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Abstract

Manual design of efficient Deep Neural Networks (DNNs) for mobile and edge
devices is an involved process which requires expert human knowledge to im-
prove efficiency in different dimensions. In this paper, we present DEff-ARTS,
a differentiable efficient architecture search method for automatically deriving
CNN architectures for resource constrained devices. We frame the search as a
multi-objective optimisation problem where we minimise the classification loss
and the computational complexity of performing inference on the target hardware.
Our formulation allows for easy trading-off between the sub-objectives depending
on user requirements. Experimental results on CIFAR-10 classification showed
that our approach achieved a highly competitive test error rate of 3.24% with 30%
fewer parameters and multiply and accumulate (MAC) operations compared to
Differentiable ARchiTecture Search (DARTS).

1 Introduction

With the recent success achieved by DNNs on a variety of tasks there has been significant interest in
developing efficient network architectures that can be deployed on resource constrained edge devices.
A common approach is to manually hand-craft architectures. This is done in a number of ways
including reducing filter sizes (landola et al.,|2016) or using separable convolutions (Howard et al.,
2017) amongst other appoaches. However, exploring the large space manually requires significant
human effort. Other approaches involve quantisation of network weights/activations (Mishra and
Marr, 2018 |Courbariaux et al., [2015) or pruning (Han et al.,[2015)), but these techniques involve
altering a pre-designed model. This has led to interest in automated architecture search to derive
high-performing network architectures without the need for manual effort in the design.

Recent evolutionary optimisation (Real et al.,|2019) and reinforcement learning (Zoph and Le, [2017}
Tan et al.| [2019) based approaches have produced state of the art network architectures by minimising
classification loss on a task. However, these search methods have prohibitive search costs in the range
of 103 GPU hours. In this paper, we utilise the machinery of DARTS (Liu et al., 2018) to derive
architectures with a search cost three orders of magnitude smaller than other approaches. In order
to search for efficient architectures, we formulate a differentiable closed form of the computational
complexity which is minimised simultaneously with the cross-entropy loss. To measure computational
complexity, other approaches have used inaccurate proxies such as FLOPS or physically measured
inference latency which requires implementation of the architectures Tan et al.|(2019) or its building
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blocks |[Wu et al.|(2019) on the target hardware. Our metric, the compute cost, involves analytically
calculating the number of CPU cycles required to perform inference on the target hardware to account
for varying characteristics of different computing devices.

DEff-ARTS combines the two sub-objectives through a linear combination with the trade-off being
controlled through a single hyper-parameter enabling the discovery of architectures satisfying varying
user requirements. By jointly optimising the sub-objectives, DEff-ARTS is able to derive high-
performing novel network architectures with significantly lower computational complexity with no
extra overhead in the search cost.

2 Differentiable Efficient Architecture Search

Similar to DARTS, DEff-ARTS employs a continuous relaxation over the search space to search for
smaller computational blocks called cells which are stacked together to form more complex networks
as required. In the continuous search space, all candidate operations are applied to representations in
the cells and weighted by architecture weights, a to produce output representations through mixed
operations. After some epochs of search, the candidate operations with the largest architecture
weights are selected as the best operations to minimise the objective function.

Performance Loss, £,..: In DEff-ARTS, the sub-objectives of cross-entropy loss, L.. and com-
pute cost, Lo are combined in the multi-objective function, the performance loss, Lper. This
function is shown in Eq. || where w are the network weights, I is the cost weightage hyperparameter
used to control the trade-off between the sub-objectives, and 3 is the modulation parameter used to
modulate the gradient of the compute cost and linearise the relationship between the sub-objectives.

‘Cper(wva) = £ce(w7a) + T x ‘Ccom(a)ﬁ (D

In the search process we seek to find the architecture, o that minimises the performance loss on
the validation data-set with the optimal weights. The search problem can then be formulated as a
multi-objective optimisation problem where the performance loss is minimised based on bi-level
optimisation and approximate architecture gradients (Liu et al.| 2018). This is shown in Eq. [3] where
Loper,val/train are the validation and training performance loss respectively and w'’ are the network
weights after one step of training used to approximate the optimal weights for the architecture encoded
by a.

min  Lperval (W (w, ), o) )

S.t. w’(w, CY) =w — gvu;ﬁper,tv'ain(wv a) 3)

Compute Cost, L.,,,,: Our differentiable expression of the compute cost, L., is shown in Eq. E]
where p is the number of mixed operations within a cell, ¢ is the number of candidate operations in a
mixed operation and Cost; is the compute cost of the jth candidate operation. The function o(«),
denotes the softmax operation on the architecture weights in the normal and reduction cells which is
used as a proxy for a candidate operations strength and importance.

