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1 Introduction

Increasingly many machine learning applications are driven by large and complex neural networks.
These models rely on effectively using accelerators (like GPUs and TPUs) to meet their computational
requirements. However, effective use of such accelerators is largely determined by device-specific
optimizations performed by compilers, like TensorFlow XLA [1], that map the high-level dataflow
graph to operations executable on the device.

A standard optimization pass in these compilers is the fusion pass that fuses multiple operations in
the dataflow graph and generates a rewritten graph with fused ops that has a lower step time and
higher device utilization. The reduction in step time can be attributed to eliminating certain overheads.
For example, a fused op avoids writing out intermediate values to device memory by forwarding
the values directly to consumer ops. Fusion also improves the temporal data locality and therefore
enables a larger optimization space for the compiler. Finally, for memory-bound applications, fusion
increases the computation intensity (computation per data load), and thus is one of the best ways to
improve the performance. However, fusing too many ops can increase register pressure and increase
spill code or have adverse cache effects.

Fusion algorithms typically determine an ordering of nodes to consider for fusion based on heuristics.
For example, the current strategy for fusion in XLA chooses nodes based on the potential memory and
computation savings achieved if the node is fused with all its consumers. However, this approximation
can be inaccurate as the fusion of some subsets of nodes can prevent fusion opportunities for the other
nodes. Furthermore, there may be non-trivial interactions between the fusion pass and other stages
like placement and scheduling of ops on devices. Therefore, strategies that determine the ordering of
nodes holistically instead of through localized decisions can lead to better fusion.

In this work, we proposed a priority-based fusion where an end-to-end trainable neural network
influences the order of fusion by assigning priorities to ops. To enable generalization across multiple
dataflow graphs, we use a graph neural network to encode the input graphs into a trainable vector
representation. This graph network is trained jointly with the policy network that generates priorities.
We apply a Proximal Policy Optimization (PPO) [2] algorithm to optimize the policy network and
graph neural network.

Our results show the effectiveness of priority fusion on a wide set of real-world workloads, including
AmoebaNet [3], NMT [4], RNNLM [5], and Transformer-XL [6]. Compared to no fusion, we achieve
an average of 16.1% speedup and a maximum of 31.5% speedup for Transformer-XL. Compared to
the default fusion used by Tensorflow, we achieve an average of 3.4% speedup and a maximum of
12.9% speedup for NMT.

2 Background

To process many tasks with a high level of parallelism and computation demand, host processors
launch them as GPU kernels or TPU operations onto the accelerator devices (we use ops throughout
this paper for simplicity). After an op is invoked by the host, the data and instructions will be
transferred from the device global memory to the on-chip memory, and the device will begin the
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Figure 1: An example of op fusion

computation. When the device has finished with the computation, the outputs are transferred back to
the global memory. The memory transactions between the on-chip and the global memory constitute
an overhead. Other op launch overheads, depending on the op and device types, may include accessing
the device drivers and transferring data between devices and hosts.

One of the many ways to mitigate this problem is to use op fusion (also kernel fusion). Op fusion is
the process of merging multiple device ops into a single large op. Figure 1 showcases an example of
op fusion. In this case, op K1 is producing an output which is then consumed by op K2. If these
two ops are fused, their combined instructions will be sent to the device along with the data for K1.
When K1 finishes on the device, the intermediate data is then immediately used for K2, without the
need to perform read and write transactions with the global memory, thereby reducing the overhead
and boosting the performance.

In addition to the memory traffic reduction, op fusion also improves the data locality on the device,
and increases the possibilities for compiler optimization, since the resulting fused kernel has a larger
body of instructions [7, 8]. To perform the best fusion in a dataflow graph, we need to have a
knowledge of the graph’s topology, data size of all the nodes, their output shape, their dependencies
and their adjacent nodes. It is also worth mentioning that the maximum number of ops which can
fuse together is limited by the device memory. However, the limit may also be imposed by the user
in the fusion algorithm to prevent overfusion. Therefore, since the algorithm cannot simply fuse all
nodes together, it should carefully choose which nodes to fuse so as to improve the performance as
much as possible.

Figure 2 shows an example of how the order of fusion can change the application performance. Let
us assume that the fusion algorithm is bound to fuse up to two nodes only. In this case, we have
an element-wise multiplication (Mul), a reduction, and a sigmoid function connected to each other
as shown. Should the algorithm choose Reduce and Sigmoid for fusion (left), the performance will
not improve much, since the amount of intermediate values transferred to/from the memory will not
change significantly, especially if the input tensors of Mul are very large, e.g. 10k by 10k. On the
other hand, if the fusion algorithm selects Mul and Reduce (right), the intermediate tensor after the
multiplication will stay in the on-chip memory for the Reduce op. Therefore, after Reduce returns
the result, the amount of transferred data has decreased dramatically. Thus, as it can be seen, there
should be more priority to fuse the more appropriate nodes. An inefficient fusion algorithm may not
improve the performance much and sometimes, might even hurt the performance.

Mul Reduce SigmoidMul Reduce Sigmoid

Core MemoryCore Memory

Figure 2: Impact of the order of fusion on memory traffic between the core and the memory:
Inefficient fusion, incurring unnecessary memory traffic (left), and better fusion, minimizing the
traffic and boosting performance (right)
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The baseline fusion scheme is performed using a fixed set of rules, which may or may not work with
all the graphs and device topologies. We propose a fusion based on reinforcement learning (RL)
which can determine the best fusion procedure and rules during the training on different benchmarks.

