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Abstract

Semiconductor manufacturing processes are characterized by a certain amount
of process deviations. Automated detection of these production issues followed
by an automated root cause analysis has a potential to increase the effectiveness
of semiconductor production. Manufacturing defects exhibit typical patterns in
measured wafer test data. Recognizing these patterns is an essential step for finding
the root cause of production issues. This paper demonstrates that combining Infor-
mation Maximizing Generative Adversarial Network (InfoGAN) and Wasserstein
GAN (WGAN) is suitable for extracting the most characteristic features from large
real-world sensory wafer test data and in various aspects outperforms traditional
unsupervised dimensionality reduction techniques. These features are then used in
subsequent clustering task to group wafers into clusters according to the patterns
they exhibit. The main outcome of this work is a statistical model for recognizing
spatial patterns given a wafer map. We experimentally evaluate the performance of
the proposed approach over a real dataset.

1 Introduction

Sustainable competitiveness in semiconductor industry requires a rapid development of increasingly
complex semiconductor products, which drastically decreases the amount of time available for
diagnosing production defects [1]. Semiconductor manufacturing is prone to production issues of
two types – random defects or systematic defects. Random defects are usually attributed to the
dust particles in the production environment and tend to be related to the overall cleanliness of
the production environment. On the other hand, systematic defects are caused by a malfunction
of a process equipment or human errors [2]. Due to hundreds of processing steps involved in
semiconductor manufacturing, diagnosing wafers after each of these steps is not practical. Instead,
equipment sensor values and electrical test data are collected only after most of the processing steps. It
is assumed that systematic defects exhibit typical shapes in measured wafer test data (e.g. rings, spots,
repetitive patterns, or scratches). Recognizing these patterns is an essential step for backtracking
to which processing step caused the defects. Automated root cause analysis and decision-making
with reduced human intervention has potential to significantly improve manufacturing efficiency of
semiconductor industry. Therefore, proposing an efficient method for detecting systematic defects
from given sensory data is a valuable contribution and inevitable task in accordance with this goal.

2 Related work

To address the aforementioned problem, several methods based on traditional image processing
approaches have been proposed [3]. More robust methods utilized some machine learning techniques
to recognize more complex patterns in wafer test data. There exist many methods based on supervised
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training of mixture models [4], singular value decomposition [5], neural networks [6] and support-
vector machines [7]. Although these methods are powerful, their supervised nature still requires
a human expert to craft a training dataset with manually labelled data. The apparent advantage
of unsupervised approaches lies in the elimination of subjective factors from pattern recognition
task, which in turn reduces costs and number of clustering errors. In the industry, it is required
to automatically detect the hidden dependencies between different types of wafer defects without
intervention of human expert which enables detection of patterns that were unknown or overlooked
before. To this end, some methods have been proposed, such as self-organizing neural networks [8],
self-organizing maps [9] as well as techniques based on dimensionality reduction like diffusion
maps [10], discriminant analysis [11], and variational auto-encoder [12]. In this paper, we propose an
unsupervised method for clustering wafer map patterns based on deep generative adversarial neural
networks (GANs).

3 Proposed Approach

3.1 Data Pre-processing

Our available real dataset, provided by Infineon Technologies (http://infineon.com), consists of
6 wafer lots, each has 50 wafers containing 17509 chips. Each chip is measured with 20 different
tests (features) and its position within a wafer is stored as a tuple. We consider each test measurement
of a wafer as a bitmap. Overall, we have 6000 wafermaps, where each one represented as a bitmap of
size 193x115 pixels. Data pre-processing is a fundamental step to clean the data before designing
a machine learning model. We apply several consecutive pre-processing steps to raw wafermaps,
which are depicted in Figure 1 [12]: (1) We utilize a median absolute deviation (MAD)-based
outlier detection method by modifying the common Z-score mechanism [13]; (2) Wafermaps are
binarized by replacing the present values with 1 and the missing values (holes) with 0. Mathematical
morphology mechanism [14] is then used to close small holes in the wafer area and find contours of
the wafer; (3) Missing values in wafer area are inpainted with values reconstructed from neighborhood
information around each missing region, using Chui-Mhaskar inpainting algorithm [15] via solving
the biharmonic equations; (4) After feature normalization, wafers are smoothened using the median
filtering procedure within a sliding window. A sample wafer map and its pre-processed wafer map is
depicted in Figure 2. The cleansed wafer maps can then be used for further tasks.
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Figure 1: Wafer map pre-processing procedure

