Target-independent XLLA optimization using
Reinforcement Learning

Milan Ganai* Haichen Li Theodore Enns
University of California San Diego Amazon Amazon
mganai@ucsd.edu lhaiche@amazon.com ennst@amazon.com
Yida Wang Randy Huang
Amazon Amazon
wangyida@amazon.com renfu@amazon.com
Abstract

An important challenge in Machine Learning compilers like XLA is multi-pass
optimization and analysis. There has been recent interest chiefly in XL A target-
dependent optimization on the graph-level, subgraph-level, and kernel-level phases.
We specifically focus on target-independent optimization XLLA HLO pass ordering:
our approach aims at finding the optimal sequence of compiler optimization passes,
which is decoupled from target-dependent optimization. However, there is little
domain specific study in pass ordering for XLLA HLO. To this end, we propose
introducing deep Reinforcement Learning (RL) based search for optimal XLA HLO
pass ordering. We also propose enhancements to the deep RL algorithms to further
improve optimal search performance and open the research direction for domain-
specific guidance for RL. We create an XLA Gym experimentation framework as a
tool to enable RL algorithms to interact with the compiler for passing optimizations
and thereby train agents. Overall, in our experimentation we observe an average
of 13.3% improvement in operation count reduction on a benchmark of GPT-2
training graphs and 10.4% improvement on a diverse benchmark including GPT-2,
BERT, and ResNet graphs using the proposed approach over the compiler’s default
phase ordering.

1 Introduction

Machine Learning frameworks use Machine Learning compilers to convert neural networks into
hardware readable specific code. They primarily use heuristic based approaches to solve optimizations
problems at the different levels of the compiler stack. In the past several years, search-based machine
learning methodologies have been proposed to optimize on the various levels of the compiler stack.
Approaches have looked into sub-graph and kernel (fused operation nodes) level optimizations,
optimizations of specific compiler passes, or joint optimizations across the graph, sub-graph, and
kernel levels. However, the problem of graph level (for instance the High Level Operations (HLO)
Intermediate Representation (IR) in XLA [1]) pass ordering has been largely optimized by heuristic
based approaches.

We explore multi-pass compiler optimization on Machine Learning compilers on the graph-level. We
specifically aim to algebraically optimize Machine Learning XL A graphs with target-independent
HLO compiler optimization passes. That is, we need to select the sequence of XLA HLO compiler
optimization passes to transform the graph to optimize a specific objective. This objective may be

*Work conducted during an internship at Amazon.

36th Conference on Neural Information Processing Systems (NeurIPS 2022) Workshop on ML for Systems.



instruction count, XL A operation count, or graph-size. Our contributions to this problem domain is
as follows: 1) we introduce deep Reinforcement Learning algorithms to the problem space of XLA
target-independent pass ordering optimizations, 2) we propose domain-specific enhancements to the
deep RL algorithms in order to further improve their performance, and 3) we demonstrate the efficacy
of our approaches in comparison with default.

To enable RL algorithms to interact with the compiler and train the agents, we convert the problem into
a Markov Decision process framework by creating an XLLA Gym infrastructure based on OpenAI’s
Gym, described in Section 4. We subsequently test various deep Reinforcement Learning algorithms
in Section 5.1, and we propose and test our enhancements in deep Reinforcement Learning algorithms
in XLA Gym in Section 5.2.

2 Related Works

2.1 LLVM phase ordering

In LLVM [2], a closely related problem is phase ordering [3, 4] which is the problem of selecting and
ordering LLVM compiler optimizations. Various techniques have been proposed in phase ordering
including collaborative filtering [5], design space exploration [6], and Bayesian Networks [7]. Usage
of (deep) Reinforcement Learning has been seen in various LLVM compiler optimization problems
such as PolyGym [8] for polyhedral loop transformations, NeuroVectorizer [9] for single step
instruction vectorization, and MLGPO [10] for inlining for size. RL-based approaches for phase
ordering have been explored in Autophase [11] and CORL [12]. We refer the reader to [13] for a
more in depth survey of Al based techniques for LLVM compiler optimizations.

There are also several compiler optimization research tools such as OpenTuner [14], and YaCoS [15]
which are autotuning frameworks and ComPy-Learn [16] for program representation. A notable envi-
ronment is CompilerGym [17] which consists of various compiler optimization problems presented
using the OpenAl Gym interface including LLVM phase ordering. Overall, literature on the compiler
optimization pass ordering approaches have largely focused on the LLVM environments, but Machine
Learning compiler target-independent pass ordering decoupled from target-dependent optimization
has not been as extensively explored.

