Neural-Hardware Architecture Search

Yujun Lin, Driss Hafdi, Kuan Wang, Zhijian Liu, Song Han
MIT
Cambridge, MA 02139
{yujunlin, songhan}@mit.edu

Abstract

Neural architecture and hardware architecture co-design is an effective way to enable specialization and acceleration for deep neural networks (DNNs). The design space and its exploration methodology impact efficiency and productivity. However, it is difficult to exhaust such an enormous design space by rule-based heuristics. To tackle this problem, we propose a machine learning based design and optimization methodology of a neural network accelerator. It includes the evolution strategy based hardware architecture search and one-shot hyper-net based quantized neural architecture search. Such machine learning based co-design can compose highly matched neural-hardware architectures and rival the best human-designed architectures by 1.3× speedup and 1.6× energy savings without loss of ResNet-50 accuracy under the same chip area budget.

1 Introduction

The resurgence of neural networks and the demand for energy efficiency give rise to specialized deep learning accelerators. Together with the neural network architecture, they provide a very large design space on the hardware (e.g. array dimensions, buffer size), compiler (e.g. loop tiling strategy, tiling order, fusion methods) and neural network (e.g. kernel size, #channels, #layers and precision). These design parameters tightly interact with each other as illustrated in Table 1. It is important to co-design the neural-hardware architecture by considering all the correlations. A perfectly matched neural architecture and hardware architecture will improve the utilization of the compute array and on-chip memories, maximizing the efficiency and performance.

However, the design space is too large to be exhausted by brute force or rule-based heuristics. Motivated by AutoML [14, 9, 10, 1, 6], we propose a machine learning based method to design and optimize AI accelerators. The design flow automatically searches for the optimal hyper-parameters that configure the neural network and the accelerator, and brings tightly matched neural-hardware architectures that efficiently work together. We demonstrate that our learning-based architecture search performs better than conventional grid search under the same frequency and area budget.

2 Approach

Jointly optimizing both neural and hardware architecture leads naturally a chicken or egg problem: i.e., which should we configure first, the neural architecture or the hardware architecture? Given the accelerator’s design cycle is much longer than neural networks, the accelerator should generalize to a suite of neural networks. Therefore, we choose to first search the hardware architecture by sampling a suite of neural architectures as a benchmark, and find the hardware architecture that achieves the best performance on the benchmarks (Section 2.1). Next, we fix the hardware architecture and design a fully specialized neural architecture that runs fast on the accelerator (Section 2.2). Figure 1 presents an overview of our methods automatically optimizing hardware and neural architectures.

2.1 Hardware Architecture Search (HAS)

We elaborate the HAS technique in three dimensions: search space, machine learning based search strategy and baseline configuration.

Search Space. The hardware architecture search space defines the types of neural network accelerator that will be explored and optimized. The base architecture that defines our search space is an in-house designed mixed-precision systolic-array-like architecture, MPA. MPA exposes five design knobs: #rows and #columns of the array size, input/weight/output buffer size. We choose these knobs as they are general to a wide range of neural network accelerators. Our method is not limited by these knobs. The array size ranges from 2×4 to 16×64 in each dimension, the input/output buffer bank size ranges from 128B to 4096B with interval of 4B, and the weight buffer bank size ranges from 128B to 256B with interval of 4B. The whole space contains 10^{10} possible configurations.

Evolutionary Search. We automate the hardware design exploration by turning it into an optimization problem. We apply evolution strategy [4] to find the best solution. In order to reduce both latency and energy, we choose the widely used metric Energy-Delay Product (EDP) as the objective. We use the geometric mean of EDP on a set of NN benchmarks normalized over the baseline as the final objective. At each evolution iteration, we first sample a set of candidates as population according to a multivariate normal distribution in \mathbb{R}^5 corresponding to the five parameters in our search space. These candidates are mapped to hardware configurations within given hardware area budget. After evaluating all the candidates, we update the sampling distribution based on the ranking of their EDP improvements. Specifically, we select top K solutions as the “parents” of next generation, and use their center to be the new mean of sampling distribution. We update the covariance matrix of the distribution to increase the likelihood of generating samples near parents following Equation 22 in [4]. The whole procedure is shown at the top of Figure 1.

