defined as:

η
LCB
lt (m,m′) =

∑
t
t ′=1 ηlt ′(m,m′)xlt ′(m,m′)

∑
t
t ′=1 xlt ′(m,m′)

−Rlt(m,m′)

Rlt(m,m′) =

√
α log t

∑
t
t ′=1 xlt ′(m,m′)

(8)

Online protocol selection based on predictions. At time
slot t, on each link, once we use ηLCB

lt (m,m′) to estimate
E[ηlt(m,m′)], we choose the protocol pair (m,m′) that has
the smallest value of ηLCB

lt (m,m′). Such a protocol pair is
denoted as (m∗,mb) (line 5 of Alg. 1). Our strategy is to
assign m∗ to the shortest alive flow (indexed by i∗) and mb to
all the other alive flows (lines 6 and 7). Such an assignment
can guarantee the shortest flow gets the highest transmission
rate if our predictions are accurate, namely ηLCB

lt (m,m′) =
E[ηlt(m,m′)], which is proved in [7]. Finally, we apply our
protocols to the alive flows, and observe the transmission
rates of each flow. We than update the LCB of ηlt(m,m′)
according to (8) for use in the next time slot.

THEOREM 3.1. If all the flows share the same path and
the weight vector for each link is i.i.d., the regret of our
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Figure 1: OPSBC achieves similar flow-time to that of A2C
with offline training

algorithm will be upper-bounded by O
(
ε|P|M2 logT

)
, if

we have Blt
Bl′t
≤ η̂max

l
η̂max

l′
≤ Bl′t

Blt
, ∀(l′, l) : Bl′t ≥ Blt , t ∈ [T ].

We prove Theorem 3.1 in our technical report [7].

3.3 Selection with Non-identical Utilization
While it is easy to adapt Algorithm 1 to handle non-identical

u(xl ,Blt) [7] for per-link protocol selection with similar per-
formance guarantees, it is much harder for per-flow selection.
For instance, choosing the protocol with the highest relative
weight over other protocols for the shortest alive flow may
lead to a lower bandwidth utilization for all flows on the link
and even a lower actual achieved rate for the shortest alive
flow, depending on the protocols used by other flows. Due to
space limit, the detailed algorithm and performance guaran-
tees are deferred to our technical report [7]. The basic idea
is to learn the dominant throughput of each pair of protocols,
which is the transmission rate achieved by flows using the
better protocol in any protocol pair.

4. EXPERIMENTAL VALIDATION
In this section, we implement a line network with four

nodes under synthetic data for per-link protocol selection and
on Amazon EC2 testbed for per-flow selection. We report
the averaged results of 100 repetitions of each experiment.
Results for other network topologies can be found in [7].

For per-link protocol selection, we implement three bench-
marks: FixedPS randomly chooses a protocol on all links
for each flow at the first time slot without changing the de-
cisions over time, Random randomly selects a protocol for
each flow on each link each time, and A2C + offline training
uses a reinforcement learning (RL) algorithm (A2C) with a
pre-trained model. For A2C, we develop an environment to
update the network characteristics as a Markov Decision Pro-
cess, consisting of 20 distinct bandwidth capacities as states,
3 protocol choices as actions, and a distribution of reward
representing the total transmission rate that is dependent with
protocol and bandwidth capacity. Figure 1 shows that our
OPSBC (modified) is comparable in achieving the comple-
tion time with A2C but does not require an offline training,
which can benefit scenarios with stringent constraints on data
and time required by the offline training.

We then implement a single-source-destination network
with four nodes, each equipped with a TCP proxy, deployed
on four Amazon EC2 VM instances with 50 Mbps capacity on
each link. We generate 50 flows with sizes uniformly drawn
from [10,20] (Mb) arriving in five batches spaced 3 seconds

10 20 30 40 50
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Figure 2: OPSBC for non-identical utilization achieves lower
flow-time in experiments

apart. On each link, OPSBC can choose TCP CUBIC, Vegas,
Reno, or Westwood. Figure 2 shows the resulting completion
times. Despite the overhead at the node proxies, OPSBC
achieves a 66.18%, 39.27%, and 43.27% decrease in flow-
time compared to using TCP CUBIC for all flows, randomly
selecting a single protocol for all flows on each link (Per-
link-random), and randomly selecting a protocol for each
flow on each link (Per-flow-random), respectively.

5. RELATED WORK
Machine learning for protocol selection. Winstein et

al. [13] design Remy, a program that can generate distributed
congestion control algorithms in a multi-user network and
achieve desired outcomes, e.g., high throughput. In light
of this offline learning application, we believe that online
learning of the protocol performance as in this work can
further facilitate protocol selection in dynamic network envi-
ronments. Mao et al. [14] use deep reinforcement learning
to allocate cloud resources with a goal of minimizing job
slow-downs. In contrast, we provide theoretical guarantees
of our model-free online learning algorithms’ performance.

Online learning for network management. Chen et al. [15]
design novel algorithms for online convex optimization prob-
lems with switching costs. Zhang et al. [16] integrate the
online gradient descent method into online cloud resource
provisioning with theoretical guarantees. However, these
studies assume full feedback on all feasible solutions, which
is unavailable in our model. Thus, we instead take an MAB
approach, which only uses information from the chosen de-
cisions, leading to the famous exploration-and-exploitation
trade-off. MAB algorithms have been extended for many
applications, e.g., ad-display optimization [17], dynamic
channel access [18], and cloud resource pricing [19]. Their
problems’ structures are different from ours: the rewards do
not directly translate into our completion time objective, but
instead provide estimates of unknown inputs needed by an
additional algorithm to find the optimal protocols.

6. DISCUSSION AND CONCLUSION
To cope with flows’ increasingly heterogeneous require-

ments and changing network characteristics, we propose a
dynamic network management framework that leverages ex-
isting network protocols. We use model-free online learning
to support automatic protocol selection for each individual
flow, so as to optimize the overall flow completion time. Mo-
tivated by the deficiency of existing models for flow perfor-
mance under different protocol choices, we model coexisting
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flows’ transmission rates under different protocols and ex-
tend multi-armed bandit algorithms to learn the rate function
and predict an optimal assignment of protocols to flows at
each time. Taking these real-time predictions as input, we
then propose a provably optimal online protocol selection
scheme that can minimize the aggregate flow completion
time by selecting an optimal pair of protocols to use for all
flows present in the network. Our asymptotic optimality is
validated through theoretical analysis and experiments.
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