2.2 ML compiler frameworks

Within the domain of ML compilers, there has been a growth in research in optimizations across the
various levels of the compiler stack. Datasets such as Tenset [18] for tensor compilers have been
produced for offline learning. Autotuning has been proposed in the subgraph and kernel levels in
works such as TVM [19], AutoTVM [20], Ansor [21], FlexTensor [22], Halide [23], Chameleon [24],
AdaTune [25], and Tensor Comprehension [26]. Some of these approaches are currently being
utilized in production-level compilers such as the one in the AWS Neuron SDK ' [27]. Operator-level
optimizations and code generation for custom hardware accelerators has been explored in AKG [28]
and Mind Mappings [29]. Our methodology operates on target-independent HLO graph level in
determining the optimal pass ordering — graph/sub-graph and kernel level autotuning as well as
operator-level optimizations for hardware-specific optimization is orthogonal to our work. The
Value Learning approach of [30] does full graph loop optimization and is effective for a single
compiler stage. Reinforcement Learning based computational graph optimization (GO) [31] jointly
optimizes device placement, operator fusion, and operator scheduling does not focus on multiple
target-independent passes. A survey of Deep Learning compilers can be found in [32]. Overall,
we introduce Reinforcement Learning to multiple compiler pass optimization and demonstrate
improvement on a target-independent level.

3 Preliminaries

31 XLA

The proposal for a Reinforcement Learning framework may generalize to any Machine Learning
compiler framework. In this paper, we test in XL A specifically [33]. XLA is a Machine Learning

TAWS Neuron SDK documentation site: https://awsdocs-neuron.readthedocs-hosted. com/


https://awsdocs-neuron.readthedocs-hosted.com/

compiler that generates code for a variety of hardware targets. The compilation process can be divided
into a graph level phase, kernel level hardware lowering phase, and a low level target specific phase.
In the first phase XL A uses a High Level Operation Intermediate Representation which is a graph of
the tensor computations. In this target-independent step, various compiler optimization and analysis
passes transform the graph into an algebraically optimized output HLO graph. The nodes composing
this graph are fused operations and are known as kernels. These are brought down to the target to
be converted into instructions specific to the hardware. In the process, the graph is converted into
various IRs like Loop IR and Backend IR. Finally, in the hardware phase, low level target specific
optimizations are are performed on the machine instructions.

3.2 Markov Decision Processes

We formulate the problem of XLLA multi-pass optimization as a Markov Decision Process, which
can be represented by the 5-tuple (S, A, T, R, ). Specifically, S represents the state space, which is
the set of all possible values of the observable features of the graph at a given point in time. A is
the action space that consists of 53 HLO compiler optimization passes that can be used to optimize
a given graph at each step. T : S x A x § — [0, 1] is the transition function which signifies the
probability T'(s'|s, a) that an agent at state s taking some action a will transition to state s’. This is
in essence an abstraction of the compiler taking a graph with some features s and an optimization
pass a and outputting a new optimized graph with features s’. R : S — R is a reward function that
determines the immediate gain r(s) of an agent being in a particular state s. Finally, the discount
factor 0 << « < 1 discourages postponing good actions. A policy g : S x A — [0, 1] parameterized
by 6 provides the probability 7y (a|s) that an agent will take action a given it is in state s. The goal is
to learn the optimal policy 7* that maximizes expected cumulative discounted reward, i.e. returns.

4 Gym Functionality

For simulating the Markov Decision Process for the XLLA multi-pass optimization, we use the OpenAl
Gym [34] structure and create the XLA Gym environments. Specifically, this requires defining and
engineering the following:

State: The state space indicates the set of values the observable features of the state of the graph can
take. Because there is a wide range of values that XLLA Gym operation count types can take, this is
primarily represented as an array indicating minimum and maximum values of each feature.

Action: Similarly, the action space defines the set of values that represent actions. In pass ordering, it
is most feasible to define the action space as discrete by mapping each action to a distinct number
from O to one less than the total number of actions.

Reward: The reward must be manually engineered in order to best optimize for guiding the rein-
forcement learning agent. Because we are looking to reduce the overall operation count and for ease
of calculation, the reward is a function simply of the observation features. However, if we want to
discourage certain types of actions or transitions, the reward function can easily generalize to become
a function of the transition (i.e. R(s,a,s’)).

