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Abstract

Virtual machines (VM) form the foundation of modern cloud computing as they
help logically abstract per-user compute from shared physical infrastructure. Users
of these services require VMs of varying sizes and configurations, which the
provider places on a set of physical machines (PMs). VMs on the same physical
PM share memory and CPU resources so a bad packing directly impacts the quality
of user experience. We consider the placement of FireCracker VMs (a form of
Micro-VMs or µVMs) - lightweight VMs that are typically used for short lived
tasks. Our objective is to place each VM as it arrives, so that the peak to average
ratio of resource usage across PMs is minimized. Placement is challenging as we
need to consider resource use in multiple dimensions, such as CPU and memory,
and because resource use changes over time. Past approaches to similar problems
have suggested that one could forecast VM resource use for placement. We see
that in production traffic from Amazon Web Services (AWS), µVM resource use is
spiky and short lived, and that forecasting algorithms are not useful. We evaluate
Reinforcement Learning (RL) approaches for this task, but find that off-the-shelf
RL algorithms are not always performant. We present a forecasting free algorithm,
called FirePlace, that learns the placement decision using a variant of hindsight
optimization, which we call hindsight imitation. We evaluate our approach using
a production traffic trace of µVM usage from AWS Lambda. FirePlace improves
upon baseline algorithms by 10% when placing 100K µVMs.

1 Introduction

Virtual Machines (VMs) [1] are an essential technology in modern computing and form the core of
many cloud services. VMs are useful because they allow providers to allocate resources efficiently by
fitting many VMs on a single physical machine (PM), while giving the functionality of a separate
machine to the end user. VMs on the same physical PM share memory, CPU and network resources.
A bad packing would impact the quality of computations and/or increase costs.

Algorithms for packing VMs efficiently into PMs have been studied for over a decade [2, 3, 4].
FireCracker VMs are a recent innovation - a form of lightweight VMs that have fast startup times
and can be packed with high density, while still providing strong security [5, 6]. FireCracker VMs
are an instantiation of MicroVMs, and we refer to them as µVMs for brevity. They are used to
provide serverless services such as Function as a Service [7] with low overhead. We consider an
online placement setting common in cloud computing, where µVMs are created and deleted based on
exogenous demand, and where the objective is to place the VMs such that the total number of PMs
used is minimized, while ensuring that resource use in any of the PMs does not exceed limits. A good
packing directly translates to increased availability, reduced operational costs and energy savings [8].
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Our VM placement problem is similar to the problem of online bin packing [9, 10]. However, in our
setting, not only do we need to consider multiple resource dimensions such as CPU and memory,
but also how resource use changes over time. Since vector bin packing itself is an NP complete
combinatorial problem, and APX hard for 2 or more dimensions [11], our problem in its general
form is intractable. Related prior work has proposed forecasting of the resource used by each VM,
followed by a well-known heuristic such as Best-Fit or genetic algorithms to decide placement [12].
In our production dataset from AWS Lambda, we find that µVM are short lived and their use is spiky,
and hence, difficult to forecast. We can pack hundreds of µVMs in a physical machine (PM) as
each µVM resource use is small in comparison to the PM capacity. Therefore, forecasting solutions
become untenable as the error in the prediction of each VM accumulates and leads to poor placement.
In particular, the best 90th quantile forecast for µVM CPU use over its entire lifetime is 0. We present
detailed comparisons with related literature in Apendix C.

