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Abstract

Recent networking research has identified that data-driven congestion control (CC)
can be more efficient than traditional CC in TCP. Deep reinforcement learning
(RL), in particular, has the potential to learn optimal network policies. However,
RL suffers from instability and over-fitting, deficiencies which so far render it unac-
ceptable for use in datacenter networks. In this paper, we analyze the requirements
for RL to succeed in the datacenter context. We present a new emulator, Iroko,
which we developed to support different network topologies, congestion control
algorithms, and deployment scenarios. Iroko interfaces with the OpenAl gym
toolkit, which allows for fast and fair evaluation of different RL and traditional
CC algorithms under the same conditions. We present initial benchmarks on three
deep RL algorithms compared to TCP New Vegas and DCTCP. Our results show
that these algorithms are able to learn a CC policy which exceeds the performance
of TCP New Vegas on a dumbbell and fat-tree topology. We make our emulator
open-source and publicly available: https://github.com/dcgym/iroko,

1 Introduction

Reinforcement learning (RL) has seen a surge of interest in the networking community. Recent
contributions include data-driven flow control for wide-area networks [[15]], job scheduling [30], and
cellular congestion control [S7]. A particularly promising domain is the data center (DC) as many DC
networking challenges can be formulated as RL problems [46]. Researchers have used RL to address
arange of DC tasks such as routing [50, 9], power management [49]], and traffic optimization [12].

Adhering to the objective of maximizing future rewards [47], RL has the potential to learn anticipatory
policies. Data center CC, can benefit from this feature, as current DC flow control protocols and
central schedulers are based on the fundamentally reactive TCP algorithm [54} [34]. While many
techniques are designed to respond to micro-bursts or flow collisions as quickly as possible, they are
not capable of preemptively identifying and avoiding these events [21[13]. Any time flows collide,
packets and goodput is lost. Given the availability of data and the range of RL algorithms, CC is an
excellent match for RL.

However, a lack of generalizability [25 137, 31} 52} 58] and reproducibility [20] makes RL an unac-
ceptable choice for DC operators, who expect stable, scalable, and predictable behavior. Despite these
limitations, RL is progressing quickly in fields such as autonomous driving [39] and robotics [24].
These domains exhibit properties similar to DC control problems: both deal with a large input
space and require continuous output actions. Decisions have to be made rapidly (on the order of
microseconds) without compromising safety and reliability.

What these fields have, and what current DC research is missing, is a common platform to compare
and evaluate techniques. RL benchmark toolkits such as the OpenAl gym [10] or RLgarage (formerly
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RLIab) [16] foster innovation and enforce a common standards framework. In the networking space,
the Pantheon project [56] represents a step in this direction. It provides a system to compare CC
solutions for wide area networks. No such framework currently exists for DCs, partially because
topology and traffic patterns are often considered private and proprietary [7].

We contribute Iroko, a DC emulator to understand the requirements and limitations of applying RL
in DC networks. Iroko interfaces with the OpenAl gym [10] and offers a way to fairly evaluate
centralized and decentralized RL algorithms against conventional traffic control solutions.

As preliminary evaluation, we compare three existing RL algorithms in a dumbbell and a fat-tree
topology. We also discuss the design of our emulator, as well as limitations and challenges of using
reinforcement learning in the DC context.

2 The Data Center as RL Environment

A major benefit of datacenters is the flexibility of deployment choices. Since a DC operator has control
over all host and hardware elements, they can manage traffic at fine granularity. An automated agent
has many deployment options in the data center. Common techniques to mitigate congestion include
admission control [34] [13]], load-balancing of network traffic [2,[8], queue management [[18l 6], or
explicit hardware modification [4 3]. As TCP is inherently a self-regulating, rate-limiting protocol,
our emulator uses admission control to moderate excess traffic.

2.1 Patterns of Traffic

In order for an algorithm to operate proactively, it needs to be able to predict future network state. It
is unclear how trainable DC traffic truly is, as public data is few and far between. However, prior
work indicates that repeating patterns do exist [22, 138} 132, |8 145]].

Although the use of online-learning algorithms for the Internet is controversial [40], PCC [15]] and
Remy [55] have demonstrated that congestion control algorithms that evolve from trained data can
compete with or even exceed conventional, manually tuned algorithms. The idea of drawing from
past data to learn for the future is attractive. It is particularly viable in data centers, which are fully
observable, exhibit specific application patterns [22], and operate on recurrent tasks.

If DC traffic is sufficiently predictable, it is possible to design a proactive algorithm which forecasts
the traffic matrix in future iterations, and accordingly adjusts host sending rates. We agree with prior
debate that a local, greedily optimizing algorithm may not be capable of achieving this goal [40].
Instead, utility needs to be maximized by leveraging global knowledge, either over a centralized
solution such as FastPass [34] or distributed in terms of a message passing solution such as PERC [21]].