Grid Search Baseline. In order to present a baseline design, we use grid search to find a MPA configuration with best energy-delay product on the same NN benchmarks. Since the design space is extremely large, we prune the search space following BitFusion open source code [11]. There are 250 possible configurations in total after pruning.

2.2 Quantized Neural Architecture Search (QNAS)

Researchers conventionally follow a *two-stage* pipeline to design the quantized neural network (QNN): the neural architecture is first designed without taking quantization into consideration [7, 1]; the bit width assignment for each NN layer is then searched [12]. However, this separation usually leads to a sub-optimal solution since the best neural architecture for floating-point might not be optimal after quantization. Another limitation is that, previous neural architecture design was guided by proxy rewards (e.g., FLOPs) or latency measured on general-purpose hardware (e.g., GPU, mobile CPU). As a result, the designed model is not specialized for the target accelerator and might not fully utilize the resources (e.g., SRAM can hold 32 channels while the designed model only uses 16). To this end, we propose the quantized neural architecture search (QNAS) to perform the neural architecture and quantization policy search *at the same time* and provide specialized solution for the target hardware accelerator.

Design Space. Our quantized neural network is composed of multiple ResNet [5] blocks. We relax each block to have 10 choices with different kernel sizes (3 or 5) and numbers of channels (0.125×, 0.25×, 0.5×, 1× or 1.5×). For each conv layer within the block, the activation can be 4/6/8 bits.
We automate this exploration with a biologically-inspired evolutionary algorithm [3] (Figure 1). We first initialize the population with N randomly sampled QNNs. At each iteration, we evaluate all models in the population and select the k models with the highest accuracies (i.e., the fittest individuals). The population for the next iteration is then generated with $(N/2)$ mutations and $(N/2)$ crossovers. For each mutation, we randomly pick one among the top-k candidates and alter each of its parameters (e.g., kernel size, bit width) with a pre-defined probability; for each crossover, we select two from the top-k candidates and generate a new model by fusing them together randomly. Finally, the best model is obtained from the population of the last iteration. We set N to 40 and the population size N to 100; therefore, there are 4000 different QNNs evaluated during search, each of which requires considerable training time (e.g., 8 GPU days for DoReFa ResNet-50 [13]). It is computationally prohibitive to train each candidate from scratch.

Train One, Get N for Free. Instead of training each candidate separately, we train an over-parameterized HyperNet once. It takes longer to train a HyperNet than a candidate model but the training time is paid only once and amortized by many subsequent models it produces. Specifically, HyperNet is composed of a stack of choice blocks (in Figure 2), which encodes the entire QNN design space as every candidate corresponds to a path in HyperNet. The weights of individual QNN are inherited from the HyperNet (without any further training). To train HyperNet, we randomly sample one path at each iteration (equivalent to sample one candidate model) and only update parameters along this sampled path. However, HyperNet requires more iterations to reach the convergence as only a small portion of parameters are updated at each iteration. To solve this, we let all ResNet blocks within the same choice block share one set of floating-point parameters so that the shared parameters will always be updated no matter which path is sampled. As in Figure 2e, the shared weight is cropped to match the selected #channels and kernel size, and then quantized to selected bit width at each iteration.

Hardware Feedback. Prior work [3] adopted proxy signals such as BitOps as their objective. However, they are not directly related to the hardware cost (i.e., latency and energy). Instead, we directly use the hardware cost as a hard constraint to control the population generation. However, evaluating all sampled network on hardware is still time consuming. Fortunately, the total amount of distinct convolution settings are limited (less than 10^3 in our design space). Therefore, we build a lookup table for all possible convolutions in a HyperNet on a configured MPA accelerator. As layers are executed sequentially and each layer’s latency is independent, we sum each layer’s cost to get the total cost.

