
QoS-aware Neural Architecture Search

An-Chieh Cheng†

accheng.tw@gmail.com
Chieh Hubert Lin†

hubert052702@gmail.com

Da-Cheng Juan‡

dacheng@google.com
Wei Wei‡

wewei@google.com
Min Sun†

sunmin@ee.nthu.edu.tw

† National Tsing-Hua University, Hsinchu, Taiwan
‡ Google Research, Mountain View, USA

Abstract

The execution time of a real-world application varies substantially due to both sys-
tem variations (e.g. CPU performance) and hardware states (e.g. energy efficiency).
A neural architecture that can be operated effectively under certain conditions
(e.g. low energy regime) may not be suitable for others, which can cause long
latency that leads to poor user satisfactory. In this paper, we present QoS-NAS, a
Quality-of-Service-aware neural architecture search that automatically searches for
a neural network to be executed efficiently at each frame rate condition. At runtime,
the controller of QoS-NAS offers trade-offs between accuracy and efficiency by
transforming its downstream architectures at almost no additional latency cost. Ex-
perimental results confirm the effectiveness of QoS-NAS and show that QoS-NAS
significantly outperform MobileNetV2 in terms of QoS satisfactory.

1 Introduction

Neural Architecture Search (NAS) has become an effective and promising approach to automate the
design of deep learning models. It aims at finding the optimal model architectures based on their
performances on evaluation metrics such as accuracy (Zoph and Le, 2017).

A common characteristic of the models searched by classic NAS methods is that a single model is
typically considered as the optimal architecture. However, such an assumption turn out not to be ideal
for real-world setting. In real-world, the execution times of an application vary substantially(Gaudette
et al. (2016)), due to both system variations (e.g. CPU performance) and hardware states (e.g. energy
efficiency). When the system workload is too high or battery power is too low, a neural architecture
may have long latency and thus leads to poor user satisfactory. Intuitively, the architecture entails the
ability to adapt to the change of both system and hardware states; for instance, we prefer the model
to become more light-weighted while encountering low battery condition. Taking these conditions
into consideration, we develop Qos-NAS, a NAS framework which offers a single neural network
executable at a different level of QoS parameter requests. For each input pair of image sample
and QoS parameter request, the controller is trained to select a best-suited architecture from the
architecture distribution. With sub-modules being shared across different architectures, weights can
be re-used for architectures that have never been selected before. Our QoS-NAS framework allows
every sample and QoS parameter request pair to have their specifically tailored architectures.

QoS-NAS also aligns with the concept of conditional computing (Bengio et al., 2015; Kuen et al.,
2018; Liu and Deng, 2017; Teja Mullapudi et al., 2018; Wu et al., 2018; Véniat and Denoyer, 2018))
since the instance-level architecture depends on the given input sample. However, these methods
mentioned above assume their base model to be optimal across all samples, then perform their

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

Figure 1: For each input instance, the controller of QoS-NAS learns to select an expert child
architecture from the expressive meta-graph while considering the input image instance and QoS
parameter request.

algorithm as a post-processing method to further reduce computational costs. In contrast, QoS-NAS
is a neural architecture search framework with built-in instance awareness during architecture design
and inference time decisions. Nevertheless, when the system states vary, these methods cannot adapt
the network architecture to meet QoS requirements accurately. QoS-NAS elegantly combines the
ideas of NAS and conditional computing by learning a controller to search and select architectures
while considering both the data variation and different level of QoS parameter requests.

2 QoS-NAS: QoS-aware Neural Architecture Search

QoS-NAS inherits the design paradigm of InstaNAS (Cheng et al., 2018) on building instance-
awareness into NAS, which incorporates a weight-sharing meta-graph (Bender et al., 2018; Pham
et al., 2018; Liu et al., 2018) and a controller (Zoph and Le, 2017; Pham et al., 2018) responsible for
architecture search sampling.

Similar to InstaNAS, QoS-NAS contains two major components: a meta-graph and a controller.
The meta-graph is a directed acyclic graph (DAG), which each node represents the weights of a
convolutional module and the edges represent the output of a module is taken as the input of the
other. As a result, selecting a sequence of nodes within the meta-graph forms a valid architecture.
Furthermore, the meta-graph can be treated as a set that represents all the possible combinations of
child architectures.

On the other hand, the controller of InstaNAS is designed to be instance-aware. Different to InstaNAS,
it consumes not only the input image instance, but also a QoS parameter request (e.g. a certain frame
rate) in advance to the meta-graph. The controller then predicts a probability vector p. Such a p
corresponds to a child architecture within the meta-graph that is specifically designed for the input
instance and QoS parameter request. During the architecture search, which involves reinforcement
learning, we sample child architectures with respect to p. We use policy gradient to train the controller
with a multiple-objective reward:

R = RAccuracy · RQoS , (1)

, which RAccuracy is accuracy reward and RQoS is QoS parameter reward that are both normalized
to [0, 1]. In our experiments, we use frame rate as the QoS parameter in RQoS as a case study. The
RQoS is calculated as:

RQoS =

{
1, if QoS parameter request satisfied.
0, otherwise.