2.2 Decentralized vs Centralized Control

Control techniques are either centralized or decentralized. TCP, for example, is a decentralized
control algorithm. Each host optimizes traffic based on its local control policy and tries to maximize
its own utility. Recent data-driven variants of TCP include PCC [15] or Copa [S]], which actively
learn an optimal traffic policy based on local metrics.

A decentralized control scheme offers the advantage of scalability and reliability when handling long
flows with extend round trip times (RTTs). DCs in contrast typically exhibit short and bursty flows
with low RTTs, which limits convergence [21]]. This limitation frequently leads to inefficient flow
utilization or instantaneous queue build up [34} 13} 154].

In contrast to the decentralized control of TCP, a centralized policy can use the global information to
efficiently manage network nodes. Recent examples include the FastPass [34] arbiter, the Auto [12]
traffic manager, or the Hedera [2] flow scheduler. A major concern of centralized systems is signaling
latency delay and limitations in processing power. However, a central scheme has the potential to
plan ahead and asynchronously grants hosts traffic guarantees based on its current anticipated model
of the network. MicroTE [8]], which optimizes routing by predicting the next short-term traffic matrix,
represents an instantiation of this model.



Parking Lot| Topology Bandwidth [Monitoring

TCP Foo[Pcc|pcTcP]| ... Fat Tree Port Queues
Dumbbell Reward

Decentralized Policy Agents

REINFORCE |PPO| DDPG |...

Traffic
e

Centralized Policy Agents [ Traffic Generator Pattern

[ OpenAI Gym Platform

Figure 1: Architecture of the Iroko emulator.

2.3 Sources of Information

The available options for network data acquisition in a DC range from switch statistics, application
flows, job deployment monitoring, or even explicit application notifications.

Our algorithms use metrics from the transport layer and below, which have traditionally been used
in TCP congestion control algorithms. Modeling an objective function based only on congestion
signals is a tried and tested approach. Remy [55] and PCC [[15] have demonstrated that it is possible
to dynamically learn and improve the congestion function from simple network feedback.

Theoretically, it is possible to query for switch buffer occupancy, packet drops, port utilization, active
flows, and RTT. End-hosts can provide metrics in goodput, latency, jitter, and individual loss.

As improvement over the packet- and delay-based TCP, relative increases in RTT have been effectively
used as a signal in congestion avoidance research [33]|11]]. Queue length in switch interfaces is a
discrete value and precedes an increase in RTT, making it an equivalent congestion metric to RTT
increase.

Measured throughput represents the current utilization of the network and acts as a metric of the
actual utility for an active policy (a network without traffic has zero queuing, after all). A one-hot
encoding of active TCP/UDP flows per switch-port can serve as basis to identify network patterns.

3 Emulator Design

We designed Iroko to be extensible and modular. All DC information is abstracted away from the RL
agent, providing flexibility in data acquisition and modeling. The testing environment is assembled
by combining a set of core components. This includes a network topology, a traffic generator,
monitors for collecting data center information, and an agent to enforce the congestion policy (see
Figure[T). The emulator’s flexibility allows it to support centralized arbiters as well as decentralized,
host-level CC approaches. In general, decentralized agents represent traditional TCP algorithms such
as DCTCP [4], TIMELY [33]], or PCC [15]], while centralized agents operate as RL policies.The
emulator also supports hybrid deployments, which could operate as multi-agent systems as described
in [46]. The monitors feed information to the agent or record data for evaluation. The topology
defines the underlying infrastructure and traffic patterns that the DC hosts will send.

Two major components of our platform are the Mininet [26] real-time network emulator and the
Ray [28]] project. We use Mininet to deploy a virtual network topology and Ray to integrate RL
algorithms with the emulator. While Mininet is entirely virtual and is limited in its ability to generalize
DC traffic, it is capable of approximating real traffic behavior. Mininet has been effectively used as a
platform for larger emulation frameworks [14,[35].

3.1 Defining the Environment State

We have opted for a centralized DC management strategy. All RL agents operate on the global view
of the network state.

Iroko deploys monitors that collect statistics from switches in the network and store them as a d X n
traffic matrix. This matrix models the data center as a list of n ports with d network features. The
agent only uses switch buffer occupancy, interface utilization, and active flows as the environment



stateﬂ This matrix can be updated on the scale of milliseconds, which is sufficient to sample the
majority of DC flows [38| [12].

3.2 The Agent Actions

Our control scheme specifies the percentage of the maximum allowed bandwidth each host can send.
We represent this action set as a vector @ € R"™ of dimensions equal to the number of host interfaces.