Leom =XP_, E?Zla(aﬁgrm“l) x Costj + EleEgzla(a;‘;d“ce) x Cost; 4)

The cost, C'ost; of candidate operations was calculated as the number of CPU cycles required to
apply the candidate operation to a representation. Other approaches have used FLOPs to measure
complexity (Gordon et al., 2018; |[He et al., 2018)), however, these approaches assume all CPU
operations have equal cycle requirements. For every candidate operation, we analytically calculate
the number of cycles required according to the number of different CPU operations needed (e.g.
MPY, ADD) to apply the operations and the cycle requirements of the CPU operations. The costs
for every candidate operation are calculated offline and substituted in the compute cost to make it
differentiable and enable gradient based optimisation.

Non-Linear Transformation of Compute Cost In composing the multi-objective metric, we
applied a non-linear transformation through exponentiation of the compute cost similar to other
approaches (Tan et al., [2019; ' Wu et al., |2019). We do this in order to sufficiently linearise the
relationship between the sub-objectives. This enabled the trade-off between the sub-objectives, to be
controlled through a simple cost-weightage hyperparameter, I'. Secondly, without the transformation,
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Figure 1: Optimisation Landscape Sketches The o (1) and o(as) axes represent strengths for
an expensive, expressive operation (e.g. convolution) and a cheaper operation (e.g. max pooling)
respectively. (1a) The minima in the cross-entropy loss landscape would lie in the region where o (1)
was stronger. (1b)) Due to the non-linear transformation, the compute cost measures complexity of
operations on a comparable scale. (Ic) Since the performance loss considers both sub-objectives, the
minima moves to where the cheaper operation associated with o () is stronger. The minima near
the origin is ignored since the softmax on the architecure weights would sum to unity.

gradients back-propagated for an architecture weight from the monotonically increasing compute
cost objective depend only on the particular weight itself. In reality, the strength of any operation
would depend on the rest of the network structure and topology as well (Howard et al., 2017;|He et al.,
2016). Exponentiating the compute cost introduced a dependence on the rest of the cells architecture
weights in the back-propagated gradients. Such techniques have also been used in multi-task learning
works (Liang and Zhang| 2020). We further demonstrate these effects analytically in Appendix [A]
The transformation also modulated the magnitude of the the gradients, and compute cost to bring
the sub-objectives to a comparable scale thus preventing any one from dominating the other in the
optimisation landscape. This idea is demonstrated in Figure [I] through sketches of the landscapes
where it can be observed that no sub-objective overrides the other and features of the sub-objectives
are preserved in the performance loss landscape.

3 Experiments and Results

Search Space: For fair comparison of results, we used the cell structure and search space of |Liu
et al] (2018). The considered CPU operations and their cycle requirements are shown in Table[I] The
candidate operations in the search space and their costs calculated as the CPU cycles required are
shown in Table 2] where the intermediate representations sizes were assumed to be fixed and memory
characteristics of the target hardware were not considered. Similar to previous NAS work (Liu et al.|
2018;|Zoph and Lel [2017;|Real et al., 2019), separable convolutions were applied twice. Note in Table
[2]that the max and average pooling have different cycle requirements due to the division operation
executed in average pooling needing more CPU cycles. Analytical expressions used to calculate the
CPU cycles for candidate operations are given in Appendix [B]

Table 1: CPU cycles cost for considered low-  Table 2: CPU cycles cost for candidate operations
level CPU operations on a Texas Instruments Candidate Operation CPU Cycles

C64x+ 90nm CMOS processor. 32 bit preci-
sion was considered for all operations Max Pool 3 x 3 27,648

X Avg Pool 3 x 3 30,720
CPU Operation CPU Cycles (Sep Conv 3 X 3)x2 365340

Comparison 1 (Sep Conv 5 x 5)x2 860,160

Addition 1 Dil Conv 3 x 3 184,320

Multiplication 4 Dil Conv 5 x 5 430,080
Division 4 Skip Connect 0




Table 3: Comparison with state-of-the-art image classifiers on CIFAR-10. Values besides DEff-ARTS
were taken from [Liu et al.| (2018)). All evaluated architectures are visualised in Appendixm

