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Abstract

In recent years, there has been a surge in the commercialization of wearable
"personal" ultraviolet (UV) sensors designed to help consumers stay ahead of
overexposure to UV radiation. To be accurate, these sensors must exhibit a spectral
sensitivity to sunlight similar the skin’s sensitivity, also called the "erythema
spectrum". Sensors, however, never perfectly exhibit this spectral sensitivity and
as a result their measurement are erroneous when they are exposed to "unknown"
spectra, i.e. spectra against which they were not calibrated. On the other hand,
because of the atmosphere, sun exposure at the surface of the earth exhibits an
infinity of different spectra. In theory, sensors need to be calibrated for all spectra to
measure them accurately outside of the laboratory but, in practice, it is impossible.
Here, we use a K-means clustering method on the "UVNet" public database of
solar spectra to generate what we call "centroid spectra" designed to be replicated
in a laboratory and used for calibrating personal UV sensors. We hypothetize that
using these centroid spectra for calibration will greatly improve the accuracy of
sensors when they face unknown spectra, which we validated through numerical
simulations. To our knowledge, this work brings the first rigorous approach into
the selection of calibration spectra in radiometry, with useful applications beyond
personal UV dosimetry.

1 The two main issues impeding the accuracy of wearable UV sensors

UV exposure, whether from sunlight or tanning beds, has been demonstrated to have on the skin
both short-term impacts, e.g. a sunburn, and long-term impacts, e.g. skin cancer. [Matsumura and
Ananthaswamy, 2004]. In recent years, there has been a surge in the commercialization of wearable
UV sensors as a quantitative tool to better guide sun protection. Essentially, these products are UV
dosimeters that alert consumers when they reach a UV dose that would be harmful to them. Because
UV can lead to life-threatening skin reactions in some cases, ensuring that these personal wearable
UV sensors are accurate is of paramount importance. The accuracy of UV sensors in real-world
conditions, that is when they measure UV radiation from sunlight in direct sunlight, indirect sunlight,
in the shadow, under a cloud cover, etc., is primarily driven by their spectral sensitivity, i.e. the
relative efficiency of detection of light as a function of the wavelength, and the spectral profile of the
light source used to calibrate them.
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1.1 Personal wearable UV sensors must follow the erythema spectrum

To be useful to consumers, UV sensors need to exhibit a spectral sensitivity similar to the skin’s
sensitivity. McKinlay and Diffey [1987] found that the sensitivity of the human skin to light follows
a very specific pattern, which they called the "erythema spectrum". This spectrum weights higher-
energy UVB (280-310 nm) exponentially higher than lower-energy UVA (310-400 nm). It was later
adopted by the World Health organization and standardized as ISO 17166. The erythema spectrum
definition is given in Equation 1.

w(λ) =


1 250 < λ ≤ 298
100.094(298−λ) 298 < λ ≤ 328
100.015(139−λ) 328 < λ ≤ 400
0 400 < λ

(1)

Where λ is the wavelength in nanometers. The World Health Organization has defined the "UV
index" to be 25 mW/m2 of erythemaly-weighted irradiance.

There is no wearable UV sensor, today, whose spectral sensitivity matches perfectly the erythema
spectrum. As a result, all wearable UV sensors will be prone to errors when they are used to estimate
the UV index of a light spectrum different from the spectrum of the light source used for their
calibration. However, the error arising from this spectral mismatch can be compensated by a thorough
calibration against all spectra that the sensors are supposed to measure.

1.2 A proper calibration would require the replication of sunlight in the laboratory

Historically, UV sensors were commercialized to ensure that the UV lamps used in water treatment
are still functioning at the desired level of irradiance. In this situation, the UV spectrum of interest
is not changing except in its overall intensity over time. As a result, a calibration of these sensors
against a similar UV lamp of known intensity would ensure that the sensors remain accurate when
measuring the same UV lamps with declining intensity over time.

As opposed to a UV lamp, sunlight is known to exhibit an infinity of different spectra at the surface
of the earth, due to the impact of the atmosphere [Iqbal, 1983]. Since wearable UV sensors are used
by consumers to measure sun exposure, they will be used to estimate the UV index of an infinite
amount of different spectra. The only way to ensure perfect accuracy would be to calibrate UV
sensors against all these spectra.

Of course, it is impossible to replicate all sunlight spectra in a laboratory. To solve this problem, we
use a K-means clustering method on public database of solar UV spectra to generate what we call
"centroid spectra" designed to be replicated in a laboratory and used for calibrating personal UV
sensors. We hypothesize that using these centroid spectra for calibration will greatly improve the
accuracy of sensors when they are used to estimate the UV index of spectra against which they were
not calibrated. We validated this hypothesis through numerical simulations.

2 Using the UVNet database of solar spectra to inform sensor calibration

To better understand what type of spectra personal UV sensors are supposed to be measuring, we
used a public database of solar spectra. From 1998 to 2003, the US Environmental Protection Agency
(EPA) used ten ground Brewer spectrophotometers across the United States to collect data on UV
exposure. Every 6 minutes, each spectrophotometer measured the irradiance of the sun every 0.5 nm
from 286.5 nm to 363 nm, except during night and maintenance times. The two primary goals of this
governmental effort were to provide information on the geographical distribution and temporal trends
of UV radiation in the United States and provides long-term records of UV irradiance to scientists
studying effects of UV on biota and materials. The outcome database of these solar UV spectra is the
UVNet dataset [UVN].

