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Abstract
Enabling compilers to automatically optimize code has been a longstanding goal1

for the compiler community. Efficiently solving this problem requires using precise2

cost models. These models predict whether applying a sequence of code transfor-3

mations reduces the execution time of the program. Building an analytical cost4

model to do so is hard in modern x86 architectures due to the complexity of the5

microarchitecture. In this paper, we present a novel deep learning based cost model6

for automatic code optimization. This model was integrated in a search method7

and implemented in the TIRAMISU compiler to select the best code transforma-8

tions. The input of the proposed model is a set of simple features representing the9

unoptimized code and a sequence of code transformations. The model predicts10

the speedup expected when the code transformations are applied. Unlike previ-11

ous models, the proposed one works on full programs and does not rely on any12

heavy feature engineering. The proposed model has only 16% of mean absolute13

percentage error in predicting speedups on full programs. The proposed model14

enables TIRAMISU to automatically find code transformations that match or are15

better than state-of-the-art compilers without requiring the same level of heavy16

feature engineering required by those compilers.17

1 Introduction18

Writing high-performance software is essential in many areas from machine learning to science and19

engineering. In nuclear physics, for example, researchers need to perform large scale simulations20

to study the properties of matter. A highly optimized implementation of these simulations can21

be orders of magnitude faster compared to an unoptimized implementation. In deep learning, an22

optimized implementation of a state-of-the-art neural network such as XLNet [16] is 1.8× faster23

than the equivalent PyTorch implementation. Writing such a highly optimized code requires ninja24

programmers and is time-consuming while the results are error-prone, less understandable, and non-25

portable. One of the longstanding goals in the compiler community is to develop compilers that can26

automatically optimize high-level code. These compilers automatically apply code transformations to27

make the code run faster; thus, avoiding the need for manual low-level program tuning. They provide28

greater productivity, portability, and high performance, and will be directly accessible by domain29

scientists.30

Automatically generating efficient code for high-performance systems is a tedious task. In order for31

the compiler to generate efficient code, two problems have to be solved. First, a large set of critical32

code transformations and a mechanism to apply them to programs need to be provided. Examples33

of such transformations include loop fission, fusion, parallelization, and vectorization. Second, the34

right sequence of code transformations from this large set has to be chosen. The selected code35

transformations must preserve the program semantics and provide the highest performance for the36

input program. While state-of-the-art-compilers have shown success in solving the first problem37

(i.e., the ability to provide a large set of transformations and correctly apply a selected sequence of38

transformations [15, 5, 13, 7, 8, 11]), they still do not successfully solve the second problem (i.e.,39

selecting the sequence of transformations that will provide the best performance).40
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The problem of selecting the right sequence of code transformations can be modeled as a search41

problem that can be solved in three steps. In the first step, the compiler uses a search technique42

to explore the space of possible code transformations. The result of this step is a set of candidates43

where each one is a sequence of code transformations. In the second step, the compiler checks the44

validity of each candidate (i.e., checks that applying the transformations does not change the program45

semantics). In the third step, the compiler evaluates the valid candidates and chooses the one that46

minimizes the execution time. This evaluation can be done by running each candidate on the target47

hardware to obtain the exact speedup. However, this is not a feasible solution in practice as running a48

program takes a considerable amount of time. Moreover, the exact hardware may not be available at49

compile time. Another way to evaluate a candidate is by using a cost model to predict the speedup.50

Designing cost models manually is known to be a hard task [14, 2]. This is mainly due to the diversity51

of hardware architectures and their complexity (out-of-order execution, complex memory hierarchies,52

data prefetching, etc.). Complex interactions between code transformations make the problem more53

complicated. Recently, cost models, such as Ithemal [10] and Halide [1], have demonstrated how to54

overcome some of this complexity by using deep learning. While these state-of-the-art cost models55

are more accurate, they are limited in two ways: Ithemal [10] only predicts throughput for basic56

blocks of assembly code (instead of full programs). It also assumes that data is always in cache. The57

cost model in Halide [1] requires heavy feature engineering (it uses 54 complex program features).58