Info: An information dictionary is returned at each step of Gym. This provides environment designers
to conveniently provide any additional information if needed such as additional cost information.

Reset: Beginning each learning episode, it is important to reset the environment in order to bring the
agent back to a starting state and clear any needed environment variables before proceeding.

Step: Once an action has been chosen by the RL agent, the environment acts as a classic decision
chain by taking the action and returning the next state and reward. Furthermore, gym environments
provide a boolean indicating termination of an episode and the information dictionary.

Render: Rendering allows for a readable/parsable output at any given instance of the environment.
4.1 XLA Gym environment
Using the OpenAl Gym structure, we develop XLA Gym environments suitable for various use

cases. The environments are built off of the basic environment. In general, the states are arrays with
elements indicating various types of XL A operation count, and the actions are whole numbers less



than the total number of 53 HLO compiler optimization passes. The reward is negative of the scaled
XLA operation count, though may vary across the environments. Resetting initializes a new graph
without optimizations and returns the initial observable state. At each step, an action is provided, and
the next state, reward, boolean for episodic termination, and info dictionary are returned. Depending
on the environment, the info dictionary may contain HLO cost analysis features such as FLOP count
and transcendental count. Figure 1 shows the basic usage of the XLLA Gym environment.

import gym, xla_gym

1

2

3 RENDER =

4 GAMMA = 0.99
5

6

7

8

env_kwargs = {'benchmark_locs':'''list of code file locations''', 'traj_limit':'''Int'''}
env = gym.make('xla-vk', xkenv_kwargs)

9 ob = env.reset()

10 done =

11

12 while not done:

13 action = '''sample action from policy model like model.predict(ob)''!'
14 ob, reward, done, info = env.step(action)

15 if RENDER:

16 env.render (mode="'human"')

17

18 env.close()

19

Figure 1: Example usage of XLA Gym’s standard environment.

5 Experiments

5.1 Evaluating Deep RL Algorithms

With our XLA Gym structure, we proceed to explore various deep Reinforcement Learning Algo-
rithms. Deep RL algorithms contain off-policy algorithms, which train a policy different from the
one used to generate and collect environment data, and on-policy algorithms, which train and collect
data using the same policy [35]. The two off-policy algorithms we test include Deep Q Networks
(DQN) [36] and Advantage Actor Critic (A2C) [37]; the two on-policy algorithms we test include
Trust Region Policy Optimization (TRPO) [38] and Proximal Policy Optimization (PPO) [39].

5.1.1 Comparison of Deep RL Algorithms

We compare the results of benchmarking the various deep Reinforcement Learning algorithms shown
in Figure 2. The dataset we use for benchmarking is from a GPT-2 [40] training loop implementation
maintained internally in Amazon, adapted from the NVIDIA Megatron-LM [41] project. The metric
we use is the geometric mean over all the testing benchmarks of the ratio between the operation count
reduction using the RL agent to that of the default HLO passes used in the AWS Neuron SDK [42].

1
Specifically: (H5:1 g: :gz g) " where I is initial XLA operation count, R is count after using RL

agent, D is count using default HLO passes, B is total number of benchmarks, and all counts are
indexed by benchmark b. Overall, PPO performs the best with an average of 13.3% improvement in
XLA operation count reduction over the default HLO passes. However, the off-policy approaches
had comparatively poor performance. It is interesting to note that the work of [43] shows A2C is
equivalent to PPO when certain parameters are fixed — importantly the number of update epochs in
PPO must be set to 1, there should be no clipping, and the KL divergence term in the loss is removed.
Therefore we hypothesize these are what make PPO perform much better than A2C. Also, note the
dataset used to train the RL model is different from (no intersection with) the dataset used to test the
RL model and default HLO passes.

In Figure 3 we provide the improvement in operation counts of our learning based approach over the
default passes on various benchmarks. In around 97% of the testing suite benchmarks, we can see
that our methodology performs at least as good as the default HLO passes method. Furthermore, our
approach is able to achieve up to 27.3% total improvement in operation count reduction.



12.51% [l 13.32%
0

-10.91%{§-50.73%

DQN A2C TRPO PPO
Deep RL Algorithms
Figure 2: Comparison of various RL algorithms.

