
Robust Scheduling with GFlowNets

David W. Zhang†
University of Amsterdam

Corrado Rainone Markus Peschl Roberto Bondesan
Qualcomm AI Research

Abstract

Finding the best way to schedule operations in a computation graph is a classical
NP-hard problem which is central to compiler optimization. However, evaluating
the goodness of a schedule on the target hardware can be very time-consuming. Tra-
ditional approaches as well as previous machine learning ones typically optimize
proxy metrics, which are fast to evaluate but can lead to bad schedules when tested
on the target hardware. In this work, we propose a new approach to scheduling
by sampling proportionally to the proxy metric using a novel GFlowNet method.
We introduce a technique to control the trade-off between diversity and goodness
of the proposed schedules at inference time and demonstrate empirically that the
pure optimization baselines can lead to subpar performance with respect to our ap-
proach when tested on a target model. Furthermore, we show that conditioning the
GFlowNet on the computation graph enables generalization to unseen scheduling
problems for both synthetic and real-world compiler datasets.

1 Introduction

Scheduling is the action of assigning operations to the available compute resources, such as threads,
cores, or nodes in a cluster [22, 14, 30]. Unfortunately, finding the schedule with the shortest
possible makespan (start-to-end runtime) is in general NP-hard [28]. As a result, domain experts
have come up with heuristics that are tailored to specific problem instances [19]. Machine learning
approaches promise the possibility to automate this process allowing for fast adaptation to new graph
distributions [35, 6]. In this work, we consider the problem of scheduling a set of operations with
precedence constraints on a fixed number of homogeneous devices, i.e., any operation can run on any
device and the runtime is the same on all devices.

Evaluating the makespan of a schedule involves running all operations in the computation graph on
some target hardware. This can be very resource intensive, especially when the computation graph
includes lengthy operations, the evaluated schedule is inefficient, or the intended target hardware is a
cluster with many nodes. Heuristic optimizers, like genetic algorithms [18], or machine learning [24]
approaches further exacerbate this problem because they require many evaluations to converge [8].
Proxies are a much faster alternative that estimate the makespan using a simplified model of the
hardware. However, this comes at the cost of discrepancies between the proxy makespan and the
one observed on the hardware; as a result, performant solutions on the proxy might ultimately be
unsatisfactory once tested on the target. Nonetheless, proxies remain a good indicator for most
schedules and are essential due to their efficiency. We aim to learn a scheduler that can be trained
using the proxy, whilst being robust to its inaccuracies.

The common approach to scheduling problems (and combinatorial optimization problems in general)
is to look for the single best schedule. We propose a different philosophy: generate a set of candidate
schedules that have a low makespan according to the proxy and are diverse. By having multiple good
schedules that are significantly different, we can reduce the impact of systematic errors in the proxy,
and hope for robust performance on the target.

†Work completed during internship at Qualcomm Technologies Netherlands B.V. Qualcomm AI Research is
an initiative of Qualcomm Technologies, Inc.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



0

12

34

5

0

0 1

0

1

0 2

41 3 5

0 1 2

4 3 5

1

5

3

0 2 4

GFlowNet
Sampling

Computation
Graph

1.

2.

N.

0 2

41 3 5

0 1 2

4 3 5

1

5

3

0 2 4

Proxy Ranking

Top-k

Chain Graphs

Schedule 1

0 42

31

5
Schedule 2

Target Evaluation

0 2

4 31 5

Figure 1: Full pipeline of our generative scheduling approach. Conditioned on the computation graph
we generate multiple candidate schedules using GFlowNet, filter for the best k with the proxy and
pick the best performing one out of the k that we check on the target. Here we illustrate the pipeline
for k = 2 and two devices, d1, d2.

Our goal is to learn a generative model that assigns higher probability to low-makespan schedules,
and importantly can also discover the different modes associated with local optima of the makespan
cost. Generative flow networks (GFlowNets) have recently been introduced as a method for learning
a stochastic policy that can piece-by-piece construct discrete and composite objects, proportional to
a given reward [5]. By computing the reward from the proxy-makespan we can use GFlowNets to
sample a diverse set of candidate schedules.

Our main contributions are the following: 1. We introduce an alternative to the pure proxy optimiza-
tion viewpoint of scheduling that achieves better robustness to proxy errors, by generating multiple
candidate schedules to evaluate directly on the target hardware. 2. We extend GFlowNets to generate
schedules conditioned on a computation graph. Additionally, we introduce a method to control
diversity and goodness at inference time, without the need for retraining. These contributions may be
of general interest, beyond the scheduling problem. 3. We empirically demonstrate the robustness
of our method to proxy errors and verify the generalization ability on a diverse set of synthetic and
real-world computation graphs.