Designing such features is tedious, error-prone, and time-consuming.59

In this paper, we propose a novel DNN-based cost model that avoids the problems of previous60

work. Our model operates on full programs expressed in a high-level language (not just basic61

blocks). It takes into consideration not only memory accesses to the cache but also to the main62

memory. Moreover, it does not require heavy feature engineering. The proposed cost model takes63

the original unoptimized code and a sequence of code transformations and predicts the speedup that64

these transformations would yield when applied. The model is designed for CPUs and is integrated in65

the TIRAMISU compiler [4], a compiler for the TIRAMISU domain-specific language (DSL). Because66

this model is a regression model, it allows the compiler to select the best transformation candidates67

by ranking the candidates selected by a search technique.68

Contributions In summary, the contributions of this paper are:69

• A novel deep-learning-based cost model for code optimization. This cost model is a regression70

cost model, operates on full programs, and does not rely on extracting complex features.71

• A training data set that includes 1.8 million automatically generated programs.72

• An implementation of the proposed model and an integration into a search approach to enable the73

TIRAMISU compiler to automatically search for the best code transformations.74

• We evaluate the proposed model and show that it has a low error rate reaching 16% mean75

absolute percentage error. We show also that it enables TIRAMISU to automatically find code76

transformations that match or outperform state-of-the-art compilers.77

2 TIRAMISU Embedded DSL78

TIRAMISU [4] is a domain-specific language (DSL) embedded in C++. It provides a C++ API that79

allows users to write a high level, architecture-independent algorithm, and a set of API calls to select80

which code transformations should be applied. The first part of a TIRAMISU program specifies the81

algorithm without specifying how it should be optimized. The second part specifies which code82

transformations to apply and how the results of computations should be stored. This is similar to83

the Halide language [12], except that TIRAMISU provides additional program analysis and code84

transformations as it uses a mathematical model known as the polyhedral model internally [6, 5, 3, 4].85

The following code shows an example of a convolution algorithm written in TIRAMISU.86

1 // Declare the iterators.87

2 var n(0, batch), fout(0, out_features), fin(0, in_features), y(0, H-2), x(0, W-2),88

k0(0, 3), k1(0, 3);89

3 // Algorithm.90

4 conv(n, fout, y, x) += weights(fout, fin, y, x) * input(n, fin, y + k0, x + k1);91

The iterators in line 2 define the loop bounds around the conv computation. The algorithm is92

semantically equivalent to the following code.93
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1 for (n in 0..batch)94

2 for (fout in 0..out_features)95

3 for (y in 0..H-2)96

4 for (x in 0..W-2)97

5 for (fin in 0..in_features)98

6 for (k0 in 0..3)99

7 for (k1 in 0..3)100

8 conv[n, fout, y, x] += weigths[fout, fin, y, x] * input[n, fin, y+k0, x+k1];101

The next code shows an example of code transformation commands that can be applied to the previous102

convolution kernel. These commands apply parallelization, loop interchange, tiling, vectorization,103

and unrolling.104

1 // Provide the code transformation commands.105

2 conv.parallelize(n);106

3 conv.interchange(fout, fin);107

4 conv.tile(y, x, 32, 32);108

5 conv.vectorize(fout, 8);109

6 conv.unroll(k0); conv.unroll(k1);110

Currently, in TIRAMISU, a developer has to provide the previous sequence of code transformations111

manually. Our goal is to automate finding that sequence. We do this by developing a cost model that112

predicts the speedup of using a given transformation or any sequence of valid transformations. For113

example, the model can be used to predict whether combining parallelization, loop interchange, and114

loop tiling is useful. In addition, the model can be used to choose the right arguments for each one of115

the previous code transformations (e.g., choose the tile sizes).116

3 Data Generation117

As training DNNs requires a large data set and only a small number of programs have ever been118

written in TIRAMISU, we decided to automatically generate a data set and use it to train the model. We119

developed a code generator that generates random programs and sequences of code transformations.120