Given the difficutly of forecasting, the best that any algorithm could realistically do is hedge placement
decisions based on ‘typical’ CPU and memory use of a new µVM when compared with the historical
CPU and memory use of the PM. This hedged decision rule could be state dependent. We formulate
the problem as a Markov Decision Process (MDP), where the agent places a µVM at each time
step. The MDP still suffers from the curse of dimensionality because of the large state and action
spaces - in particular, the large number of PMs available at each time instant. Hence, we build on the
power of two choices [13] to reduce the action space. We propose FirePlace, a hindsight imitation
learning algorithm for µVM placement. We leverage historical data to identify placement decisions
that could have been made using hindsight of future µVM CPU and memory use, similar to hindsight
optimization [14]. We then cast placement as a supervised learning problem with the hindsight based
decision as the label. We show that FirePlace does not require per µVM forecasting, outperforms
off-the-shelf model-free deep RL algorithms, runs fast enough to deploy to a latency sensitive large
scale production service, and generates a learned model that generalizes to unseen data.

2 Problem Setting

We formulate our problem by modeling the characteristics of a typical cloud system. µVMs are
created by an external service based on user demand, and at each time step we receive a µVM to
place. Our objective is to identify a PM in the fleet on which to place the µVM so that the Peak to
Average Ratio (PAR) of resource use in the fleet is minimized while ensuring the resource use in any
of the PMs does not exceed capacity in the future as the CPU and memory use of the µVMs change.
If the total number of active VMs on a PM require more CPU or memory than the PM has available,
then user experience is degraded. In practice, we observed that our PMs are not bottlenecked on
resources such as network bandwidth. Therefore, we scoped the problem to only track the CPU
and memory use of the PM. The placement decision needs to be made quickly (∼20ms) and with
reasonable throughput (∼5 placements/s). Each fleet can consist of hundreds or thousands of PMs,
and it is impractical to require the updated state of all PMs to make the placement decision. The
algorithms we tried, including RL and baselines, did not scale well with large state and action spaces.
Hence, we sample K PMs at a time and identify the PM to place, motivated by the power of two
choices [13]. This limits our action space to size k = |K|, rather than the total number of active PMs.

µVMs start executing user tasks sometime after they are created, consuming memory and CPU when
they do so. An external service deletes the µVMs if it is idle for more than a specific period of time.
A PM’s resource use is simply the sum of resources consumed by the µVMs in the PM, we ignore
overheads. We consider a fleet with a single type of PM with fixed CPU and memory capacity.

µVMs arrive online, and the order of arrival cannot be changed. We cannot migrate µVMs once they
have been placed. µVM resource use is unknown before placement and changes over time as tasks
are executed. The memory use of a PM increases monotonically over time until deletion, since µVMs
do not release memory. The µVM uses CPU only when it is executed, thus the CPU use of the µVM
is zero when it is idle (we ignore idle CPU overhead), and spikes up when it executes tasks.

Each µVM is represented by a timeseries of its resource use. Let cvt and mv
t denote the CPU and

memory use of µVM v at time t. Each PM consists of a collection of µVMs. Let Cpt =
∑
v∈V p cvt

and Mp
t =

∑
v∈V p mv

t denote the CPU and memory use of PM p ∈ P at time t, where V p is the set
of µVMs in the PM and P is the set of PMs in the fleet. Let cv = cv0, .., c

v
T and mv = mv

0, ..,m
v
T

denote the CPU and memory use timeseries of length T for µVM v. Let Cp =
∑
v∈V i cv and
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Mp =
∑
v∈V p mv denote the PM CPU and memory timeseries respectively. We assume all PMs

have the same same capacity for CPU and memory respectively. The placement algorithm places one
µVM at a time in one of K PMs randomly sampled from the fleet.

We formulate the problem as an MDP, where the agent places the µVMs across an episode. We
introduce τ ∈ [0, T ] as the wall clock time at which µVMt is placed in the PM. The state includes
both CPU and memory use: s(Cpt ,M

p
t , c

v
t ,m

v
t )|p ∈ Kt, t ∈ [0, τ ]. The agent takes action by picking

one of Kt PMs. The reward function is given as:

Rt =

1
|P |
∑
p∈P maxt∈τ C

p
t

maxp∈P ,t∈τ Cp
+

1
|P |
∑
p∈P maxtM

p
t

maxp∈P ,t∈τ Mp
−Wt (1)

where |P | is the number of PMs in the fleet. Wt = 1 if the PM picked is too full to place this µVM,
and Wt = 0 otherwise. PM resource use is represented by its maximum CPU use, as the maximum
use should not exceed PM capacity. The reward function encourages the agent to increase the mean
CPU use of the fleet compared to the max use (PAR), which encourages the agent to pack µVMs
tightly yet maintain the same CPU use across PMs. This choice of metric represents our desire to be
efficient, yet robust to e.g. single instance failures, at any time. The overall objective is to maximize
the sum of rewards in an episode.

We consider a PM to be too full to fit a µVM in simulation by considering the future CPU and
memory use. If the agent picks a PM that is too full, we repeatedly pick another PM from the fleet at
random until we find a PM that can hold the µVM. The agent receives a penalty, since bad placements
degrade performance. The episode terminates when all µVMs are placed, or if all the PMs in the fleet
are full. Our formulation can be extended to heterogeneous fleets, where the PMs have different CPU
and memory capacities, as we use normalized measures of CPU and memory in our metrics.

A simple baseline algorithm is to pick a PM uniformly at random, and try to place the µVM. An ideal
algorithm will pick the PM in the fleet that minimizes the overall PAR in the long term. While we
only have |K| � |I| PMs from the fleet to choose from, prior work has shown that if we pick the
best of K PMs, we can perform much better than random [15]. Appendix A gives an overview of our
cloud service model, and Appendix B details the µVM CPU and memory use characteristics.

3 Hindsight Placement

We split the problem into two parts: forecasting and optimization [16, 17, 12]. We start with the
optimization problem, assuming we have perfect forecasts available using real µVM use data from
our historical data. Given this future knowledge, we can pack µVMs to greedily maximize the reward
in Equation 1 at each step. We call this algorithm Hindsight based packing.

Hindsight based placement is still greedy, even though it uses perfect hindsight information, since we
do not attempt to account for future µVM arrivals. Still, a well trained placement agent could learn to
hedge against the ‘typical’ distribution of future arrivals, and predict future resource requirements of
already placed VMs, if this is useful.

We assume we have access to the entire future timeseries of µVM use and PM use, together with the
µVMs already placed in it. We pick the PM that minimizes the maximum of the L2-norm of CPU
and memory use if the µVM were placed in that PM if the µVM was placed in it:

Bk =

∥∥∥∥(max
t∈T

(cvt + Ckt ),max
t∈T

(mv
t +Mk

t )

)∥∥∥∥2 (2)

We present a Baseline algorithm that simply uses the mean values to represent the µVM and PM
CPU/memory use. This algorithm picks the the PM that minimizes the following:

Bmemk =
1

T

T∑
t=0

mv
t +

1

T

T∑
t=0

Mk
t (3)

Bk = ‖(Bcpuk , Bmemk )‖2 (4)
Online bin packing is a much easier problem when all the items are of the same size [18]. Since our
µVM resource use is small when compared to PM capacity, we can justify use of greedy hindsight
techniques. We thus focus on the time varying nature of resource use, rather than the combinatorial
optimization aspects.

3



4 Hindsight Imitation Learning

One approach we evaluate is the directly train an end-to-end placement approach using RL. As we
will see in the results (Figure 1), RL is sometimes able to match or even slightly outperform the
Hindsight algorithm we described in the previous section. But for many settings it is much worse. We
also evaluate a form of imitation learning - a strategy that directly learns to mimic the actions of the
Hindsight algorithm, using it as a teacher [19, 20]. As we have historical data from our production
workloads, we can compute hindsight based decisions at each time step and create a dataset for
training. Use of hindsight imitation learning circumvents the issues associated with forecasting, as
we directly learn a relationship between input features and output decision that hedges placements.
The idea is similar to hindsight optimization proposed by Chong et al. for tabular problems [14].

