
VLSI Placement Optimization using Graph Neural
Networks

Yi-Chen Lu
yclu@gatech.edu

Sai Pentapati
sai.pentapati@gatech.edu

Sung Kyu Lim
limsk@ece.gatech.edu

Department of Electrical and Computer Engineering
Georgia Institute of Technology

Atlanta, GA, USA

Abstract

Placement is one of the most crucial problems in modern Electronic Design Au-
tomation (EDA) flows, where the solution quality is mainly dominated by on-chip
interconnects. To achieve target closures, designers often perform multiple place-
ment iterations to optimize key metrics such as wirelength and timing, which is
highly time-consuming and computationally inefficient. To overcome this issue, in
this paper, we present a graph learning-based framework named PL-GNN that pro-
vides placement guidance for commercial placers based on logical affinity among
design instances. Experimental results on commercial multi-core CPU designs
demonstrate that our framework improves the industry-standard placement flow by
3.9% in wirelength, 2.8% in power, and 85.7% in worst negative slack reduction.

1 Introduction

Placements of Application-Specific Integrated Circuits (ASICs) require designers to place millions or
even billions of gate-level instances (VLSI netlists) on constrained physical layouts, which directly
impacts the quality of the final full-chip design. With ever increasing design complexity driven
by Moore’s Law, commercial EDA tools are struggled with achieving high-quality placements
without spending significant amount of time in optimization iterations, which severely bottlenecks
the chip design process. Recently, "placement guidance" emerges as a promising approach to perform
placement optimization in modern physical design flows. It is achieved by informing commercial
placers about the instances that should be placed nearby in actual physical layouts in order to optimize
key design metrics such as wirelength, congestion, and timing. With the given information, placers
will spend effort in grouping those cells together during the placement process. However, performing
placement guidance usually requires in-depth design-specific knowledge, which is only achievable by
experienced designers who have deep understanding of the underlying data flow in Register-Transistor
Level (RTL).

To overcome the above issue, in this paper, we present a universal framework named PL-GNN that
provides automated and accurate placement guidance for any design. PL-GNN consists two stages.
First, given a netlist, we perform unsupervised node representation learning using graph neural
networks (GNNs), where the goal is to learn accurate node representations that are related to the
netlist logical affinity. Then, we leverage the weighted K-means clustering algorithm [3] to group
instances into different clusters based on the obtained representations from graph learning. Finally,
the clustering results are utilized as placement guidance for a commercial placer. In this work, we
target the renowned commercial physical design tool Synopsys IC Compiler II (ICC2) [13] as our
baseline, and demonstrate that the proposed framework significantly improves the default placement
flow of ICC2 on commercial multi-core CPU designs.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), ML for Systems Workshop.

...
node representation

learning (unsupervised)

Netlist Graph

K-Means Clustering

(create placement groups)

Commercial

Placer

(Synopsys ICC2)

optimized placement

Initial Node

Features

Figure 1: Overview of PL-GNN framework. Given a netlist graph and the initial node features, we first
perform node representation learning to transform the initial features into better representations that
accurately characterize the underlying design knowledge. Then, with the learned node embeddings,
we perform weighted K-means clustering to determine the placement groups as placement guidance
for a commercial placer. Based on the provided grouping information, the placer will spend effort in
placing the instances in a common group together during global and detailed placements.

2 Related Learning-Based Placement Optimization Works

Recently, the authors of [10] propose DREAMPlace, which utilizes GPUs with deep learning toolkits
to significantly accelerate the runtime of analytical placers. However, the proposed method does not
improve the solution quality since the underlying placement algorithms remains the same. To optimize
placement quality, the authors of [7] map the traditional placement problem into a reinforcement
learning (RL) problem and present the usage of applying GNNs to encode netlist features. In [11], a
complete RL framework is proposed to perform floorplanning for memory macros of Google TPU
designs, where a force-directed method is introduced to place standard cells. It is shown that the
achieved final designs through RL agents outperform the ones built by designers in much shorter
turn-around-time. Nonetheless, the proposed RL framework [11] only focuses on optimizing the
locations of memory macros, where the logical affinity among standard cells are the most dominated
factor to achieve high-quality placements. As for placement prediction, another work [6] leverages
the Louvain modularity-based clustering method [1] to predict placement relevant cell clusters, where
the goal is to predict the instances that will be placed nearby in the actual physical layouts. They
demonstrate that the adopted clustering method better predicts the final placement results than the
renowned k-way partitioning algorithm [9] (hMETIS) under evaluations of Davies–Bouldin index
(DBI) [2]. However, the applications of such prediction are limited, because it is subject to a fixed
placement flow, which means when the flow is changed, the prediction will be inaccurate.

