
A General Framework For VLSI Tool Parameter
Optimization with Deep Reinforcement Learning

Anthony Agnesina, Sai Pentapati, Sung Kyu Lim
Georgia Institute of Technology

agnesina@gatech.edu

Abstract

Electronic design automation (EDA) tools and flows have steadily increased in
complexity over the years, with modern tools offering more than 10,000 parameter
settings, rendering the optimum tuning of such tools possible for only expert
users. Automating this parameter setting for power-performance-area optimization
would democratize modern EDA tools and VLSI physical design. In this paper,
we present a general way of casting the parameter optimization problem into a
reinforcement learning task. The resulting agent is then assigned to optimize a 2D
VLSI placement step with proof-of-concept results. We conclude with a discussion
of our ongoing work and how the methodology can be applied to 3D partitioning.

1 Introduction

Assessing power-performance-area (PPA) for physical design (PD) of increasingly large design
spaces, ranges from hours to days, such that only a small portion of the possible parameters sets can
be explored economically, resulting in designs that are, by definition, suboptimal.

Inspired by the recent work from Google [1] demonstrating the success of deep reinforcement learning
(RL) applied to chip macro placement, we propose to use deep RL to automatize the search of optimal
PD tool parameters and, because the PD flow consists of many stages performed sequentially, optimize
each intermediate stage individually.

2 Parameter Optimization as an RL Problem

We believe PPA optimization can be reduced to an RL problem using a general RL framework by
making the correspondences to the four key RL components described in Table 1.

Problem Definition Given a netlist n, we wish to find p˚ “ arg maxpPP PPAtoolpn, pq where P
is the space of all parameter sets. The black-box function PPAtool is not available to the learner and
can only be evaluated at a query point pn, pq, where queries are very expensive.

A Sequential Approach Let st “ pn, ptq be the state at timestep t (” query). An action at turns
pt into pt`1. The environment is then queried — the commercial tool is ran with parameters pt`1 for
netlist n — and returns the reward Rt, a stochastic evaluation of PPAtoolpn, pt`1q. The new state
is st`1 “ pn, pt`1q. After L evaluations, we output our best guess pGuess “ ppLq, which could be
different from pL. This procedure is shown in Figure 1.

Solving this problem reduces to learning a sequential optimizer represented as an optimal policy π˚
prescribing the optimal action to take in a specific state. The optimizer should learn the optimization

Workshop on Machine Learning for Systems, 34th Conference on Neural Information Processing Systems
(NeurIPS 2020), Vancouver, Canada.



RL PD
environment commercial EDA tool black-box
state each PD parameter is tuned to a spe-

cific setting, plus netlist information
action change in a deterministic manner the

setting of a subset of parameters
reward large if the gap between desired vs.

achieved PPA is reduced

Table 1: PD Parameter Optimization translated
into an RL problem.

current state s
t

netlist new param.

new state s
t+1

netlist param.

EDA
engine

environment
agent

action a
t

reward

u
p

d
a

te
 c

u
re

n
t 
s
ta

te

R
t

Figure 1: RL agent-environment interaction in
the proposed methodology.

netlist

floorplanning + PDN routing

placement + pre-CTS opt

clock routing + post-CTS opt

signal routing + post-route opt

PPA and reliability

PPA metrics
area, WL, 

dead space

WL, slack, 

power, congestion

clk power, clk WL,

skew, #buffers

routed WL, 

power, timing

input features
macros & std cells,

graph, metadata

macro placement 

info & layout

std cell placement

info & layout

clock tree

info & layout

Figure 2: Our proposed inputs (states) and outputs (rewards) for each step in the sequential PD flow.

process for all possible netlists N . A policy π is good if it maximizes the following expectation:

En„N rPPAtoolpn, p
Guessqs (1)

where pGuess is found on the trajectory following π.

3 A General RL Framework

The components in our RL framework consist of four parts: Environment, State, Actions, and Reward.

Environment A black-box EDA engine capable of solving large NP-complete problems.

States The articulation of features (tool parameters & netlist information) for a given step, as
illustrated in Figure 2.

‚ Tool Parameters The actual PD tool parameters themselves, dependent on the given step.