Figure 2: A raw wafer map (left) and its cleansed wafer map with clearly visible pattern (right).

3.2 A Generative Adversarial Network

The pre-processed wafer maps can be seen as N individual dataset containing iid samples from
a real data distribution pdata. Now, our goal is feature extraction to overcome the curse of di-
mensionality [16] for the clustering task by extracting low-dimensional latent codes from high-
dimensional cleansed wafer maps. Our approach is to use a deep generative adversarial neural
network (GAN) [17, 18], which consists of two components: (1) The discriminator D(.) estimates
the probability of a given data sample x drawn from the real dataset with distribution pdata; (2) The
generator G(.) takes a latent code z sampled from a noise distribution pnoise and generates synthetic
sample G(z) as realistic as possible in order to fool the discriminator. The generator learns the
distribution pG that is an approximation of the real data distribution pdata. These two components
are simultaneously trained to compete against each other. Samples from the real dataset and from
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output of the generator are randomly passed to the discriminator. The objective of GAN can be then
modelled as a two-player non-cooperative minimax game where each player attempts to optimize its
own payoff with value function V (D,G), as:

min
G

max
D

V (D,G) = Ex∼pdata [logD(x)] + Ez∼pnoise [log(1−D(G(z)))] (1)

This minimax game is useful for theoretical analysis of the problem, however it does not perform
well in practice. When the learning process begins, D can simply rejects all generated samples with
very high confidence and hence not provide sufficient gradient to improve the performance of G. As
suggested in [17], instead of training G to minimize Ez∼pnoise [log(1−D(G(z)))], we can train G
to maximize Ez∼pnoise [logD(G(z))]. Hence, two different loss functions for the discriminator and
the generator can be used:

LGAN
D = Ex∼pdata [logD(x)] + Ez∼pnoise [log(1−D(G(z)))]

LGAN
G = Ez∼pnoise [logD(G(z))]

(2)

An information-theoretic extension to GAN, known as InfoGAN [19], was proposed in order to learn
disentangled representations in an unsupervised manner. InfoGAN extends the inputs of the generator
by an additional structured latent code c ∼ platent (it can be extended to multiple structured latent
codes). The minimax game for InfoGAN is formulated by adding a regularization term, as:

min
G

max
D

V ′(D,G,Q) = V (D,G)− λI(c;G(z, c)) (3)

where G(z, c) is a generator extended with a structured latent code c, λ ∈ R is a regularization
coefficient and I(·) is mutual information between the structured latent code c and a sample drawn
from G(z, c). However, direct calculation of I(c;G(z, c)) requires an access to the intractable
posterior p(c|x). Instead, as shown in [19], we can obtain a lower bound of the mutual information
by introducing an auxiliary distribution q(c|x) to approximate p(c|x), as follows:

I(c;G(z, c)) =

entropy︷ ︸︸ ︷
H(c) −

conditional entropy︷ ︸︸ ︷
H(c|G(z, c)) =Ex∼G(z,c)[H(c|x)] +H(c)

≥ Ex∼G(z,c)[Ec′∼p(c|x)[log q(c′|x)]] +H(c)

(4)

Since c is sampled from a fixed latent code distribution, H(c) can be treated as a constant. In practice,
the auxiliary distribution q(c|x) is parametrized by a neural network Q that shares all convolutional
layers with D extended by one additional layer, hence it adds only a negligible computational cost.
We used the normal distribution for the latent code distribution q(c′|x) in our implementation, so:

I(c;G(z, c)) ≥ log
( 1√

2πσ2
· e−

(x−µ)2

2σ2

)
= −1

2
log(2πσ2)− (x− µ)2

2σ2
= LInfoGAN (5)

GANs are notoriously difficult to train. From a game-theoretic perspective, the generator and
discriminator are trained to find a Nash equilibrium, however a convergence is not guaranteed due to
non-cooperative nature of the minimax game [18]. There is an evidence that distributions pG and
pdata are concentrated on a low dimensional manifold with disjoint supports [20]. Vanishing gradients
of the generator is another common problem as the performance of discriminator saturates [21].
Furthermore, the generator can learn to trick the discriminator by learning only a very small subset
of the real dataset and producing samples with low variety. Although to handle the aforementioned
challenges we used some techniques proposed in [18], we were not able to stabilize the training on
our wafer dataset with loss function based on KL-divergence as used in the original GAN paper. To
this end, the idea proposed in Wasserstein GAN (WGAN) [22] is based on replacing the loss function
used in the original GAN by a distance measure called Earth Mover’s (EM) distance or Wasserstein-1
distance. The EM distance between the real data and generator distributions is defined by:

W (pdata, pG) = inf
γ∼Π(pdata,pG)

E(x,y)∼γ [‖x− y‖] (6)

where γ(x, y) is a transport plan over all possible joint probability distributions Π(pdata, pG) between
pdata and pG. In other words, it indicates how much “mass” must be moved from x to y in order
to transform the distribution pdata into the distribution pG. Calculating all possible distributions is
intractable, instead [22] proposed to use a minimax game based on Kantorovich-Rubinstein duality,
as follows:

min
G

max
D

Ex∼pdata [f(D(x))]− Ex̃∼pG [f(D(x̃))] (7)
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where the function f : R → R is a 1-Lipschitz continuous function satisfying |f(x1) − f(x2)| ≤
γ · |x1 − x2| for every x1, x2 ∈ R and some real constant γ ≥ 0. Arjovsky proposed to enforce
1-Lipschitz continuity, by clipping the discriminator parametrized by weights w ∈ W , via clipping
these weights to a small interval w ∈ [−c, c] (for instance c = 0.01) after each gradient update:

min
G

max
w∈W

Ex∼pdata [Dw(x)]− Ex̃∼pG [Dw(x̃)] (8)

However, it is mentioned that weight clipping is a terrible way to enforce the 1-Lipschitz constraint.
An improved way of enforcing 1-Lipschitz continuity was described in [23] by adding a gradient
penalty regularization term to the original WGAN loss function, as:

LWGAN-GP
D = Ex∼pdata [D(x)]− Ex̃∼pG [D(x̃)] + αEx̂∼px̂ [(‖∇x̂D(x̂)‖2 − 1)2]

LWGAN-GP
G = Ex̂∼pG [D(x̂)] = Ez∼pnoise [D(G(z))]

(9)

where α is the regularization coefficient and px̂ is a distribution laying between pdata and pG, i.e. it
can be sampled as x̂ = εx+ (1− ε)x̃ for ε ∼ U [0, 1].

Combining the WGAN and InfoGAN objectives, we propose the following loss function for the dis-
criminator and generator to extract low-dimensional latent codes from high-dimensional wafermaps:

LD = LWGAN-GP
D − λLInfoGAN

LG = LWGAN-GP
G

(10)
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Figure 3: The proposed generative ad-
versarial neural network.

LD is a weighted sum multi-objective optimization function.
As shown in [24], any convex Pareto optimal front can be
obtained when α and λ are strictly positive.