Each one of these randomly generated programs and code transformations is compiled, executed, and121

finally, the actual speedup is measured. The speedup is the ratio between the execution time of the122

original unoptimized program and the optimized one. Each data point in the data set is a triplet of the123

form (program, a sequence of code transformations, measured speedup).124

Random code generation A TIRAMISU program is a sequence of computations where each125

computation is an assignment. There are three common patterns of assignments that appear in126

TIRAMISU programs: (1) simple assignments where the right-hand side is a function of input127

arrays or array values computed previously; (2) stencils (e.g. horizontal blur); (3) reductions (e.g.128

matrix multiplication). The random code generator generates sequences of computations where129

each computation is a variant (or a combination) of the previous patterns. Randomly generated130

programs are correct by construction. A computation consumes either constants, input arrays, or131

values computed by previous computations. Code transformations are also generated randomly, but132

specific rules are used to guarantee that code transformations are valid (for example, tiling is not133

applied if the loop extent is smaller than the tile size).134

4 Program Characterization and Model Architectures135

Our cost model is designed to support programs that can be expressed in TIRAMISU. The latter136

is designed for expressing data parallel algorithms that operate over dense arrays using loop nests137

and sequences of statements. These algorithms are often found in image processing, deep learning,138

dense linear algebra, tensor operations, and stencil computations. A formal description of programs139

supported by TIRAMISU can be found in [4]. Code transformations supported by the proposed140

model, currently, include loop fusion, loop tiling, loop interchange, and loop unrolling which are all141

challenging. For simpler transformations such as parallelization and vectorization, we use simple142

heuristics [12].143

4.1 Program characterization144

Designing complex hand-engineered features is tedious, error-prone, and time-consuming. Instead of145

using complex hand-engineered features, we characterize programs by extracting simple high-level146

information that is stored in a compact variable-size representation.147
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(a) Program pseudocode. (b) Program tree representation. (c) Computation vector.

Figure 1: Our characterization of a typical program.

Our program characterization is based on the AST (Abstract Syntax Tree) representation of programs.148

A program is characterized as an ordered tree of computation vectors as shown in Figure 1b. A149

computation vector is a vector that includes three pieces of information: loop nest representation,150

assignments representation and loop transformation representation. We use a tree structure to encode151

the program structure.152

4.2 Model Architecture153
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Figure 2: The cost model architecture

We model the problem of speedup estimation as a regression problem: given an algorithm and a set154

of code transformations, our model predicts the speedup expected when applying the suggested code155

transformations compared to the base program (i.e. without applying code transformations).156

We design our cost model’s architecture to support the variable size and recursive nature of our157

program characterization by combining Recurrent and Recursive Neural Networks. Our model’s158

architecture has three layers as shown in Figure 2a.159

5 Search Space Exploration160

Finding the best code transformations is a hard combinatorial optimization problem due to the fact161

that constraints, i.e. interaction between code transformations, and the objective, i.e. the speedup,162

cannot be mathematically represented using the program’s features. Thus, the proposed model163

is used as an objective function estimator to better navigate the search space. However, the used164

search exploration approach should take into account the estimator’s margin of error, thus requiring165

stochasticity in the search space exploration.166

Since constraints cannot be related to each other, one of the best ways to model the problem of167

finding the best code transformations and their parameters is to use a tree search. This allows us to168
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Figure 3: Example of the BS Tree for exploring the tiling and unrolling code transformations

use classical tree search algorithms. In this paper, we use Beam Search and MCTS (Monte Carlo169

Tree Search).170

The Beam Search tree (as shown in Figure 3) explores whether to apply a code transformation and171

which parameters to use for that transformation. At each node of the tree, an evaluation is conducted172

using the cost model to assess whether the chosen transformations provide a good speedup. In Figure173