‚ Netlist Features The set of characteristics required to transfer knowledge learned from previous
optimizations for use with a new, unseen netlist:

• Meta-data information describes the setting of the PD flow and high-level information about the
netlist such as the technology, floorplan, macros area and circuit type.

• Image features such as layouts of placement, routing, flip flop distribution, etc. The rationale
is that images can capture hard to hand-engineer information about designs. Work from [2] has
demonstrated the efficiency of using placement layouts to predict clock tree metrics.

• Graph features from connected directed graphs of VLSI circuits. To capture rich local and global
properties of the netlist, we use:
˛ HANDCRAFTED TOPOLOGICAL FEATURES We borrow concepts from graph theory to capture

complex topology characteristics from the netlist such as strongly connected components,
maximal clique, k-colorability or spectral characteristics.

2



˛ GRAPH NEURAL NETWORK (GNN) FEATURES To complement these features with a learned
embedding of the graph, we use a graph neural network (GNN). We propose to use the recurrent
equations for edges and nodes updates:

Edge e “ pu, vq : mpk`1q
e “ Φpxpkqu , xpkqv ,mpkqe q

w. mp0qe “ pdistancepu, vq,HP/routed-WLpeq, ...q
(2)

Node u : xpk`1q
u “ Ψpxpkqu , ρptmpk`1q

e : pv, u, eq P Euqq

w. xp0qu “ plocationpuq, areapuq, typepuq, delaypuq, fanoutpuq, ...q
(3)

where Φ combines the edge feature with the features of its incident nodes and Ψ aggregates
incoming nodes messages using the reduce function ρ. Once node/edge embeddings are obtained,
a representation of the full graph is obtained as in :

ENCpGq “ CONCAT
ˆ

READOUT
`

txpkqu u
˘

|k “ 0, 1, ..,K

˙

(4)

which passes the graph isomorphism test if READOUT is a learnable MLP [3].

Actions A challenging step in the proposed general RL framework, our solution is to discretize the
parameter space to form a finite set. If the space is discretized finely enough (the granularity requires
knowledge the problem characteristics, or assumptions of a locally Lipschitz PPA function), we can
define actions that make a subset of parameters change from one discrete value to another. Another
solution is to define actions that modify the parameters in a precise fashion where the designer has a
good understanding of the parameters effects.

Reward To capture all QoR metrics of interest for each step (see Figure 2), a reward function is
adjusted to optimize the design for different trade-offs, by combining them into a single numerical
value as a weighted product:

Rpstq “
K
ź

i“1

αiQoRi
e.g.
9

1

WLpstq
¨

1

WNSpstq ` ε
¨

1

Powerpstq
¨

1

#DRV pstq
¨ ¨¨ (5)

where more generally QoRi “ f
`QoRpDesiredq

QoRppiq

˘

with an increasing function f chosen to squash QoRs
into r0, 1s to render values comparable. Typical examples include fpxq P ttanhpxq, 1{p1`e´xq, ...u.

Agent Architecture A neural network takes the state as input and outputs both action probablities
and an estimation of the value of the state, as shown in Figure 3. Our architecture includes a sequence
to sequence model such as a Transformer/LSTM to model a sequential optimization process.

Answers to EDA Challenges

• Transfer Learning Because of the sparsity of data (there is no publicly available database of
millions of netlists, placed designs or layouts), we propose to leverage transfer learning to extract
meaningful features from the layouts without much additional training.

• Unsupervised GNN We propose to use GNN with unsupervised training to learn node/edges em-
beddings. The loss function favors similar embeddings for similar nodes. For example, GraphSAGE
[4] uses a unsupervised loss function as the existence of a random walk between two nodes. Then
as shown in Eq. (4), the full graph representation can be obtained using a shallow aggregation layer.

• Parallel Algorithms While the two methods above help define simpler networks by fixing a large
part of the network, RL algorithms require many iterations over thousands of batches to learn a task
well. A way to gather many samples during training is to use parallel versions of RL algorithms.
As in [5], our agent learns from experiences of multiple Actors interacting in parallel with their
own copy of the environment and latest copy of the network.
To optimize En„N rPPApn, pGuessqs we scatter the netlists P N over the different Actors.