The input to the imitation model is features derived from the state and the output is the action. We
found that the choice of features, model and dataset is important to avoid overfitting, even with large
amounts of data, given the variance in state and action spaces. We use a random forest classifier [21]
and support vector machines [22] as our model, whichever gives us the the best classification accuracy
on our validation data. Simple 2 layer neural networks [23] did not perform well in our datasets. We
use quantiles of PM resource use over different windows as our features. Specifically, we use the p10,
p25, p50, p75, p100 and mean values for CPU use, and just the p100 and mean values for memory
use as memory use is monotonic till deletion. We split the µVMs from historical production data
to two partitions, use one partition to train our agent and the other to test. We simulate the online
µVM placement in a fleet with our train partition, and use the features computed from state as well as
the Hindsight algorithm actions to create our training dataset for imitation learning. We refer to the
model learned as Hindsight Imitation Model (HIM).

5 Results

We use multiple datasets from a single region: one with 20,000 µVMs and another with 100,000
µVMs respectively. We refer to them as the 20K and 100K datasets. We set |K| = 2, i.e. the
algorithm picks from 2 randomly sampled PMs in the fleet and places the µVM on one of these. The
performance of the algorithm increases slightly with increase in |K| [13], but |K| = 2 gives us a large
improvement over random. We use PMs with 4 CPU cores and 16GB memory in the 20K dataset and
use 8 CPU cores and 64GB memory in the 100K dataset. As the number of PMs in the fleet decreases,
the placement becomes harder until all PMs very quickly become too full to accommodate µVMs.
We vary the number of PMs in our experiments to show the impact of fleet size on the performance
of placement algorithms. We run each experiment 10 times, and report mean rewards with error bars.

We assign alternate µVMs to two partitions - this makes the training data representative, but also well
separated from test data. We use the train partition to create our dataset with the Hindsight algorithm.
We use 75% of the dataset for training and 25% for validation.
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Figure 1: µVM packing based on CPU and memory use in (a) and (b) for 20K and 100K datasets
respectively.

Having already defined the problem as an MDP, reinforcement learning (RL) algorithms are a natural
fit for the problem. In our case, the states are quantiles of CPU and memory over different windows,
for each of the |K| PMs and the specific µVM we are placing in that time step. We have |K| actions
corresponding to which of PMs we place the µVM. We evaluate off-the-shelf deep RL algorithms
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implemented in the Ray RLlib library [24]. We use the PPO [25] algorithm, and experimented with a
number of hyper-paramaters and discuss results of the best settings we could find. We report the exact
hyperparameters used in Appendix D and training curves are shown in Appendix E. To find a good
neural network structure we also evaluated using the structure that performed the best at imitating the
Hindsight algorithm. The results in Figure 1 show that the best RL algorithm sometimes performed
as well as or even slightly better than the Hindsight algorithm, but usually performed worse. Figure 3
shows the training progress of the RL algorithms for the 20K and 100K datasets. While RL performs
well in the 20K dataset, it fails to even beat the baseline algorithm in 100K dataset.

We also evaluated HIM. We ran the Hindsight algorithm, logged its state and actions. We then
used various ML models to learn to predict the Hindsight decision from the state. We got the
best performance using both Random Forests [21], and Support Vector Machines [22], we report
whichever yielded the higher accuracy on the validation data here1. The models have a validation
accuracy of 79% and 85% for 20K and 100K datasets respectively. We used the learned model to
make placement decisions for the test µVM partition. We use the same learned model across different
fleet sizes to test generalization. Figures 1 shows the results for all datasets across 10 runs on the test
µVM partition.