. Test Error  Params Search Cost Search Compute Cost
Architecture (%) (M)  (GPUdays) "°PS  Methoa ~ CMACs (CPIl} Cycles)
NASNet-A + cutout 2.83 31 2000 13 RL 0.624 5,861,376
AmoebaNet-A + cutout 3.12 3.1 3150 19 evolution 0.506 6,100,992
DARTS + cutout, (I' = 0.0) 2.76 + 0.09 33 4 7 gradient-based ~ 0.547 1,244,160
DEff-ARTS + cutout, ' = 0.01 3.24 + 0.26 2.3 4 7 gradient-based 0.376 642,048
DEff-ARTS + cutout, ' = 0.02 4.42 + 0.07 1.6 4 7 gradient-based 0.262 276,480
DEff-ARTS + cutout, I’ = 0.04 16.01 & 0.41 1.45 4 7 gradient-based 0.242 0

Experimental Setup: We used the same setup as (Zoph and Lel 2017; [Liu et al., 2018} Real et al.,
2019) where networks were formed by stacking cells together with architecture weight sharing.
Normal and reduction cells were derived to control representation sizes with reduction cells placed
at 1/3rd and 2/3rd of the depth of the network. Aditionally, hard-coded preprocessing consisting of
RELU-Conv-BN operations was applied to the input representations of every cell. The modulation
parameter, 3 was set to a value of 0.27 and kept constant through all experiments. Cells were derived
on CIFAR-10 (Hintonl [2007) with 8-cell networks by searching for 50 epochs. The test error results
reported for DEff-ARTS were obtained from 20-cell networks and are averages of 3 runs. We include
a second metric of MAC operations to measure complexity of the networks, since our compute cost
metric didn’t consider preprocessing in cells. The search was carried out four times each for the
different values of the cost weightage hyperparameter. The set of cells used to report test error results
were selected for their compute cost and were all derived from a common random initialisation.

Results: A comparison with state-of-the-art architectures derived through other approaches is
shown in Table 3] The trade-off between the test error and complexity can be observed in Figure 2]
and[3] For I' = 0.01 and 0.02, the networks achieved highly competitive error rates with 1.4x to 2x
smaller model sizes and 1.9 to 4.5 lower compute costs. The drop in MACs required was not as
large as the compute cost due to the metric not accounting for the different cycle requirements of the
CPU operations. For I = 0.04, the network achieved an error rate of 16.01% with a compute cost of
0. This was due to the exclusion of preprocessing blocks from the optimisation which had a fixed
contribution to the networks performance. Comparing the search cost, the differentiable approaches
were three orders of magnitude faster than the other approaches and DEff-ARTS incurred no extra
cost to the search compared to DARTS.
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4 Conclusion and Discussion

Designing efficient neural network architectures can be quite challenging due to human expert
knowledge and effort required in the process. We used gradient based optimisation to search for
efficient CNN architectures for target hardware which bypassed the need for human effort in designing
novel efficient architectures. We derived multiple architectures with DEff-ARTS that produced highly
competitive results with the state-of-the-art on CIFAR-10 classification with significantly lower
compute requirements and no need for hardware implementation. Expanding the search space and
further improving the metric used to measure computational complexity could lead to discovery of
even better performing models.
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A Multi-Objective Optimisation

A.1 Limitations of Linear Combination of Sub-Objectives

—yP 4 ! Py d
Leom = X1 8 10(a7™™") x Cost; + XJ_ X1 0(a;5") x Cost;

For our expression of the compute cost function as given above, the gradient with respect to any
particular architecture weight could be computed as shown below. The first limitation we observed
was that the back-propagated gradient only depended on the architecture weight itself as shown
below.