3, exploring the tree shows that applying tiling with a tile size of (16, 8) and unrolling with a factor174

of 4 provides the best sequence of code transformations.175

6 Evaluation176

To evaluate our cost model: (1) we measure its accuracy on a test set composed of random programs177

and compare the predicted and the measured speedups on that data set; (2) we measure the speedups178

obtained when the model is used to search for code transformations in real-world benchmarks;179

(3) we compare the accuracy of this model with the accuracy of the model used in Halide [12], a180

state-of-the-art model.181

The model evaluation and the data collection are performed on 16 identical multi-core CPU nodes.182

Each node has a dual-socket, each socket is a 12-core Intel Xeon E5-2680v3 CPU, with 128 GB183

RAM. We used 60% of data for training, 20% for validation, and 20% for testing.184

MAPE(y, ŷ) =
1

n

n∑
i=1

∣∣∣yi − ŷi
yi

∣∣∣
185 Model Accuracy To measure the accuracy of the proposed model, we use MAPE (Mean Absolute Percentage186

Error), where y and ŷ are respectively the measured and the predicted speedups. The MAPE of our cost model187

on the test set is 16%.188

The Pearson correlation coefficient for the proposed model is 0.90, showing that the linear correlation between189

predicted and measured speedups is strong. In addition, we evaluate the ranking capabilities of the model with190

the Spearman’s rank correlation coefficient, defined as: rs(y, ŷ) = r
(
rg(y), rg(ŷ)

)
where rg(y) converts the191

speedups to ranks and r is the Pearson correlation coefficient. The Spearman’s rank coefficient of our cost model192

is 0.95, which shows that the predicted and measured ranks are highly linearly correlated. This property is193

important when using the model with a search method.194

Comparing Predicted and Measured Speedups Figure 4 compares the predicted and measured195

speedups. To simplify visualization, we use a subset of the test set. This subset is composed of 100 ran-196

dom programs, each with 32 random sequences of code transformations (therefore, the total is 3200 transformed197

programs). The horizontal axis is the list of 3200 programs. These programs are sorted based on their speedups in198

ascending order to simplify visualization. As the figure shows, the predicted speedups are close to the measured199

ones. The error in prediction is lower around the speedup 1 and is higher as the speedup gets further from 1. We200

will comment more on this behavior later in the section.201

Figure 5 investigates the distribution of the model error rates over the whole test set. On top, Absolute Percentage202

Error (APE) is measured on the code transformations of each program and the results are plotted through a203

histogram. On bottom, APE is measured on all data points of the test set and the measured speedups are plotted204

against their APE. We can see that the error gets smaller as speedups approach 1 and gets higher as speedups205

get far from 1. Particularly, the error is more significant for speedups below 0.05. The model is more accurate206

around speedup 1 because most programs in the training data set have speedups close to 1. Speedups below 0.05207

5



Transformed programs ordered by their speedups

S
pe

ed
up

0.005

0.01

0.05

0.1

0.5

1

5

10

50

100

Predicted speedup Measured speedup

Figure 4: Predicted speedups compared to measured speedups. The speedups are ordered in ascending order.

are less frequent. The next experiment will evaluate whether the accuracy of the model allows finding the best208

code transformations when searching the space.209
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N
um

be
r o

f p
ro

gr
am

s

0

10000

20000

30000

40000

0.
00

0.
06

0.
12

0.
18

0.
24

0.
30

0.
36

0.
42

0.
48

0.
54

0.
60

0.
66

0.
72

0.
78

0.
84

0.
90

0.
96

Measured speedup

A
bs

ol
ut

e 
pe

rc
en

ta
ge

 e
rr

or

0%

10%

20%

30%

40%

0.05 0.1 0.5 1 5 10

Figure 5: The distribution of error rates for the whole test set. On top, APE is measured for each transformed
program, then the histogram of measurements is plotted. On bottom, APE is measured for each transformed
program, then the speedups are plotted with their APE.