Each dimension a; represents the percentageE] of maximum bandwidth allocated to the corresponding
host by the following operation:

bw; < bwyae ¥ a; V1€ hosts (1)

Similar to FastPass [34], the granularity of this allocation scheme can be extended to a per-flow
allocation, with a minimum bandwidth guarantee per host. For now, we leave it to the agents to
estimate the best percentage allocation according to the reward. In an ideal instantiation of a DC
under this system, packet-loss will only rarely, if ever, occur, and will minimally impact the network
utilization.

3.3 Congestion Feedback Reward Function

Choosing an appropriate reward function is crucial for the agent to learn an optimal policy. Inap-
propriately defined reward can lead to unexpected behavior [27]. The Iroko emulator allows the
definition of arbitrary reward functions based on the provided input state. In our initial setup, we
have decided to minimize switch bufferbloat [17]. The goal is to reduce the occurrence of queuing on
switch interfaces, as it indicate congestion and inefficient flow distribution.

We follow a common trade-off model which is inspired by recent work on TCP CC optimization [45]]:

: 2
R+ | }E bw; /bwmax — ifaces - (¢;/Gmaz)” —  std (2)
iChosts | ndwidth reward  weight queue penalty devpenalty

This equation encourages the agent to find an optimal, fair bandwidth allocation for each host while
minimizing switch queues. In the equation, bandwidth reward is the current network utilization and
is the only positive reward, while queue penalty is the current queue size of switch ports weighted
by the number of interfaces. The dev penalty penalizes for actions with high standard deviation to
ensure allocation fairness and to mitigate host starvation.

4 Preliminary Experiments

As preliminary analysis we used Iroko to compare the performance of three established deep RL
algorithms: REINFORCE [53! 48]], the Proximal Policy Gradient (PPO) [43]], and Deep Deterministic
Policy Gradient (DDPG) [29].

We use the RLIib implementations of the three deep RL algo-
rithms. The library is still growing, so for REINFORCE and
PPO we used the default configurations. For DDPG, we chose
the parameters to align closely with the original work config-
uration, except for adding batch normalization. We flatten the
collected state into a fully connected neural network architec- [ rrmrsi=—rrrrr i)
ture (this is an approach similar to [12] and [30]). Although
choosing appropriate hyper-parameters can drastically affect
algorithm performance [20], we leave tuning to future work.
The full configuration details of the algorithms and hardware
specifications of our setup are listed in the Appendix.
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Figure 3: The dumbbell scenario.

Our first benchmark uses a dumbbell topology with four hosts
connected over two switches and a single 10 Mbit link (Figure [3). Hosts H1 and H2 are sending

3We presume that switches in a real DC can reliably provide these statistics.
*It is the user’s responsibility to squash these values to the appropriate range of 0 to 1.0.
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(a) Algorithm performance on a UDP dumbbell topology.
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(b) Algorithm performance on a TCP dumbbell topology.

constant 10 Mbit traffic to the hosts on the opposite side, causing congestion on the central link. A
trivial and fair solution to this scenario is an allocation of 5 Mbit for each host pair. As comparison,
we run a separate RL environment where all CC decisions are strictly managed by TCP. We compare
the RL policies against TCP New Vegas [44] and Data Center TCP (DCTCP) [4].

TCP New Vegas and DCTCP are state-of-the-art
congestion avoidance algorithms optimized for
DC traffic. DCTCP requires Active Queue Man-
agement (AQM) [[6]] on switches, which marks
packets exceeding a specific queue threshold
with an explicit congestion notification (ECN)
tag before delivering them. DCTCP uses this
information to adjust its sending rate preemp- . .
tively. While DCTCP is effective at avoiding Figure 4: The fat-tree scenario.
congestion and queue build-up, it is still incapable of avoiding queues or bursts altogether [311,54]). In
our experiments we treat DCTCP as the possible TCP optimum and TCP New Vegas as a conventional
TCP baseline.

For the TCP algorithms the RL policy is ignored, but the same reward function is recorded. This
serves as a baseline comparison, and provides empirical evidence on the behavior of a classical CC
scheme viewed through the lens of a reinforcement policy.




We run each RL policy five times for 50,000 timesteps using both TCP and UDP as transport protocols.
Each timestep is set to 0.5 seconds to give enough time to collect the change in queues and bandwidth
in the network. A full test under this stepsize translates to a duration of ~7 hours per test.
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Figure 5: Algorithm performance on a fat-tree topology.

TCP’s flow control acts as a decentralized CC agent, which is a potential factor in confounding the
contribution of the policy learned by the RL algorithm. UDP does not have flow control and is not
typically used in the DC setting, but this pushes all congestion management to the RL algorithm. We
measure the change in average reward, the utilization of each host interface, and the queue build-up
on the congested link.

In addition, we investigate PPO’s and DDPG’s performance in a more complex DC scenario. We run
the each algorithm for 100,000 timesteps ( 14 hours) on a UDP-based fat-tree topology [1]| (Figure ]
with 16 hosts and 20 switches. This results in a 80 x 16 state matrix and an action vector of length 16.