3



1

2

3
5

4

G = (V, E)

ENC(G)ENC(v, v  V)

ENC(3)
ENC(5)

ENC(1)

ENC(2)
ENC(4)

extracted

node embeddings 

w. unsupervised GNN

trainable node

aggregation

2D layout 

images

pre-trained

ConvNet

extracted 

image features w.

transfer learning

FC

layers

trainable 

top layers

encoded 

tool parameters

handcrafted 

features

metadata

sequential model 

~ transformer, 

LSTM, etc.

policy

network

value 

network

3
1 2

54

topological

properties

Figure 3: Our proposed general agent architecture. Netlist embeddings (graph & layout) and
parameters are fed to the sequential body of the two heads of the network.

1. FLIP Booleans 7. DOWN Detailed
2. UP Integers 8. UP Global
3. DOWN Integers 9. DOWN Global
4. UP Efforts 10. INVERT-MIX Efforts
5. DOWN Efforts 11. DO NOTHING
6. UP Detailed

Table 2: Our 11 actions.

Netlist MAB #iter. RL #iter.
LDPC 1.04 (´8.8%) 50 1.02 (´10.5%) 1
OpenPt 5.11 (´2.9%) 50 4.99 (´5.1%) 1
Netcard 4.45 (´8.8%) 50 4.34 (´11.1%) 1
Leon3 3.37 (´4.3%) 50 3.29 (´6.5%) 1

Table 3: Comparison on test netlists of best HPWL
(in m) found (one iter. = one placement performed).

4 Case Study: Application to 2D Placement

We apply our framework to parameter optimization of the 2D placement step to target wirelength
reduction, using Cadence Innovus as black-box [6]. The reward is defined as ´HPWLpptq, where
HPWL denotes the half-perimeter wirelength. Table 2 shows the actions we define based on domain
knowledge of placement parameters. The Advantage Actor-Critic algorithm is used to train a similar
network as in Figure 3, with the exception of layouts. The network is trained on 11 netlists using
16 parallel environments for „100 hours, corresponding to 14,400 placements. We test the agent
optimizer on 4 unseen netlists. Results in Table 3 shows the RL agent improves over a state-of-the-art
Multi-Armed-Bandit (MAB) auto-tuner. High quality wirelength and PPA is maintained after routing.

5 Ongoing Work: Application to 3D Partitioning

We use the RL framework to optimize the tier partitioning step in the state-of-the-art Pin-3D flow [7]
for monolithic 3D IC design. In this flow, the design is first placed, routed and optimized on a 2D
floorplan. The floorplan area is then scaled by 1{

?
2 and a tier partitioning step distributes the cells

on top and bottom dies. From the original partitioning scheme presented in [8] (bin-based with area
constraints), we parametrize the step heavily and then tune it using RL.

Weighted FM Mincut As in objective-driven analytical placement methods, we decide on a net-
based method that assigns weights to nets, so that the partitioner minimizes the total weighted cutsize,
guided by metrics such as wirelength, timing and congestion. We use the FM [9] combinatorial
algorithm to produce bisections with small edge-cut, and static weights computed before partitioning
from the 2D routed design. Critical nets that are long, with small slacks or large delays should not

4



Name Objective Group Type Range
Unbalance (%) max area unbalance per bin bin int [1, 20]

# Rows number of rows in tiled binning bin int [1, 50]
# Columns number of columns in tiled binning bin int [1, 50]

α mincut coefficient mincut float [´1, 1]
β wirelength coefficient wirelength float [´1, 1]
a0 fanout coefficient wirelength float [0, 10]
a1 squared fanout coefficient wirelength float [0, 10]
γ timing coefficient timing float [´1, 1]
T slack exponent timing int [0, 15]
δ congestion coefficient congestion float [´1, 1]

Table 4: The ten 3D tier partitioning parameters we are targeting.