(2)

Such a reward function design treats RAccuracy as a preference that is only considered while hard
constraint RQoS is satisfied.

QoS-NAS is trained with three stages: (a) “pre-train” the meta-graph, (b) “search” for architectures
while jointly fine-tunes the meta-graph, and (c) “fine-tune” the meta-graph. In the pre-training stage,
we use the random drop-path training paradigm (Bender et al., 2018), which makes any randomly
sampled child architecture a valid architecture with decent accuracy. Such a pre-training is required,
since, as described earlier, the search stage includes random sampling architectures. Otherwise, the
sampled architectures will produce incorrect and noisy rewards. The second stage aims to search
for architectures and train the controller as well. However, we observe that the controller tends to

2

uniform beta1 beta2 beta3 beta4
beta5

MobileNetV2 1.4× 8.2 18.0 34.59 0 1.9
MobileNetV2 1.0× 11.9 21.8 46.44 0.1 4.0
MobileNetV2 0.4× 12.6 22.2 48.48 0.2 4.7
MobileNetV2[0.4,1.0,1.4] 12.6 23.1 49.31 0.2 5.0

InstaNAS_C10_A 13.1 23.0 50.1 0.2 4.8
InstaNAS_C10_B 20.8 29.5 67.7 0.9 11.5
InstaNAS_C10_C 24.3 32.1 73.4 1.5 15.5
InstaNAS_C10_D 35.0 39.2 84.8 4.7 29.2
InstaNAS_C10_E 71.5 63.2 91.8 43.4 80.3
InstaNAS[A,B,C,D,E] 72.5 64.6 94.9 43.4 81.2

QoS-NAS 82.7 83.8 86.4 79.8 82.3

Table 1: Cifar10 QoS performances in terms of satisfied (both frame rate and accuracy) requests
percentage (%). QoS-NAS out-performs MobileNetV2 on five simulated frame rate distribution.
Note that the controller latency is already included in the reported number.

exploit RQoS easily, comparing to RAccuracy. In other words, it is easy for the controller to select
extremely-shallow architectures that have high RQoS (e.g., high frame rate) but low RAccuracy (e.g.,
low accuracy). As a solution, we set the QoS parameter request range related to the number of the
current epoch. This design shares a similar concept with curriculum learning (Bengio et al., 2009)
which aims to gradually increase the task difficulty to avoid sudden collapsing. To be more specific,
we enforce the controller to prefer low frame rate architectures in the early stage, then steadily
scale up the targeting frame rate. In the third stage, we fine-tune the meta-graph with accuracy
only while setting the weights of the controller fixed. This stage aims to make the meta-graph fully
dedicating into the current controller policy and to reveal its best performance. Generally, the input
QoS parameter requests during fine-tune stage can be in any distribution (e.g., uniform, normal)
according to the real-world use case. In our experiment, we simply assume uniform distribution when
fine-tuning the meta-graph.

3 Experiments

In this section, we explain and analyze the building blocks of QoS-NAS. We specify our main task
to be image classification, though QoS-NAS is expected to work for most vision tasks. We choose
frame rate as our QoS parameter, which is a very important factor to satisfy user experience.

Conv 1x1

DWConv 3x3-3F

Conv 1x1

(a) MBConv-3F-3K

+
Conv 1x1

DWConv 3x3-6F

Conv 1x1

(b) MBConv-6F-3K

+

Conv 1x1

DWConv5x5-3F

Conv 1x1

(c)MBConv-3F-5K

+
Conv 1x1

DWConv 5x5-6F

Conv 1x1

(d) MBConv-6F-5K

+

Conv 3x3

Conv 3x3

(e) BasicConv-3K

+

Figure 2: The five module options in each cell of
QoS-NAS including basic convolution and mobile
inverted bottleneck convolution with different ex-
pansion ratios (F) and kernel sizes (K). Note that
DWConv stands for depthwise convolution.

Search Space. We follow the search space de-
sign proposed by (Cheng et al., 2018), which
consists of 17 layers and each layer is consisted
of 5 choices of modules: one basic convolution
(BasicConv) and four mobile inverted bottleneck
convolution (MBConv) layers with different ker-
nel sizes {3, 5} and filter expansion ratios {3,
6}. We formulate the actions of the controller
in each layer to be binary options among the
five module choices. As a result, each layer has
25 = 32 combinations of option, and approxi-
mately 3217 ' 1025 combinations of a complete
network within the whole meta-graph.