Search Space Exploration Using the Cost Model In this experiment, we evaluate the ability of search210

approach combined with the cost model to find good code transformation sequences for real-world benchmarks.211

We use BS and MCTS to explore the search space. We use a set of real-world benchmarks spanning different212

areas: image processing, deep learning, linear algebra and stencils. The benchmarks include box blur (an213

image processing filter to blur images), conv + relu (two successive neural network layers that benefit from214

operator fusion), convolution (a direct neural network convolution), cvtcolor (an image processing filter for215

converting the colors of an input image from RGB to gray), doitgen (a kernel from the multiresolution adaptive216

numerical scientific simulation [9]), heat2d (heat equation over 2D space), heat3d (heat equation over 3D space),217

jacobi2d (a jacobi-style stencil computation over 2D data with 5-point stencil pattern), mvt (matrix vector218

multiplication composed with another matrix vector multiplication but with transposed matrix), and seidel2d219

(Gauss-Seidel style stencil computation over 2D data with 9-point stencil pattern). The sizes of the input data for220

each benchmark is provided in appendix.221

Figure 6 shows the best speedups found for each benchmark. The baseline is the original program where the222

outermost loop is parallelized (no other code transformation is applied). The first column (blue), reports results223

obtained when beam search is used to explore the search space. This column is considered the reference in224

our comparison as execution is used to obtain the speedups. In the second and third columns, beam search and225

MCTS use the cost model to predict speedups. The last column shows the speedups obtained after applying the226

Halide autoscheduler (Halide automatic optimizer) defined in [1].227

Beam search with the cost model is competitive in most benchmarks, but does not find the best code transforma-228

tions in heat2d, jacobi2d and seidel2d. Beam search with the cost model relies entirely on predictions to make229

decisions. Bad predictions can thus mislead the search method which is why beam search does not find the best230

transformations in the previous benchmarks. MCTS has similar performance, except in jacobi2d and seidel2d231

where it finds better code transformations, and in cvtcolor where the code transformations found are less good.232

MCTS can find better code transformations in these cases because it copes with model imprecision taking into233

account its stochasticity. However, since the tree space is explored differently, MCTS might explore different234

nodes compared to BS and thus have distinguishable results.235
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Comparison with Halide In this section, we compare our cost model with the one of Halide [1], a state-of-236

the-art cost model and the closest to ours. In comparison with Halide, TIRAMISU finds transformation sequences237

that are either competitive with those found by Halide or better (except in box blur). This is mainly due to miss238

predictions by the Halide model which lead Halide to use transformations that degrade performance. These239

wrong predictions happen in particular in benchmarks that are from the area of scientific computing which240

Halide was not trained to handle (heat2d, jacobi2d, mvt and seidel2d). In benchmarks that fall in the categories241

of deep learning and image processing, which Halide supports well, TIRAMISU and Halide have comparable242

performance.243

We also compare the performance of the Halide model with that of TIRAMISU on randomly generated programs.244

Halide’s paper uses R2 as an accuracy metric and uses MSE (Mean Square Error) as a loss function, we thus use245

the same metric and loss function for comparison. Halide has an R2 of 0.96, whereas TIRAMISU has 0.89. Both246

Halide and TIRAMISU have comparable results but Halide uses heavy feature engineering. The main advantage247

of TIRAMISU is that it does not require feature engineering.248

7 Conclusion249

This paper presents a novel cost model for predicting speedups. This cost model is a regression cost model that250

operates on full programs and does not rely on extracting complex features. It is not limited to transformation251

parameters but also includes code transformations. We develop a random code generator to generate the training252

data and release the generator and the data publicly. We evaluated the proposed model and show that it had a253

low error rate of 16% MAPE. We integrate this model in a search space method and show that the integrated254

approach enables TIRAMISU to automatically find sequences of code transformations that are competitive with255

state of the art compilers.256
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