Figure 1a shows the results of the µVM packing. Due to the sporadic nature of CPU use (Figure 2),
the temporal characteristics of µVM and PM CPU use are useful in determining a good placement.
The Hindsight algorithm has access to the entire future of PM and µVM use and can pick the PM
whose low usage period (troughs in the timeseries plot) align with the peak µVM use. The Hindsight
algorithm uses Equations 2 and 3 to determine the PM whose maximum CPU use is minimized after
the µVM is placed. This temporal information is lost in the Baseline algorithm because of the coarse
featurization, and hence the performance is worse. The Hindsight outperforming the Baseline and
random algorithms by 12% and 21% on average respectively.

The HIM performance is somewhere between Baseline and Hindsight, demonstrating that the model
has indeed learned to make good decisions from the Hindsight dataset, while relying only on features
available at decision time. HIM improves upon Baseline by 11% on average, and performs almost as
well as the Hindsight algorithm.

HIM generalizes to the 2D case and is able to find a good trade-off between CPU and Memory
features. In Figure 1a, we see that RL outperforms the Hindsight expert. This indicates that better
trade-offs between CPU and Memory than the L2 norm we used in Equation (4) are possible in
the short term to minimize the long term PAR. If we introduced µVM features or raw timeseries as
features and used LSTMs to represent the policy, the model overfitted to the training data and gave
poor validation results. This indicates that, while the data we have seems large, it is still insufficient
for data hungry RL models. HIM is much more sample efficient than RL, and we plan to explore the
use of HIM as a pre-trained model for RL training in future work. Finally, we observe that within an
episode, there were occasionally large jumps in the reward, where a few placement decisions lead to
large shift in rewards, while most decisions have no impact. In ongoing work, we are working to
characterize these ‘important’ placement decisions, and adjust the loss function used in training HIM
to further improve performance.

6 Conclusions

We have demonstrated that we can exploit historical data to learn to optimize µVM placement. The
results presented here are an initial proof of concept, and the algorithms need to evaluated on a variety
of datasets and tested for robustness over longer periods of time in production settings. We continue
to evaluate how to seed RL models with the HIM model, since RL demonstrated the ability to perform
better than the Hindsight algorithm. It may also be possible to improve on the results with better
feature engineering and machine learning models. Much of our current fleet cost can be attributed
to how many µVMs are present at a time, and we can use similar machine learning approaches to
identify when to create and destroy µVMs to save on infrastructure costs. The approaches presented
here can be extended to reduce the operational cost of other compute services such as allocating PMs
for autoscaling and many other managed serverless services.

1The hyperparameters used are given in the Appendix
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Appendix

A µVM Placement in our fleet

AWS Lambda provides function execution as a managed service. Users provide the function they
want to execute, written in their preferred programming language, configure limits on memory use
in 64 MB increments from 128 MB up to >3000 MB, and configure execution time maximums in
1 second increments up to 15 minutes. They can then execute the function as often as they like,
using a variety of different event triggers. Users are alleviated from the burden of provisioning
infrastructure and save on costs as they are billed only for the function execution time. The cloud
provider provisions the compute resources, creates µVMs, installs the required dependencies and
executes the function for the user. Users can use these functions for many different purposes, from
real-time data processing to serving web requests. We aim to reduce the operational cost of the
service.

A.1 Brief Overview of our Service

We describe the model we used for our problem formulation in the paper. The model system is
inspired by AWS Lambda, but redacts sensitive proprietary information.

In our model system, the infrastructure consists of a fleet of data center servers, which we refer to as
physical machines (PMs). Once a user configures and calls the function, we create a µVM for that
function in one of the PMs, and execute it. The µVM is not destroyed immediately, in case the user
executes again immediately. The µVM is eventually deleted if it remains idle for a threshold amount
of time. Each function call is called a task, and the user can execute the same function concurrently.
Hence, a single function may have multiple µVMs. Each PM can host and execute multiple µVMs at
a time.

Functions to µVMs have a one-to-many relationship, and µVMs are created and used for only one
function. Two different functions cannot share execution on the same µVM. A µVM can only
accommodate one task at a time. While the µVM is processing an task, it is said to be active.
Once function execution ends for that task, the µVM enters an idle state and can be kept around to
accommodate additional tasks if and when they arrive. Invoking on an idle µVM results in lower user
latency compared to creating a new µVM.