become 3D nets, i.e. cut, while nets traversing congested areas should go 3D to relieve congestion. If
net weighting appears straightforward, it is hard to generate a good net weighting. We define weight
value as the sum of individual metric weights:

wpeq “ α` β ¨ wWLpeq ` γ ¨ wTimingpeq ` δ ¨ wCongestionpeq (6)
where:

wWLpeq “ wpeqHPWL ¨ wpeqFanout “
HPWLpeq
maxHPWL

¨ p1` a0fanoutpeq ` a1fanoutpeq2q (7)

wTimingpeq “
Delaypeq
maxDelay

¨

ˆ

1´
Slackpeq

maxArrival Time

˙T

(8)

wCongestionpeq “
1

|bins b : e P b|

ÿ

bins b:ePb

CongpbqWLpe P bq, w. Congpbq “
ÿ

ePb

WLpeq{areapbq (9)

The integration of the fanout in the wirelength weight compensates for HPWL underestimating
wirelength, while the congestion weight specifies how much a net participates in the congestion of
the bins it traverses. The parameters that we tune are summarized in Table 4. We believe our method
will prove to be superior to mincut-driven only approaches as it will adapt its partitioning focus
(embodied by the parameter choices) based on the specificities of each 2D routed netlist.

Setting The environment is a combination of our custom tier partitioning engine and Cadence
Innovus used to perform the remaining steps and extract PPA metrics. The state representation will
use information of the 2D routed design such as cells locations and routed wirelength for the graph
embedding, as well as layouts of placement, routing, and clock tree. To engineer a reward that
captures correctly the final PPA needs, we need to perform 3D legalization and global routing after
partitioning. Our reward will integrate the number of vias, WL, WNS, TNS, power and congestion
overflow. Because no prior knowledge is known on the parameters presented in Table 4, we will
discretize the search space as described in Section 3 to define actions.

6 Conclusions

We present a general parameter optimizer based on deep RL to generate a pre-set of improved
parameter settings for each step in the physical design flow. We use a novel representation to
formulate states, actions and rewards applied to tool parameter optimization. Our experimental results
for the placement problem show our agent generalizes well to unseen netlists and consistently reduces
wirelength compared with a state-of-the-art tool auto-tuner.

References

[1] Mirhoseini, A., Goldie, A., Yazgan, M., Jiang, J., Songhori, E.M., Wang, S., Lee, Y., Johnson, E., Pathak, O.,
Bae, S., Nazi, A., Pak, J., Tong, A., Srinivasa, K., Hang, W., Tuncer, E., Babu, A., Le, Q.V., Laudon, J., Ho, R.,
Carpenter, R., & Dean, J. (2020). Chip Placement with Deep Reinforcement Learning. ArXiv, abs/2004.10746.

[2] Lu, Y., Lee, J., Agnesina, A., Samadi, K., & Lim, S. (2019). GAN-CTS: A Generative Adversarial Framework
for Clock Tree Prediction and Optimization. IEEE/ACM International Conference on Computer-Aided Design.

5



[3] Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2019). How Powerful are Graph Neural Networks? ArXiv,
abs/1810.00826.

[4] Hamilton, W.L., Ying, Z., & Leskovec, J. (2017). Inductive Representation Learning on Large Graphs. NIPS.

[5] Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V., Ward, T., Doron, Y., Firoiu, V., Harley, T.,
Dunning, I., Legg, S., & Kavukcuoglu, K. (2018). IMPALA: Scalable Distributed Deep-RL with Importance
Weighted Actor-Learner Architectures. ArXiv, abs/1802.01561.

[6] Agnesina, A., Chang, K., & Lim, S. (2020). VLSI Placement Parameter Optimization using Deep Reinforce-
ment Learning. IEEE International Conference on Computer-Aided Design

[7] Pentapati, S., Chang, K., Gerousis, V., Sengupta, R., & Lim, S. (2020). Pin-3D: A Physical Synthesis and
Post-Layout Optimization Flow for Heterogeneous Monolithic 3D ICs. IEEE International Conference on
Computer-Aided Design

[8] Panth, S., Samadi, K., Du, Y., & Lim, S. (2015). Placement-driven partitioning for congestion mitigation in
monolithic 3-D IC designs. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.

[9] Fiduccia, C. M., & Mattheyses, R. M. (1982) A linear-time heuristic for improving network partitions.
Design Automation Conference IEEE Press, 175–181.

6


	Introduction
	Parameter Optimization as an RL Problem
	A General RL Framework
	Case Study: Application to 2D Placement
	Ongoing Work: Application to 3D Partitioning
	Conclusions