1 o
<) =
w wv

Improvement in Reduction over default
HLO passes
S
'Y
v

-0.6

30%

20%

N i

-10%

Improvement in Reduction
over default HLO passes

Testing Suite Benchmarks

Figure 3: We present the improvement in reduction using our proposed methodology over the default HLO
passes for each benchmark in out testing suite. We are able to achieve up to 27.3% total improvement. There are
some benchmarks that have same performance as the default HLO as indicated by the gap on the right, likely
because both approaches have reached near optimal optimization. On two benchmarks in our testing suite, we
perform at most 1.2% worse than the default HLO passes.

5.1.2 Execution Time Speedup

So far we have been comparing using the HLO operation count as our metric for target-independent
improvement. Using this metric, we are able to demonstrate that we can reduce our graph size in
terms of the HLO operation counts using our proposed methodology. We now want to show how
our proposed approach for improving XLLA HLO optimization can translate to improving execution
time without requiring any target-dependent optimizations. We utilize Tensorflow 2.9.2’s XLA CPU
compiler to generate execution time computation on a még.16xlarge Amazon EC2 instance on the
testing suite benchmarks. Ultimately, our methodology provides an average speedup of 1.0291 x
with standard deviation of 0.0155 (up to 1.0635x speedup). The runtime speedup of 1.0291x is
somewhat expected because of decoupling, i.e., we are not using any target-specific cost function
such as machine native instruction count for each XLLA HLO operation.

5.2 Evaluating Deep RL Algorithm Enhancements

Motivated by the improvement in performance provided by deep Reinforcement Learning algorithms,
particularly PPO, we seek to further boost optimal policy search by introducing domain knowledge
guidance. We explore how incorporating HLO cost analysis features in various aspects of the PPO
algorithm affect performance. In particular, we examine our two proposed enhancements: reward
shaping and value function modification.

5.2.1 Reward Shaping

Reward Shaping introduces an artificial reward signal to the environment feedback reward [44, 45].
This must come in the form of a potential function [46]. Specifically, the work of [44] shows that
function F' is a potential-based shaping function if there exists a real value function ¢ : S — R so for
all s € S\ {s0},a € A,and s’ € S, then F(s,s") = y¢(s") — ¢(s). Furthermore, for potential-based



shaping function F', they prove that every optimal policy 7* in MDP M = (S, A, T, R, ~) is also an
optimal policy in MDP M’ = (S, A, T, R + F,~) and vice versa.

In this manner, we transform our initial MDP M in XLA Gym to a new one M’ with provably
same optimal policies by introducing a potential-based shaping function to the reward. We craft a
heuristic based on HLO cost features like FLOP count and transcendental count into a function ¢(s).
Specifically ¢(s) = —F LOP_count(s) —2xtranscendental_count(s). Therefore our new reward
function will be R'(s) = R(s) + v * (—FLOP_count(s') — 2 x transcendental_count(s')) —
(=FLOP_count(s) — 2 * transcendental_count(s)) = R(s) + vo(s') — ¢(s).

5.2.2 Value Function Modification

Another approach we propose is to introduce the cost analysis features into the value function. In
deep Reinforcement Learning algorithms, the value function captures the quality of the agent in
a particular state. Specifically, it predicts the returns of the agent from that state. Cost analysis
features may provide a better estimate of this quality. We introduce features like FLOP count and
transcendental count to the value function so the value function takes the form V' (s, f) where f is a
vector of the additional cost analysis features.

5.2.3 Comparison of Deep RL Algorithm Enhancements

We accordingly test the enhancements to the PPO algorithm and compare it with the original PPO
algorithm. The results can be seen in Figure 4. Note that in this comparison, we work with a much
larger and more diverse data set of more than 300 graphs coming from models such as GPT-2,
BERT [47], ResNet [48] than from evaluation in Figure 2 for better comparison of robustness of
the enhancements. Overall, PPO with the shaping potential does best in comparison to plain PPO.
This demonstrates that there is more room for improvement in guiding the deep RL algorithms for
optimal policy search by introducing domain specific knowledge. It is also interesting that the value
function enhancement has poor performance. We hypothesize this may be due to what recent papers
like [49] suggest that minimum variance baselines (Value function is baseline proxy used in PPO)
do not necessarily correlate to convergence to optimal policy. In essence, although introducing cost
analysis features may improve the value function’s quality estimate accuracy, this may in the long run
backfire by potentially encouraging the agent to commit and convergence to a suboptimal policy.