The exact neural network architecture used in our implemen-
tation is depicted in Figure 3. Generator (depicted in blue)
generates a wafer given random vectors z and c. Discrim-
inator (depicted in blue and red) then decides whether the
provided wafer image is true (given by the original wafer test
data) or fake (generated). Classification network Q (depicted
in orange) optimizes the mutual information between it’s out-
put distribution and the distribution of c that was provided
to the generator. LeakyReLU activation function used after
each fully connected inner layer. We used hyperbolic tangent
(tanh) activation function for the generator output (since the
wafer data are normalized to interval [−1, 1]). The first-order
gradient-based optimizer Adam is used for the training phase.

3.3 Wafermaps Patterns Clustering

We have described a mechanism for non-linear mapping of high-dimensional wafer measurement data
into a low-dimensional representation. Now, we specify how to group the extracted latent features
into clusters based on a distance measure. Wafermaps with similar patterns should be considered in
the same cluster and dissimilar wafermaps should be clustered in different groups. There exist two
types of clustering methods (i.e. hierarchical and partitioning) that can be applied for clustering of
the wafermaps. We used one algorithm from each category, namely Hierarchical agglomerative and
k-means clustering.

4 Experimental Evaluation

In this section, we evaluate the performance of the proposed GAN-based method compared to the
other commonly used dimensionality reduction methods for spatial wafermaps patterns clustering. We
developed all codes related to this work in Python v3.5.2 and the deep learning library Keras v2.0.8
with Tensorflow v1.5.0 backend. For comparison, we chose six well-known unsupervised feature
extraction methods: (1)Variational auto-encoder (VAE) [12], (2) Non-negative matrix factorization
(NMF) [25], (3) Singular value decomposition (SVD) [5], (4) Principal component analysis (PCA)
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[26], (5) Independent component analysis (ICA) [27], (6) t-Distributed stochastic neighbor embedding
(t-SNE) [28]. The clustering performance is measured with the Silhouette metric [29], that is a number
on interval [−1, 1] and defined as sil(i) = b(i)−a(i)

max{a(i),b(i)} , where a(i) is the average distance between
feature vector xi to the other vectors in the same clusters and b(i) is the average distance between
xi to others in the nearest cluster. It shows how similar a latent feature is to other features within
the same cluster compared to the other clusters. The higher this value is, the better the clustering
performance will be. The average Silhouette values measured over all latent features with different
dimensions (i.e. 2, 3, and 4) for our method and the competing methods are shown in Figure 4. For
this experiment, we trained the model on 1000 epochs with batches of size 32. The results show
that our approach outperforms the best existing methods for efficient clustering of spatial wafer
map patterns in terms of Silhouette score, even in small number of clusters. One can easily see
that our GAN-based method can get higher score in both partitioning and hierarchical clusterings in
comparison with the competing methods. Moreover, variational auto-encoder has better performance
in most of the cases among the competing methods.
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(a) k-means, LATE_DIM = 2
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(b) k-means, LATE_DIM = 3
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(c) k-means, LATE_DIM = 4
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(d) Agglom., LATE_DIM = 2
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(e) Agglom., LATE_DIM = 3
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(f) Agglom., LATE_DIM = 4

Figure 4: Evaluation of different feature extraction techniques in terms of Silhouette score with two clustering
methods k-means and agglomerative clustering and different latent space dimensions. Our GAN-based approach
yields better separated clusters compared to the competing methods in majority of cases.

5 Conclusion

Systematic defects in manufacturing industry are caused by a malfunction in a process equipment or
human errors. Automated detection of such production issues and automated root cause analysis will
improve the efficiency of semiconductor production. Manufacturing defects often exhibit patterns
in measured test data. Recognizing these patterns and their categorization are essential tasks in
root cause identification of the production issues. In this paper, we proposed a deep generative
adversarial network methodology to recognize the spatial wafer map patterns. We extracted the most
characteristic features of a large real sensory wafer test data, using a combination of the InfoGAN
and the Wasserstein GAN. We then utilized the extracted features in clustering task to group the
wafers into meaningful clusters based on their spatial patterns. Finally, we experimentally showed
the superiority of the proposed approach over a real dataset, compared to the well-known methods.
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