Each decision in infrastructure management and function request routing impacts the operational cost
and user experience. If an idle µVM for a particular function is available an task arrives, then the
latency of execution is reduced. µVMs use memory even when they are not executing a function.
Hence, idle µVMs waste resources. If µVMs are packed in the PMs tightly, the number of PMs in the
fleet is reduced. However, we need to ensure the µVMs are not packed too tightly to ensure they can
execute without hitting PM resource limits, or PM performance limits which would negatively impact
the user observed latency or availability. We also need to ensure the PMs have enough resources to
create new µVMs as they are needed. Proactive deletion of µVMs can reduce memory use. However,
aggressive deletion may create churn with reactive creation of µVMs, and increase execution latency.
Each of these decisions can be optimized to reduce cost. We focus on the placement of µVMs in PMs
to ensure tight packing, and as a result, reduce the fleet cost.
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B Data Characteristics
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Figure 2: CPU and memory use of a long lived µVM in our dataset. CPU is used only when the
µVM is executing tasks and memory use is the maximum of memory used in µVM history.

We collect a dataset with ∼200K µVMs across 24 hours of use from AWS Lambda, and analyze
its characteristics. Figure 2 shows the CPU and memory use of a particularly extreme µVM in our
dataset across 2 hours when it was active. Data is recorded every minute and consists of µVM CPU
and memory use. The CPU use spikes up whenever tasks are executed. Most µVMs are relatively
small (median values – memory: ∼100MB, CPU: ∼15-20% of a cpu core, execution time: 0.2-0.6s,
inter arrival time: 50-100s) but a small percentage of µVMs have extreme values (99th percentile
or p99 values – memory > 1GB, CPU > 150%, execution time > 90s, inter arrival time: >10 min).
The median life of a µVM is ∼15 minutes and the p99 value is > 2 hours. The memory use grows
gradually as tasks take up more memory and assigned memory is not reclaimed until µVM is deleted.
At the time of the placement decision, these detailed µVM characteristics are unknown, since each
µVM is unique from the perspective of the placement algorithm.

To make good placement decisions, we may need to forecast how µVMs use resources in aggregate.
In particular, we need to place µVMs such that the aggregate use does not exceed the capacity of
the PM. In case of memory, an individual µVM use has low variance. Hence, aggregate memory
use can be approximated as sum of individual µVM memory use. However, aggregate CPU use
varies depending on when tasks are executed and how the tasks are inter-leaved across µVMs. Hence,
estimating aggregate CPU use is challenging. Aggregate resource use also depends on when the
µVMs are deleted.
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C Related Work

VM packing has been studied extensively in literature [2, 3, 4]. A popular class of problems is VM
migration [2, 3, 26, 27]. Here VMs are migrated periodically to reduce hot spots in the data center
and exploit freed resources. The VMs and the tasks associated have longer lifetime compared to the
µVMs we studied, and forecasting algorithms such as exponentially weighted mean average, sufficed
to predict the workload well. In contrast, we consider placement of µVMs when they are created, and
do not consider migration in our formulation. Our tasks are short and bursty, making it resource use
prediction hard. Some works consider the dependencies that exist between tasks [28, 29, 30, 4] using
heuristics [28, 31] and even RL recently [32]. We work in an orthogonal setting, where the tasks and
µVMs are independent from each other.

Our problem setting can be considered as a dynamic bin packing problem [33], where items are
packed into bins one at a time, their arrival order is unknown and they depart at an unknown time.
The theoretical properties of the problem has been studied extensively, and it has been shown that
even myopic algorithms like First Fit perform well compared to optimal packing [34, 35, 36]. Xin
et al. [37] show that multi-dimensional online packing is an NP-complete problem. They present a
practical algorithm that avoids resource fragmentation and outperforms First Fit. However, in these
works, the VM resource use is considered fixed and the algorithms have full access to the state of all
PMs. In our use case, VM resource use changes over time. We need to pack VMs such that their peak
usages are not aligned, so that the resource capacity of the PM is never exceeded.