0.11

10.37%

0.083

0.055

0.028

Improvement in Reduction over default
HLO passes

No Enhancements Reward Shaping Modified Value Func
Enhancements to PPO algorithm

Figure 4: Comparison of the results of enhancements to PPO.

6 Conclusion

We have introduced a mostly unchartered problem of target-independent compiler optimization
pass ordering in Machine Learning compilers like XLLA. Specifically we propose reformulating the
problem into a Markov Decision Process and address with Reinforcement Learning algorithms. We
created an XLA Gym infrastructure with environments for XLLA compiler optimization pass problem
to specifically optimize XLA operation count, but this can be generalized to other optimization targets.
Orthogonal extensions to our work include optimizing for execution speed and therefore exploring
target-dependent methods like autotuning. Furthermore, we used an observation space of various
types of XLA operation counts; however, there may be additional useful information in the graph
structure itself. So, with much larger training suites to avoid overfitting, another future extension
includes using a graph-based program representation like ProGraML [50]. To test and demonstrate
the effectiveness of using RL in HLO pass ordering, we tested various off-policy and on-policy deep



Reinforcement Learning algorithms in XLA Gym. We also proposed and tested new enhancements
to incorporate domain specific knowledge into the deep RL algorithms. Overall we achieve up to an
average of 13.3% improvement over the default HLO passes and show further room for improvement
on deep RL algorithms through domain knowledge introduction.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

Roy Frostig, Matthew James Johnson, and Chris Leary. Compiling machine learning programs
via high-level tracing. Systems for Machine Learning, 4(9), 2018.

Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program analysis

& transformation. In International Symposium on Code Generation and Optimization, 2004.
CGO 2004., pages 75-86. IEEE, 2004.

Amir H Ashouri, William Killian, John Cavazos, Gianluca Palermo, and Cristina Silvano. A
survey on compiler autotuning using machine learning. ACM Computing Surveys (CSUR),
51(5):1-42, 2018.

Yang Chen, Yuanjie Huang, Lieven Eeckhout, Grigori Fursin, Liang Peng, Olivier Temam, and
Chengyong Wu. Evaluating iterative optimization across 1000 datasets. In Proceedings of the
31st ACM SIGPLAN Conference on Programming Language Design and Implementation, pages
448-459, 2010.

Stefano Cereda, Gianluca Palermo, Paolo Cremonesi, and Stefano Doni. A collaborative filtering
approach for the automatic tuning of compiler optimisations. The 21st ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, and Tools for Embedded Systems, 2020.

Ricardo Nobre, Luiz Gustavo Almeida Martins, and Jodo MP Cardoso. A graph-based iter-
ative compiler pass selection and phase ordering approach. Proceedings of the 17th ACM
SIGPLAN/SIGBED Conference on Languages, Compilers, Tools, and Theory for Embedded
Systems, 2016.

Amir H. Ashouri, Giovanni Mariani, Gianluca Palermo, Eunjung Park, John Cavazos, and
Cristina Silvano. Cobayn: Compiler autotuning framework using bayesian networks. ACM
Trans. Archit. Code Optim., 13:21:1-21:25, 2016.

Alexander Brauckmann, Andrés Goens, and Jeronimo Castrillon. A reinforcement learning
environment for polyhedral optimizations. arXiv preprint arXiv:2104.13732, 2021.

Ameer Haj-Ali, Nesreen Ahmed, Theodore L. Willke, Sophia Shao, Krste Asanovi¢, and Ion
Stoica. Neurovectorizer: end-to-end vectorization with deep reinforcement learning. Proceed-
ings of the 18th ACM/IEEE International Symposium on Code Generation and Optimization,
2020.

Mircea Trofin, Yundi Qian, Eugene Brevdo, Zinan Lin, Krzysztof Choromanski, and David Xin-
liang Li. Mlgo: a machine learning guided compiler optimizations framework. ArXiv,
abs/2101.04808, 2021.

Ameer Haj-Ali, Qijing (Jenny) Huang, John Xiang, William Moses, Krste Asanovic, John
Wawrzynek, and Ion Stoica. Autophase: Juggling hls phase orderings in random forests with
deep reinforcement learning. In I. Dhillon, D. Papailiopoulos, and V. Sze, editors, Proceedings
of Machine Learning and Systems, volume 2, pages 70-81, 2020.