0
Fogmormal Leom(w, o) = exp(aﬁ?rmal) (1 — exp(a%rmal)) x Cost;
i,

Secondly, without transforming the compute cost, we observed that dimensions associated with
expensive operations overrided other dimensions for cheaper operations as shown in Figure fb] where
o(a1) and o(aq) are associated with an expensive and cheaper operation respectively. It can be
observed that the o(«;) dimension dominated the second in terms of the gradient and the magnitude.
Further, due to the difference in scale of the sub-objectives in Figure Fajand [#b] the features of the
cross-entropy loss landscape are lost in the multi-objective optimisation landscape in Figure In
our experiments, the difference in scale was 4 orders of magnitude larger than demonstrated, so the
problem was even more pronounced
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Figure 4: Optimisation Landscape Sketches

A.2 Non-Linear Transformation Analysis

Applying a non-linear transformation to the compute cost, with a small value for the modulation
parameter, 3 brought the different dimensions of the compute cost to a comparable scale as previously
shown in Figure[Tb] Further, the back-propagated gradients were also controlled as shown below.
The extra dependence on the rest of the cell structure that appears modulated the gradients such that
they were on a similar scale.

8 n
o Leom(10,0)° = B3 a5 Jexplas™) (1 - exp(ay™) x Cost
0,J i=1

The effect of the cost weightage parameter, I" is analytically shown below where it simply scales the
gradients to over or underemphasise the importance of the compute cost in the optimisation.

0 0
Wﬁper(w7 Oé) = W (ﬁper(w; 04) + FACco’rn(’wv a)B)
1,] ,]
0 (w,a) + T x L eom(w, @)?
= A oo ~per (W, & A ormal ~com \W, &
aa;@,?rmal p aa;@,?rmal

Another reason for the transformation was that a simple linear combination would assume that the
sub-objectives had a linear relationship that could be traded off. This was not true as shown below



in Figure [5a] which was obtained by training networks with varying compute costs and noting the
cross-entropy loss at the end of training. By exponantiating, the relationship was made sufficiently
linear as shown in Figure 5b| and so that the cross-entropy loss could be traded off with the
transformed compute cost through the cost weightage hyperparameter, I'.
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Figure 5: Cross-Entropy Loss, L. vs. Compute Cost, Lo,

B Candidate Operation CPU Cycles

The cycles required by the considered candidate operations were calculated manually using the
expressions below where H, W and Cj,, are the size of the intermediate representations and k, S
and C,,; are the kernel size, stride and output channels of the operation. We assumed intermediate
representations to be of fixed sizes and unit strides.

Costsep = [ (kxkx HXW x Cjp, + 52) + (Cin x HX W x Cout) | x Costyu

+ [(kxkx HxW xCip+5%) + (Cipy x Hx W X Couy) | X Costaga| x 2

Costay = [ (k x kx Hx W X Cip = 5%) + (Cipy x Hx W X Coup) | X Costinau
+ [(kxkx HxW x Ci+5%) + (Cin x Hx W X Coup) | x Costaga
Costong = (kX k x Hx W x Ci) X Costyus + (H X W x Cyp,) x Costgiy
Costmazs = (k x k x Hx W x Cy) x Costeomp
Costgpip =0

C Derived and Evaluated Cells

In this section, we visualise the cells that were evaluated for test error in Section@ Cells besides
DEff-ARTS were taken from |L1u et al.| (2018)).
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D Experimental Details

D.1 Architecture Search

* Number of Cells: 8

Cell Step Size: 4

* Epochs: 50

* Batch Size: 64

¢ Initial Stem Block Output Channels: 16

* Networks Weights Optimiser: SGD with momentum
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Learning Rate: 0.025 annealed through cosine schedule
Momentum: 0.9

Weight Decay: 3 x 10~4

Gradient Norm Clipping: 5.0

* Architecture Weights Optimiser: Adam
- Learning Rate: 3 x 1074
— Momentum S: (0.5,0.999)
— Weight Decay: 1073
¢ Modulation Parameter, 8 = 0.27
* Cost Weightage Parameter, I' = 0.01, 0.02,0.04

e Costyer, = 108 — 1, |Liu et al.| (2018)) declared a zero candidate operation in the search
which was not considered when discretising a cell. The given value was used to focus
selection pressure on non-zero candidate operations considered in discretisation.

D.2  Architecture Evaluation
Results reported for test error rate were an average of 3 runs.

* Number of Cells: 20

* Epochs: 600

* Batch Size: 96

* Initial Stem Block Output Channels: 36

e Optimiser: SGD with momentum

Learning Rate: 0.025 annealed through cosine schedule
Momentum: 0.9

Weight Decay: 3 x 104

Gradient Norm Clipping: 5.0

* Auxiliary Tower Weight: 0.4

* Auxiliary Depth: 2/3rd of network depth
* Cutout Length: 16

* Drop Path Probability: 0.2
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