3 PL-GNN Framework

3.1 Overview

Figure 1 presents a high-level overview of PL-GNN framework. Since VLSI netlists are originally
represented as hypergraphs, given a netlist, we first transform the directed hypergraph into an
undirected clique-based graph, where a net that originally contains k cells will form a k-clique. Then,
based on the transformed graph and the initial node features defined for each instance, we leverage
GraphSAGE [8], a variant of GNNs, to perform unsupervised node representation learning. After
the learning is complete, we leverage the weighted K-means clustering algorithm [3] to determine
the placement groups based on the learned representations, where the cell area is taken as the
weight. Finally,the placement groups are taken as the placement guidance for the commercial placer
(Synopsys ICC2) to optimize the final placement quality. Note that the placement of memory macros
(floorplanning) is achieved based on design manuals. This work focuses on improving global and
detailed placements of standard cells.

2

a b c

a b c

d e f

ad be bf

adg

g

beh

h

level one

level two

level three

virtual root

Trie with hierarchies

as keys (edge attributes)

logic levels to

 memory macros (|V| x |M|)

Initial Node

Features

t-SNE visualization

(colored by level-one hierarchy)

Figure 2: Construction and visualization of initial node features (colored in red), which are obtained
from design hierarchy and logical affinity of memory macros. Alphabets on the edges of the trie
structure denote hierarchies at different levels, where each node has a unique encoding obtained by
concatenating the edge attributes on the path starting from the root to itself. Note that the initial
features are further transformed to better representations through graph learning.

3.2 Initial Node Features

Prior to the graph learning process, given an undirected graph G = (V,E), as shown in Figure 2,
we determine an initial feature vector for each instance v ∈ V based on its hierarchy information
and the logical affinity with memory macros M in the design. To encode the hierarchy information,
we implement a trie [4] (suffix graph) data structure, where the keys are the hierarchies in different
levels. Since in a gate-level netlist, the name of a design instance takes a combination of multiple
hierarchies as its prefix, there is a unique mapping from an instance in the design to a node in the
trie. Note that since the length of the node attributes varies in the trie, we perform zero-padding to
ensure every instance to have a common length of features. The reason we take hierarchy information
as features is because instances with a common hierarchy tend to have more connections compared
with those in different hierarchies, and these interconnects dominate the placement quality. Apart
from the hierarchy information, for each design instance v, we also take its logical levels to memory
macros M as features, which results in a vector in R|M |. The reasons we introduce the memory
related features is because the logic to memory paths are often the critical timing paths. Finally, we
concatenate the hierarchy features with the memory features to form the initial node representations.

3.3 Node Representation Learning

With the initial node features presented, we perform node representation learning using Graph-
SAGE [8]. The goal of graph learning is to obtain the node representations that better characterize
the underlying design knowledge than the initial features as shown in Figure 2. To learn a better
representation for each design instance v, we leverage GNNs to sample and aggregate the features
within its local neighborhood N(v) through:

hkv = σ

hk−1v + θk ·
1

sk

∑
u∈Nk(v)

hk−1u

 , (1)

where σ is the sigmoid function, hkv denotes the representation vector of node v at level k, Nk(v)
denotes the neighbors sampled at k-hop, sk denotes the corresponding sampling size, and θk rep-
resents the parameters of the neural network (NN) at k-hop (each hop has its own NN). Note that
the concept of "level" is corresponding to the concept of "hop", where h0v is the initial features of
node v, and hk=K

v is the final representation after aggregation the information within the K-hop
neighborhood of v. Note that the feature aggregation process is performed iteratively, where for
each level (hop) k, a dedicated NN layer (parameterized by θk) aggregates the neighboring features
within N(v) at the k − 1 level. These NN layers together form the GNN module in our framework.
In the implementation, our GNN module has two layers and each with 128 neurons. To update the
parameters {θk}, we introduce an unsupervised loss function L as

L(hv) = −
∑

u∈N(v)

log(σ(h>v hu))−
M∑
i=1

Eni∼Neg(v) log(σ(−h>v hni
)), (2)

3

Table 1: Placement optimization impact on commercial CPU designs. The baseline flow is denoted
as “ICC2 default”, where we compare our graph learning-based method with the modularity-based
method [1] to perform placement guidance on the baseline flow.

Design Name Method # of Wirelength WNS TNS Total Power
clusters (m) (ns) (ns) (mW)

CPU-Design-A ICC2 default - 4.37 -0.07 -0.22 142

(# cells: 202k, # macros: 21) modularity [1] 82 4.34 -0.10 -0.62 141
PL-GNN (ours) 22 4.20 -0.01 -0.03 138

CPU-Design-B ICC2 default - 11.66 -0.24 -240.39 582

(# cells: 537k, # macros: 29) modularity [1] 58 11.65 -0.38 -296.54 578
PL-GNN (ours) 32 11.55 -0.18 -62.21 574

where Neg(v) represents the negative sampling distribution of node v, and M represents the negative
sampling size. This negative sampling technique is known to improve the efficiency of graph
learning with faster loss convergence. Essentially, Equation 2 encourages nodes that share common
neighborhoods to have similar representations, and penalizes similarity to the ones that are distant.