3 Design

The process of the baseline fusion in a graph consists of traversing the graph node by node, and
attempting to fuse every forward-pass node with one of its input nodes, and backward-pass nodes
with one of its output nodes. This process is accumulative, meaning each fused node can fuse with its
adjacent nodes again. The baseline fusion traverses the Tensorflow graph in a topological order. It
starts from the nodes with no inputs, and after it has processed each node, it will remove its outgoing
edges to the other nodes. Any node without any incoming edges left will be put in the queue for
processing. This process will continue until all the nodes have been traversed.
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Figure 3: Proposed framework

Since the traversal of the graph determines the order in which nodes will be fused, the resulting fused
graph can vary with different traversals. Therefore, an RL which determines the order of the traversal,
can change the topology of the fused graph, and subsequently, its performance. Thus, we propose a
priority-based RL fusion network, as shown in Figure 3. In this model, the input graph goes through
embedding, in which information regarding every node, its features and its neighbors are extracted to
be used. The graph representation is then fed to a Transformer-XL attention-based network, which
assigns a numerical rank to every node, which represents its priority. The number of priority levels is
fixed in the RL network. With more priorities, the ordering of the nodes becomes more precise.

With the priorities determined, we apply priority-based fusion to the whole graph, which involves
traversing the graph based on the priority of the nodes, i.e. nodes with the highest priority will be
fused first. However, if a node reaches the limit for number of ops (which is a fixed number set in the
algorithm to avoid overfusion), it will no longer be allowed to fuse. The process continues until all
nodes have been traversed. After the fusion is applied, we estimate the runtime of the resulting fused
graph. Based on the runtime, a reward is given back to the model, which will be used to determine
new priorities for the nodes.

For the RL network which determines the node priorities for fusion, we used a Proximal Policy
Optimization (PPO) [2] algorithm in order to minimize the runtime on a specific topology (using 2
GPUs, 4 GPUs, etc.) during each training step by maximizing the output reward:

Lπ = Ea[0:n]∼π[
q′(an|sn)
q(an|sn)

Aπ(sn, an)]

Lπ = max
π′

1

N

N−1∑
n=0,an∼π

[min(
q′(an|sn)
q(an|sn)

(R−R), clip(q
′(an|sn)
q(an|sn)

, 1− ε, 1 + ε)(R−R))]
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4 Evaluation

We use the following benchmarks in our experiments: AmoebaNet [3], Transformer-XL [6], NMT [4],
and RNNLM [5]. We use TensorFlow Performance Simulator 1 to estimate the runtime for the
following cases: with no fusion, with default fusion, finding the fusion via simulated annealing and
via the proposed RL-based priority fusion. Table 1 showcases the resulting speedups normalized with
respect to the no-fusion case.

Speedup (normalized) Default fusion Simulated annealing Priority fusion

AmoebaNet (2GPU) 27.38 27.86 28.3 (+0.92)
AmoebaNet (4GPU) 25.47 25.59 26.25 (+0.78)
NMT (2GPU) 2.82 3 3.19 (+0.37)
NMT (4GPU) -0.89 5.34 12.03 (+12.92)
NMT (8GPU) 10.47 10.47 12.65 (+2.18)
RNNLM (4GPU) 1.04 1.06 1.23 (+0.19)
RNNLM (8GPU) -2.39 -2.38 -2.27 (+0.11)
Transformer-XL (2GPU) 24.27 25.1 28.51 (+4.24)
Transformer-XL (4GPU) 17.05 19.32 19.99 (+2.94)
Transformer-XL (8GPU) 21.66 26.25 31.48 (+9.82)

Table 1: Speedup of each fusion policy normalized to the no-fusion case (reported in %). The number
in the parantheses is the improvement of our work over the default fusion.

As it can be seen, our proposed priority fusion outperforms the default fusion policy and simulated
annealing. There are cases, however, that the RL does not perform as well, especially in cases where
the model is not memory-bound, such as RNNLM.

5 Related Works

Loop fusion is a classical compiler technique that merges multiple loops into one to improve data
locality [9, 10, 11, 12, 13]. Inspired by the classical loop fusion techniques, kernel fusion has been
proposed on GPUs [7, 8, 14] that fuses two GPU kernels to eliminate redundant data operations
across kernels, reduce data movement, and improve data temporal locality. Operator fusion in
machine learning systems, such as TensorFLow XLA [1] and TVM [15], fuses ops based on implicit
dependency defined by the dataflow graph. Most of the existing work focuses on heuristic-based
approaches including cost analysis and critical path analysis to drive fusion decisions [16], and has
not yet considered reinforcement learning.

Previous work has shown that machine-learned heuristics can sometimes outperform hand-crafted
compiler optimization. Leather et al. [17] uses genetic algorithm to tune features, such as the loop
nested level in the loop unrolling pass. Chen et al. [18] proposes to use gradient-boosted tree and
TreeGRU to build a domain-specific statistic cost model to optimize the implementation of tensor
operators. Recent works demonstrate reinforcement learning as an effective approach for device
placement [19, 20] and to reduce peak memory usage [21] on a TensorFlow graph. In this work, we
propose an RL-based approach to improve the op fusion.

6 Conclusion

We propose a priority-based operation fusion with an end-to-end deep reinforcement learning model.
The proposed network consists of a graph neural network that encodes the input graph and a policy
network that generates fusion priorities. We use a sample-efficient PPO to optimize the network and
achieve an average of 3.4% speedup compared to Tensorflow default fusion, over a wide range of
tasks in computer vision, NLP, and speech.

1Publication in progress.
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