3 Evaluation

We evaluate the performance from two aspects: 1) performance of HAS, the machine learning-based hardware architecture search; 2) performance of QNAS, quantized neural architecture search that fits the HAS designed accelerator. We develop a cycle-accurate simulator modeling the execution time and memory access behaviour; the circuit is clocked at 500MHz following [11] and synthesized at 45nm technology node with Cadence Genus and TSMC standard-cell library, which provides the chip area and dynamic/static power; the energy consumption of on-chip buffers are modeled using CACTI [8]. When evaluating, we use the same area budgets as Eyeriss and BitFusion which is 1.1 mm2 for compute units and 5.87 mm2 for the whole chip. To measure the performance and energy consumption of Eyeriss and BitFusion, we use their open-source simulation infrastructure [2, 11].

Figure 2: (a-d) hierarchically sample the neural architecture and quantization policy from the search space; (e) a floating-point weight parameter is shared among different convolution and quantization settings within the same layer.

and the weight can be 2/4/6 bits. For a model with 16 blocks (ResNet-50), the total design space has at least $10^{16} \times 9^{50}$ choices.

Evolutionary Search. We automate this exploration with a biologically-inspired evolutionary algorithm [3] (Figure 1). Instead of training each candidate separately, we train an over-parameterized HyperNet once. It takes longer to train a HyperNet than a candidate model but the training time is paid only once and amortized by many subsequent models it produces. Specifically, HyperNet is composed of a stack of choice blocks (in Figure 2), which encodes the entire QNN design space as every candidate corresponds to a path in HyperNet. The weights of individual QNN are inherited from the HyperNet (without any further training). To train HyperNet, we randomly sample one path at each iteration (equivalent to sample one candidate model) and only update parameters along this sampled path. However, HyperNet requires more iterations to reach the convergence as only a small portion of parameters are updated at each iteration. To solve this, we let all ResNet blocks within the same choice block share one set of floating-point parameters so that the shared parameters will always be updated no matter which path is sampled. As in Figure 2e, the shared weight is cropped to match the selected #channels and kernel size, and then quantized to selected bit width at each iteration.

Hardware Feedback. Prior work [3] adopted proxy signals such as BitOps as their objective. However, they are not directly related to the hardware cost (i.e., latency and energy). Instead, we directly use the hardware cost as a hard constraint to control the population generation. However, evaluating all sampled network on hardware is still time consuming. Fortunately, the total amount of distinct convolution settings are limited (less than 10^3 in our design space). Therefore, we build a lookup table for all possible convolutions in a HyperNet on a configured MPA accelerator. As layers are executed sequentially and each layer’s latency is independent, we sum each layer’s cost to get the total cost.

3 Evaluation

We evaluate the performance from two aspects: 1) performance of HAS, the machine learning-based hardware architecture search; 2) performance of QNAS, quantized neural architecture search that fits the HAS designed accelerator. We develop a cycle-accurate simulator modeling the execution time and memory access behaviour; the circuit is clocked at 500MHz following [11] and synthesized at 45nm technology node with Cadence Genus and TSMC standard-cell library, which provides the chip area and dynamic/static power; the energy consumption of on-chip buffers are modeled using CACTI [8]. When evaluating, we use the same area budgets as Eyeriss and BitFusion which is 1.1 mm2 for compute units and 5.87 mm2 for the whole chip. To measure the performance and energy consumption of Eyeriss and BitFusion, we use their open-source simulation infrastructure [2, 11].
Deploying deep neural networks on edge devices poses great challenges to both neural architecture and hardware architecture design. We propose an automated machine learning based architecture search including hardware architecture search HAS and quantized neural architecture search QNAS to find the closely matched neural-hardware architectures. We synthesis the RTL implementation.
of MPA in 45nm technology node and evaluate the benefits with six real-world CNN benchmarks. Figure 7 break down the performance improvement from HAS and QNAS. On ImageNet, we offer $1.5 \times$, $1.3 \times$ speedup and $1.7 \times$, $1.6 \times$ energy savings over in-house design MPA on ResNet18 and ResNet50 while fully preserving the accuracy. Such neural-hardware architecture search finds different design choice than human and paves the way for automated algorithm and hardware co-design.

References