Specifically, the UVNet database is composed of 73,557 spectra. Each spectrum is a represented by
a vector of dimension 154 with the irradiance in W/nm2/nm from 286.5 to 363 nm every 0.5 nm.
Header information include GPS coordinates, the date, and the time of the day. Some sample spectra
are represented in figure 1.
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Figure 1: Sunlight spectra measured by spectrometers of the UVNet network. These 4 spectra were
sampled randomly among the 73,557 spectra found in the UVNet database.

2.1 Computation of the UV index from the UVNet database

Following the Equation 1, for a given solar spectrum S, we approximated the UV Index of that
spectrum by the following trapezoid rule of integration:

UVI(S) =
1

25 mW/m2

1

2

152∑
i=0

[
I(λi)w(λi) + I(λi+1)w(λi+1) · (λi+1 − λi)

] (2)

where λi is the wavelength in nm defined by 286.5 + 0.5i for i = 0 to 153 and where I(λ) is the
spectral irradiance in W/m2/nm.

2.2 Removal of spectra considered to be outliers

Although Brewer spectrophotometers used by the UVNet network are state-of-the-art instruments,
due to the external conditions and the limitations inherent to a hardware system, some outlier spectra
are inevitably present in the dataset. The maximum UVI ever recorded on earth was 43.3 at an
elevation several thousands of meters above sea level in the tropical Andes. We believe such a
value would not be found in spectra measured by the UVNet network of Brewer spectrophotometers.
Therefore, we remove all spectra whose UVI is above 43.3.

In the rest of this work, we consider the dataset with such outliers removed.

The overall data cleaning process is described below:

1. Compute erythema action spectrum i.e. reweight points
2. Renormalize each measurement by its UVI (computed as in (2)): Ii = Ii/UV Ii

3. Compute center of mass: M =
1

N

N∑
i=1

Ii

4. Keep the points that are in a range of 3 times the 80th percentile of the center of mass, where
the distance to the center of mass of measurement i is defined as ‖M − Ii‖2, the euclidean
norm of the difference between M and Ii.

3 K-means clustering of the UVNet spectra

3.1 Clustering Algorithms

We now present a methodology to group the spectra with similar patterns. We have no label or no
prior information on the spectra besides their vector representation and we want to group these spectra
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in a way that would improve the overall accuracy of personal UV sensors if the centroid spectra of
these groups were used for calibration.

The partitioning task used herein comprises three parts: (1) identifying the adequate number of
clusters (2) a clustering technique that partition the data and finally (3) identifying one relevant
spectra per partition.

The idea of clustering goes back to Steinhaus [1957] and clustering techniques are widely used in the
data science community. Several algorithms like K-Means [Lloyd, 1982], Mean-Shift [Fukunaga and
Hostetler, 1975], Density-Based Clustering [Ester et al., 1996], Expectation-Maximization [Dempster
et al., 1977], and Hierarchical Clustering [Defays, 1977], [Sibson, 1973] are available and have been
thoroughly studied.

We tried to cluster the UV spectra with these algorithms and found out that the K-means approach
yields to a more balanced clustering. In practice, we use the scikit-learn implementation [Pedregosa
et al., 2011] of the K-Means algorithm based on Lloyd’s algorithm [Lloyd, 1982].

3.2 Using the centroid clusters in calibration

The approach we propose for the calibration process can be divided into two different steps. First, K
different spectra are chosen. Then, the response of the sensing device to each spectra is computed
using the spectral response of the sensing diode. For each of the selected spectra, this response is
compared to the UVI of the spectra, computed as in (2). In order to correct the mismatch between
the theoretical prediction and the observed value, the observed value is linearly regressed against the
theoretical UVI value. The obtained linear relationship gives the correction of the response. The
overall calibration process is described below:

1. pick a number of clusters K
2. Cluster the UVNet dataset using K-Means with K clusters
3. compute the nearest neighbors of the centroids obtained by K-Means in the UVNet dataset.
4. observe the response of the diode to each chosen spectra
5. linearly regress the observed response against the theoreticaly predicted UVI

4 Results and numerical validation

In this section we investigate the performance of the clustering approach to calibration. In particular,
for different cluster size, we cluster the UVNet dataset and use the nearest neighbor of each centroid
in the dataset for calibration. The quality of the calibration is evaluated as follows: for different
threshold values, we display the portion of points such that the relative error between UV Ipredicted,
the predicted UVI and the real UVI:

|UV Ipredicted − UV I|
UV I

is less than the tolerance. The obtained results are depicted in figure 2. We notice that calibrating with
a higher number of points obtained by clustering, yields a greater number points with a relative error
than a given tolerance. That is, the calibration accuracy increases with the number of clusters. Besides,
we compare the calibration accuracy obtained with the clustering approach with the calibration
accuracy obtained by picking random spectra. As explained above, we display the evolution of the
proportion of points with relative error less than a certain tolerance. For a number of calibrating
sources equal to 3, 5 and 7 we obtain that calibrating with the points obtained with the clustering
approach yields a better accuracy. The results are displayed in figures 3, 4 and 5.
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Figure 2: Evolution of the accuracy for different cluster sizes.
X-axis: tolerance values, Y-axis: proportion of points such that the relative error is less than the
tolerance.

Figure 3: Calibration with 3 Spectra Figure 4: Calibration with 5 Spectra

Figure 5: Calibration with 7 Spectra
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5 Conclusion

In this work, we proposed to use clustering techniques to identify the most relevant signals among solar
irradiance data, in order to improve the calibration process of a UV sensing device. If the calibration
process of a UV sensor is well understood, choosing the radiations against which to calibrate can be
a delicate question. In particular, we show that it possible to extract a representative spectra of the
UV solar radiation as measured on the ground using the UVNet dataset. The methodology discussed
here appears to be new in the context of UV sensor calibration and opens the door for other potential
applications.
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