Module Latency Profiling. The reward com-
putation is especially challenging for QoS-NAS
in practice. The reward of QoS-NAS considers
the frame rate of each child architecture sampled
in an instance-wise manner, which becomes ex-
tremely time-consuming, thus impractical to measure the frame rate for each architecture. Therefore,

3

Figure 4: Experimental results confirm the effectiveness of QoS-NAS. At runtime, the controller of
QoS-NAS can offer diverse trade-offs among accuracy and efficiency by transforming its downstream
architecture.

to alleviate this problem, we adopt a strategy similar to (Yang et al., 2018; Cheng et al., 2018). We
first profile the latency of each module in each layer and record the values within a look-up table.
During the search phase, with each sampled child architecture, we check out the latency cost of
each module and accumulate the values to form an estimated latency for the child architecture. To
demonstrate the estimated latency is a good proxy for the real latency, we measure the correlation
coefficient between estimated and real latencies for input resolution 32, 64 and 224 settings, which
yield consistently high correlation coefficients of 0.97, 0.98 and 0.97, respectively.

x(framerate)0.0

0.5

1.0

1.5

2.0

2.5

3.0

p(
x|

,
)

beta1 (= 0.5, = 0.5)
beta2 (= 1.0, = 3.0)
beta3 (= 3.0, = 1.0)
beta4 (= 2.0, = 2.0)

Figure 3: Visualization of the four beta distribu-
tions with different α and β values.

Quantitative Results We validate QoS-NAS
on CIFAR-10 dataset with 5 simulated input
frame rate distributions as the QoS parameter
requests. The five distributions include uni-
form distribution and four beta distributions with
different α and β values as visualized in Fig-
ure 3. Our experimental results in Table 1 show
70.1%, 60.7%, 37.0% , 79.6% and 77.3% of
QoS satisfactory improvement comparing to Mo-
bileNetV2 on the five input distributions, respec-
tively. We also compare with the model found
by InstaNAS (Cheng et al. (2018)). InstaNAS
can be considerate as a special case of QoS-
NAS which the input QoS parameter requests
are constant. As shown in Table 1, InstaNAS
can find extremely architectures with high frame
rate, which is effective for some specific input frame rate distributions (e.g. beta2). However, when
considering a more diverse range of QoS requests, QoS-NAS performs more consistent stable than
InstaNAS.

We also plot the accuracy of QoS-NAS at different frame rate request in Figure 4. At runtime, the
controller of QoS-NAS can instantly offer diverse trade-offs among accuracy and efficiency even in
finer-granularity of frame rate request.

4 Conclusion and Discussion

We instroduce QoSNAS, a novel neural architecture search approach with build-in Quality-of-Service-
awareness. QoS-NAS outperforms MobileNetV2 on five distributions of QoS parameter requests
with a large margin. More future research on extending this framework to other QoS parameters
(e.g., power consumption) or vision tasks (e.g., object detection) may further exploit the benefits of
QoS-NAS.

4

References
Bender, G., Kindermans, P.-J., Zoph, B., Vasudevan, V., and Le, Q. (2018). Understanding and

simplifying one-shot architecture search. In International Conference on Machine Learning, pages
549–558.

Bengio, E., Bacon, P.-L., Pineau, J., and Precup, D. (2015). Conditional computation in neural
networks for faster models. arXiv preprint arXiv:1511.06297.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009). Curriculum learning. In Proceedings
of the 26th annual international conference on machine learning, pages 41–48. ACM.

Cheng, A.-C., Lin, C. H., Juan, D.-C., Wei, W., and Sun, M. (2018). Instanas: Instance-aware neural
architecture search. arXiv preprint arXiv:1811.10201.

Gaudette, B., Wu, C.-J., and Vrudhula, S. (2016). Improving smartphone user experience by balancing
performance and energy with probabilistic qos guarantee. In 2016 IEEE International Symposium
on High Performance Computer Architecture (HPCA), pages 52–63. IEEE.

Kuen, J., Kong, X., Lin, Z., Wang, G., Yin, J., See, S., and Tan, Y.-P. (2018). Stochastic down-
sampling for cost-adjustable inference and improved regularization in convolutional networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
7929–7938.

Liu, H., Simonyan, K., and Yang, Y. (2018). Darts: Differentiable architecture search. arXiv preprint
arXiv:1806.09055.

Liu, L. and Deng, J. (2017). Dynamic deep neural networks: Optimizing accuracy-efficiency trade-
offs by selective execution. In Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and
the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New
Orleans, Louisiana, USA, February 2-7, 2018.

Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., and Dean, J. (2018). Efficient neural architecture search
via parameter sharing. In Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, pages 4092–4101.

Teja Mullapudi, R., Mark, W. R., Shazeer, N., and Fatahalian, K. (2018). Hydranets: Specialized
dynamic architectures for efficient inference. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 8080–8089.

Véniat, T. and Denoyer, L. (2018). Learning time/memory-efficient deep architectures with budgeted
super networks. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Wu, Z., Nagarajan, T., Kumar, A., Rennie, S., Davis, L. S., Grauman, K., and Feris, R. (2018).
Blockdrop: Dynamic inference paths in residual networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 8817–8826.

Yang, T.-J., Howard, A., Chen, B., Zhang, X., Go, A., Sandler, M., Sze, V., and Adam, H. (2018).
Netadapt: Platform-aware neural network adaptation for mobile applications. In Computer Vision -
ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings,
Part X, pages 289–304.

Zoph, B. and Le, Q. V. (2017). Neural architecture search with reinforcement learning.

5

	Introduction
	QoS-NAS: QoS-aware Neural Architecture Search
	Experiments
	Conclusion and Discussion