Rahim Mammadli, Ali Jannesari, and Felix A. Wolf. Static neural compiler optimization
via deep reinforcement learning. 2020 IEEE/ACM 6th Workshop on the LLVM Compiler
Infrastructure in HPC (LLVM-HPC) and Workshop on Hierarchical Parallelism for Exascale
Computing (HiPar), pages 1-11, 2020.

Hugh Leather and Chris Cummins. Machine learning in compilers: Past, present and future. In
2020 Forum for Specification and Design Languages (FDL), pages 1-8, 2020.



[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey Bosboom,
Una-May O’Reilly, and Saman Amarasinghe. Opentuner: An extensible framework for program
autotuning. In Proceedings of the 23rd international conference on Parallel architectures and
compilation, pages 303-316, 2014.

André Felipe Zanella, Anderson Faustino da Silva, and Fernando Magno Quintdo. Yacos:
a complete infrastructure to the design and exploration of code optimization sequences. In
Proceedings of the 24th Brazilian Symposium on Context-Oriented Programming and Advanced
Modularity, pages 56—63, 2020.

Alexander Brauckmann, Andrés Goens, and Jeronimo Castrillon. Compy-learn: A toolbox for
exploring machine learning representations for compilers. In 2020 Forum for Specification and
Design Languages (FDL), pages 1-4. IEEE, 2020.

Chris Cummins, Bram Wasti, Jiadong Guo, Brandon Cui, Jason Ansel, Sahir Gomez, Somya
Jain, Jia Liu, Olivier Teytaud, Benoit Steiner, et al. Compilergym: robust, performant compiler
optimization environments for ai research. In 2022 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO), pages 92—-105. IEEE, 2022.

Lianmin Zheng, Ruochen Liu, Junru Shao, Tiangi Chen, Joseph E Gonzalez, Ion Stoica, and
Ameer Haj Ali. Tenset: A large-scale program performance dataset for learned tensor compilers.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 1), 2021.

Tianqgi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan
Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. {TVM}: An automated {End-to-End}
optimizing compiler for deep learning. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), pages 578-594, 2018.

Tianqgi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis Ceze, Carlos
Guestrin, and Arvind Krishnamurthy. Learning to optimize tensor programs. Advances in
Neural Information Processing Systems, 31, 2018.

Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer Haj-Ali, Yida
Wang, Jun Yang, Danyang Zhuo, Koushik Sen, et al. Ansor: Generating {High-Performance}
tensor programs for deep learning. In /4th USENIX symposium on operating systems design
and implementation (OSDI 20), pages 863-879, 2020.

Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and Kaiwen Sheng. Flextensor: An automatic
schedule exploration and optimization framework for tensor computation on heterogeneous
system. In Proceedings of the Twenty-Fifth International Conference on Architectural Support
Jfor Programming Languages and Operating Systems, pages 859-873, 2020.

Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li, Michaél Gharbi,
Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Durand, et al. Learning to optimize
halide with tree search and random programs. ACM Transactions on Graphics (TOG), 38(4):1-
12, 2019.

Byung Hoon Ahn, Prannoy Pilligundla, Amir Yazdanbakhsh, and Hadi Esmaeilzadeh.
Chameleon: Adaptive code optimization for expedited deep neural network compilation. /CLR,
2020.

Menghao Li, Minjia Zhang, Chi Wang, and Mingqin Li. Adatune: Adaptive tensor program
compilation made efficient. Advances in Neural Information Processing Systems, 33:14807—
14819, 2020.

Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zach DeVito,
William S. Moses, Sven Verdoolaege, Andrew Adams, and Albert Cohen. Tensor com-

prehensions: Framework-agnostic high-performance machine learning abstractions. ArXiv,
abs/1802.04730, 2018.

Welcome to aws neuron. https://awsdocs-neuron.readthedocs-hosted.com/. Ac-
cessed: 2022-09-27.


https://awsdocs-neuron.readthedocs-hosted.com/

[28] Jie Zhao, Bojie Li, Wang Nie, Zhen Geng, Renwei Zhang, Xiong Gao, Bin Cheng, Chen Wu,
Yun Cheng, Zheng Li, et al. Akg: automatic kernel generation for neural processing units
using polyhedral transformations. In Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation, pages 1233-1248, 2021.