Several works have considered packing of VMs such that their usage is anti-correlated with each
other and leads to tight packing [16, 17, 38, 39, 12]. Kim et al. [38] consider the covariance of the
VM use from historical data and use a Pearson correlation based heuristic for placement. Meng et
al. [16] use ARMA and kernel density estimation based forecasting model to predict VM use. Chen
et al. [17] use a neural network model for forecasting. In a follow up work [12], they improve their
forecasting using PCA with ARIMA models. The forecasting models are used for placement using
solutions like First Fit, Best Fit or genetic algorithms. All of these consider time scales of hours to
days, making resource use pattern prediction feasible. They also consider the VM migration setting,
where the horizon of forecasting is only one placement time step. In contrast, our work considers
online placement with no migration, and hence we need to forecast the VM resource for its lifetime.
In our µVM dataset, the time scales of task execution are of the order of seconds, and the bursty
nature of tasks makes it a difficult forecasting problem. Therefore, we take a hindsight imitation
approach, which circumvents the forecasting model and directly learns a hedged placement policy.

The hindsight optimization algorithm was proposed by Chong et al. [14]. They used hindsight
information to learn a Q function in a tabular setting for a network traffic control problem. Tamar et
al. [40] proposed a similar algorithm where they learn a task execution plan with model predictive
control (MPC) [41] using hindsight data, available only after decisions have been made. The learned
plan is used as to shape the cost function of the online MPC algorithm that plans on a shorter horizon.
Our work is related to, and draws inspiration from these approaches, but we directly use classification
based imitation learning instead of MPC or Q learning to learn from hindsight. Our work is orthogonal
to Hindsight Experience Replay [42] and Hindsight Policy Gradients [43], which are designed for
goal oriented problems.

11



D Hyperparameters

Below we provide the hyperparameters used for each experiment. Note that no formal hyperparameter
search was conducted and the hyperaparameters were generally set to default values found in the Ray
RLlib examples [24].

Table 1: Hyperparameters used for RL experiments. We used the Proximal Policy Optimization
algorithm [25], as implemented in Ray RLlib repository [24].

Hyperparameter Value
Gamma 0.995

KL coefficient 1.0
SGD iterations 5
Minibatch size 512
Train batch size 8192
Learning rate 0.00001
Hidden layers [256, 256]

Use GAE False

Table 2: Hyperparameters used for Hindsight Imitation Learning experiments with Support Vector
Machines. We used the implementation in the Scikit-Learn library [44].

Hyperparameter Value
C 10

Cache size 200
Class weight None

Coef 0 0.0
Decision function shape ovr

Degree 3
Gamma Auto Deprecated
Kernel RBF

Max Iter -1
Probability False

Random State None
Shrinking True

tol 0.001
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Table 3: Hyperparameters used for Hindsight Imitation Learning experiments with Random Forests.
We used the implementation in the Scikit-Learn library [44].

Hyperparameter Value
Bootstrap True

Class Weight None
Criterion gini

Max Depth None
Max Features auto

Max Leaf Nodes 0.None
Min Impurity Decrease 0.0005

Min Impurity Split None
Min Samples Leaf 1
Min Samples Split 2

Min Weight Fraction Leaf 0.0
Number of Estimators 50

Number of Jobs None
OOB Score False

Random State 1
Warm Start False
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E RL Training Curves
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Figure 3: RL training curves for µVM packing based on memory and CPU use for the 20K (a) and
100K (b) datasets. We see that when RL succeeds, it does so quickly. However, often the performance
plateaus much before performance of even the Baseline algorithm is reached.
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