4.1 Results

Figures[2aland[2b]plot the dumbbell topology results for the UDP and TCP settings. We see that DDPG
achieves the highest reward and continues to improve. All algorithms beat TCP New Vegas in reward,
while minimizing the queue buildup on the congested link. This implies that the algorithms quickly
learn a positive allocation. Interestingly, REINFORCE performs much better in combination with TCP.
Policies such as PPO or REINFORCE are estimated to work better in stochastic environments [20]].
DC environments, and TCP in particular, exhibit stochastic characteristics (e.g., wildly varying
throughput or unstable flow behavior), which may explain the good performance of REINFORCE.

DDPG emerges as the best choice of the three implementations. This is likely due to the deterministic
nature of our traffic. With a more stochastic pattern we expect to see a shift in performance in favor
of PPO. We leave this as future work.

Figures [5] shows the fat-tree measurements. DDPG has the best performance, but converges to a very
low bandwidth setting. PPO is very volatile but continuously improves in bandwidth. We believe a
higher step count, multiple runs, and configuration tuning are required to produce conclusive evidence
on the algorithms’ performance.

Overall, however, DCTCP remains unbeaten. This is expected as DCTCP is a highly optimized
algorithm with continuous kernel support. Our reinforcement learning algorithms only use a basic
configurations and perform actions on a coarse 0.5 second scale. In addition to reducing the action
granularity, we are also investigating solutions that allow for more complex actions (e.g., providing a
series of actions for the next n-seconds).



5 Concluding Remarks

Deploying reinforcement learning in the DC remains challenging. The tolerance for error is low and
decisions have to be made on a millisecond scale. Compared to a TCP algorithm on a local host,
a DC agent has to cope with significant delay in its actions. The chaotic and opaque nature of DC
networks makes appropriately crediting actions nearly impossible. Rewards, actions, and state can be
mix-and-matched arbitrarily. There is no indication or theoretical insight if a particular combination
will be successful. The fact that traffic has to be evaluated in real-time leads to slow prototyping and
agent learning curve. Optimizing a network of a mere 16 hosts is already a substantial task, since
each node is an independent actor with unpredictable behavior.

Nonetheless, our initial results are encouraging. In the dumbbell tests, the agents can quickly learn a
fair distribution policy, despite the volatility of the network traffic. DDPG and PPO even exceed the
TCP New Vegas baseline and demonstrate steady improvement.

We plan to continue work on our benchmarking tool and focus on improving the emulator performance
for fat-tree scenarios. This includes hyper-parameter tuning and deployment automation using the Ray
framework. We are looking into using meta-information such as job deployments, bandwidth requests
by nodes, or traffic traces as additional state information. We also plan to extend the range of reward
models, topologies, traffic patterns, and algorithms to truly evaluate the performance of reinforcement
learning policies. Iroko is an open-source project available athttps://github.com/dcgym/iroko.
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6 Appendix

All experiments were run using a Linux 4.15.0-34 kernel on a single 8 core (2xIntel Xeon E5-2407)
machine with 32GB of RAM. We used Ray version 0.5.3. Network emulation is performed using the
Linux NetEm [19] package. All hosts are connected over instances of the Open vSwitch [36]. The
sending rate of hosts is adjusted via the following Linux traffic control command:

tc qdisc change dev [iface] root fq maxrate [bwlmbit

The monitors collect network statistics using the Linux tools ifstat, tc qdisc show, or tcpdump.
Traffic is generated using the Goben traffic generator written in Go. Goben is open-source and located
athttps://github.com/udhos/goben. Each algorithm utilize a neural network model with two
hidden layers both with 256 neurons, and tanh for activation. The DDPG algorithm also uses this
model with additional parameters for the actor and critic neural networks as specified in the table.
Hyperparameter names are written to closely follow the current variable named used in RLIib:

Hyperparameter \ Value
DDPG
0 0.15
o 0.2
Noise scaling 1.0
Target network update frequency Every update
T 1073
Use Prioritized Replay Buffer [41] | False
Actor hidden layer sizes 400, 300
Actor activation function ReLU
Critic hidden layers sizes 400, 300
Critic activation function ReLLU
Optimizer Adam [23]]
Actor learning rate 1074
Critic learning rate 1073
Weight decay coefficient 1072
Critic loss function Square loss
PPO
Use GAE [42]] True
GAE Lamda 1.0
KL coefficient 0.2
Train batch size 4000
Mini batch size 128
Num SGD Iterations 30
Optimizer Adam [23]]
Learning rate 5%107°
Value function coefficient 1.0
Entropy coefficient 0.0
Clip parameter 0.3
Target Value for KL 0.01
REINFORCE
Learning rate 10-%
Optimizer Adam [23]

Table 1: Configurations for all algorithms.
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