[29] Kartik Hegde, Po-An Tsai, Sitao Huang, Vikas Chandra, Angshuman Parashar, and Christo-
pher W Fletcher. Mind mappings: enabling efficient algorithm-accelerator mapping space
search. In Proceedings of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 943-958, 2021.

[30] Benoit Steiner, Chris Cummins, Horace He, and Hugh Leather. Value learning for throughput
optimization of deep learning workloads. Proceedings of Machine Learning and Systems,
3:323-334, 2021.

[31] Yanqi Zhou, Sudip Roy, Amirali Abdolrashidi, Daniel Wong, Peter Ma, Qiumin Xu, Hanxiao
Liu, Phitchaya Phothilimtha, Shen Wang, Anna Goldie, et al. Transferable graph optimizers for
ml compilers. Advances in Neural Information Processing Systems, 33:13844—13855, 2020.

[32] Mingzhen Li, Yi Liu, Xiaoyan Liu, Qingxiao Sun, Xin You, Hailong Yang, Zhongzhi Luan,
and Depei Qian. The deep learning compiler: A comprehensive survey. IEEE Transactions on
Parallel and Distributed Systems, 32:708-727, 2021.

[33] Xla: Optimizing compiler for tensorflow. https://www.tensorflow.org/xla. Accessed:
2022-09-07.

[34] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym, 2016.

[35] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[36] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529-533, 2015.

[37] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforce-
ment learning. In International conference on machine learning, pages 1928-1937. PMLR,
2016.

[38] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In International conference on machine learning, pages 1889-1897.
PMLR, 2015.

[39] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[40] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

[41] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model
parallelism. arXiv preprint arXiv:1909.08053, 2019.

[42] Aws neuron sdk to optimize machine learning inference on aws inferentia chips. https:
//aus.amazon.com/machine-learning/neuron/. Accessed: 2022-09-27.

[43] Shengyi Huang, Anssi Kanervisto, Antonin Raffin, Weixun Wang, Santiago Ontafién, and
Rousslan Fernand Julien Dossa. A2c is a special case of ppo. arXiv preprint arXiv:2205.09123,
2022.

[44] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transfor-
mations: Theory and application to reward shaping. In International Conference on Machine
Learning, volume 99, pages 278-287, 1999.


https://www.tensorflow.org/xla
https://aws.amazon.com/machine-learning/neuron/
https://aws.amazon.com/machine-learning/neuron/

[45]

[46]

[47]

[48]

[49]

[50]

Babak Badnava and Nasser Mozayani. A new potential-based reward shaping for reinforcement
learning agent. arXiv preprint arXiv:1902.06239, 2019.

Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A
survey. Journal of Machine Learning Research, 10(7), 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770-778, 2016.

Wesley Chung, Valentin Thomas, Marlos C Machado, and Nicolas Le Roux. Beyond variance
reduction: Understanding the true impact of baselines on policy optimization. In International
Conference on Machine Learning, pages 1999-2009. PMLR, 2021.

Chris Cummins, Zacharias V. Fisches, Tal Ben-Nun, Torsten Hoefler, Michael F P O’Boyle,
and Hugh Leather. Programl: A graph-based program representation for data flow analysis
and compiler optimizations. In Marina Meila and Tong Zhang, editors, Proceedings of the
38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pages 2244-2253. PMLR, 18-24 Jul 2021.

10



A Appendix

Hyperparameters and Setup Values
On-policy parameters
Batch size 256
Learning rate R
Discount factor 0.99
Network Architecture MLP [2048, 2048]
Entropy coefficient 0
GAE lambda 0.95
PPO clip range 0.2
Off-policy parameters
Batch size 256
Buffer size 106
Learning rate 3e?
0.99

Discount factor
Network Architecture

MLP [2048, 2048]

General parameters
Training Steps
Training time
Hardware

200000
average 11 hours

c5.18xlarge AWS EC2 Instance
Table 1: Hyperparameter Settings Details

11



	Introduction
	Related Works
	LLVM phase ordering
	ML compiler frameworks

	Preliminaries
	XLA
	Markov Decision Processes

	Gym Functionality
	XLA Gym environment

	Experiments
	Evaluating Deep RL Algorithms
	Comparison of Deep RL Algorithms
	Execution Time Speedup

	Evaluating Deep RL Algorithm Enhancements
	Reward Shaping
	Value Function Modification
	Comparison of Deep RL Algorithm Enhancements


	Conclusion
	Appendix