3.4 Clustering for Placement Guidance

Finally, after obtaining the learned representations, we leverage the weighted K-means clustering
algorithm [3] to cluster design instances into placement groups, where the cell area is taken as
the weight. To determine the optimal number of clusters (the optimal K), we perform sweeping
experiments from k = 8 to k = 32 based on the Silhouette metric [12]. In addition, to perform fair
comparisons with the previous work [6] that predicts placement relevant clusters, we also implement
the modularity-based clustering algorithm [1] to create placement groups for placement guidance.

4 Experimental Results

We validate the proposed framework, PL-GNN, on two commercial multi-core CPU designs in the
TSMC 28nm technology node. Due to the confidentiality, we name the two designs as “CPU-Design-
A” and “CPU-Design-B”, respectively. In the experiments, we take the default placement flow in
Synopsys IC Compiler II (ICC2) as our baseline, and demonstrate the placement guidance results
achieved by PL-GNN and a modularity-based clustering algorithm [1]. In ICC2, the placement
groups are created by the command “create_placement_attraction {instance_list}”. PL-GNN and the
modularity-based method [1] is implemented in Python3 with the PyTorch Geometric [5] library.

The experimental results are shown in Table 1. Compared with the default placement flow in ICC2,
PL-GNN achieves up to 3.9% wirelength, 2.8% power, and 85.7% performance improvements.
Furthermore, we demonstrate that PL-GNN outperforms the modularity-based method [1] adopted by
previous work [6], which is mainly because [1] simply focuses on grouping the design instances based
on connectivity, where PL-GNN not only considers the underlying logical affinity when performing
placement guidance, but also takes the features (presented in Figure 2) that are crucial to the final
placement quality into account. Note that the number of clusters in [1] is determined by maximizing
the modularity heuristic. Finally, we want to emphasize that PL-GNN is able to generalize to any
design, since it performs the placement guidance is by optimizing an unsupervised loss function.

5 Discussions

The superior results achieved by our framework PL-GNN can be accounted in two-fold. First, the
initial node features accurately capture the underlying instance characteristics that are highly related
to achieving high-quality placements. Specifically, the macro-related features for each design instance
denoted by logic levels are particularly critical to the final timing results. Second, GNNs are highly
effective in encoding graph structures with node attributes. Since the final physical location of
a design instance highly depends on the local neighborhood structure, it is especially suitable to
leverage GNNs to encode such information. In conclusion, we have presented a graph learning-based
placement optimization framework and demonstrate that the framework significantly improves the
standard placement flow in an industrial-leading tool Synopsys ICC2 on commercial CPU designs.

4

References
[1] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of communities in large

networks. Journal of statistical mechanics: theory and experiment, 2008(10):P10008, 2008.

[2] D. L. Davies and D. W. Bouldin. A cluster separation measure. IEEE transactions on pattern analysis and
machine intelligence, pages 224–227, 1979.

[3] R. C. De Amorim and B. Mirkin. Minkowski metric, feature weighting and anomalous cluster initializing
in k-means clustering. Pattern Recognition, 2012.

[4] R. De La Briandais. File searching using variable length keys. In Papers presented at the the March 3-5,
1959, western joint computer conference, pages 295–298, 1959.

[5] M. Fey and J. E. Lenssen. Fast graph representation learning with pytorch geometric. arXiv preprint
arXiv:1903.02428, 2019.

[6] M. Fogaça, A. B. Kahng, R. Reis, and L. Wang. Finding placement-relevant clusters with fast modularity-
based clustering. In Proceedings of the 24th Asia and South Pacific Design Automation Conference, pages
569–576, 2019.

[7] A. Goldie and A. Mirhoseini. Placement optimization with deep reinforcement learning. In Proceedings
of the 2020 International Symposium on Physical Design, pages 3–7, 2020.

[8] W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs. In Advances in
Neural Information Processing Systems, 2017.

[9] G. Karypis and V. Kumar. Multilevel k-way hypergraph partitioning. VLSI design, 11(3):285–300, 2000.

[10] Y. Lin, Z. Jiang, J. Gu, W. Li, S. Dhar, H. Ren, B. Khailany, and D. Z. Pan. Dreamplace: Deep learning
toolkit-enabled gpu acceleration for modern vlsi placement. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2020.

[11] A. Mirhoseini, A. Goldie, M. Yazgan, J. Jiang, E. Songhori, S. Wang, Y.-J. Lee, E. Johnson, O. Pathak,
S. Bae, et al. Chip placement with deep reinforcement learning. arXiv preprint arXiv:2004.10746, 2020.

[12] P. J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal
of computational and applied mathematics, 20:53–65, 1987.

[13] I. Synopsys. Compiler user guide, 2019.

5

	Introduction
	Related Learning-Based Placement Optimization Works
	PL-GNN Framework
	Overview
	Initial Node Features
	Node Representation Learning
	Clustering for Placement Guidance

	Experimental Results
	Discussions