2 Robust scheduling

Problem definition. In scheduling, we are given a computation graph GC = (O,P ) that is a direct
acyclic graph (DAG) consisting of operations (nodes) o ∈ O and precedence constraints (edges)
p ∈ P that encode a partial order in which the operations need to be executed. In particular, the edge
pij encodes that operation oi needs to finish before oj can start, for example, because oj requires the
output of oi as input. Our task is to run all operations on a set of devices D = {d1, . . . , dm}, without
violating the precedence constraints. In addition to the precedence constraints, the devices can only
run one operation at a time. We can then view scheduling as performing two distinct tasks: assign a
device to each operation, and determine a (complete) order among all operations on the same device
that is compatible with the precedence constraints encoded in GC . We can model the schedule as a
chain of operations for each device, where the chain denotes the order in which the operations run on
that device. See Figure 1 for a visual example of the chain graphs. Our aim is to find the schedule
with the lowest makespan for some target hardware.

Target model vs. proxies. A proxy is any tool that allows one to estimate the makespan of a given
schedule, without having to run the schedule on the target hardware. Proxies come with significant
speed advantages, at the cost of possible mistakes in the estimation of the makespan and relative
comparison of schedules. Mistakes can occur for example when the task durations are not accurately
profiled, memory movements are too complex to fully model, or additional hardware-specific features
are changed. Ideally, we would like to rely on a proxy for the majority of the schedule evaluations,
and only evaluate a small fraction of promising schedules on the target hardware. This approach
differs from previous works, that either evaluate every schedule on the target [21], leading to very
long optimization times, or evaluate everything on the proxy [27], which is susceptible to modeling
failures.

Let us denote with Cd, d ∈ D the set of edges of the chain graph that specifies the operation order
on device d and with D :=

⋃m
k=1 Cdk

the set of all device constraints. The operations correspond

2



to graph nodes and are labeled in the same way as in GC . No other operation can run on the same
device during the runtime or duration ρi of operation oi. In practice, ρi is estimated directly on the
hardware in a profiling stage that precedes scheduling. We denote the start time of oi as τi and can
thus express the precedence constraints as τj ≥ τi + ρi, ∀(i, j) ∈ P ∪D. An operation cannot
start unless all of those that produce its inputs and all of those that precede it on its assigned device
have finished first. To ensure that these constraints are satisfied the proxy assigns each operation oi
the start time

τi = max
k

{τk + ρk|(k, i) ∈ P ∪D} (1)

If a node has no parents in P ∪D the proxy assigns the start time τi = 0. The start times of all oi ∈ O
can be computed by assigning a start time to a node whenever it has no parents or all its parents have
an assigned start time. If the graph (O,P ∪D) is a DAG, then this algorithm is guaranteed to assign
start times that satisfy Equation 1. The proxy then estimates the makespan T of the schedule x as
T (x) := maxi(τi + ρi)−mini(τi).

Generative scheduling. If we had a ranking over all the schedules according to the proxy, we could
just go through the list top-to-bottom, and add a schedule to the batch whenever it is significantly
different from the previous ones. A full ranking like this is infeasible to construct, but we can instead
learn a generative model that samples higher ranked schedules with higher probability. To avoid
generating invalid schedules that violate the constraints in Section 2, we construct a schedule in a
step-by-step process: start with an empty schedule at the initial state s0, and at each step add an
operation to the partial schedule until the schedule contains all operations ending at the terminal state
sn. At each intermediate state st, an action at consists in picking an operation and assigning it to one
of the devices, leading to a new state st+1. Picking an operation ot is a valid action if and only if
∀k : (k, t) ∈ P , ok is already in the partial schedule at state st. This is a sufficient condition for the
final “schedule” graph (O,P ∪D) to be a DAG, implying that the constructed schedule is feasible.
The final states represent full schedules x, for which we can compute the makespan T (x) with the
proxy, given the runtimes {ρi}ni=1. We compute the relative speedup compared to the makespan on a
single device as U(x)=

∑
i ρi/T (x), from which we compute the reward as we present in the next

section.

3 Generative Flow Networks for scheduling

GFlowNets [4, 5] are methods for training a stochastic policy to sample discrete and composite
objects x proportionally to a given reward, through a sequence of constructive actions. In the previous
section, we discussed how to limit the action space to guarantee that we sample valid schedules. After
a brief introduction to GFlowNets, the following sections will present our proposed extensions that
include a new training objective that is suitable for learning conditional GFlowNets and a method for
controlling the selectivity of samples at inference time.

Background. We denote by s=(s0, s1, . . . , sn) a trajectory that consists of a sequence of states
st. We denote by T the set of all such trajectories and by Tx the set of trajectories that end at
sn=x. Based on this, we define a flow function F : T → R+ and its associated normalized
probability distribution P (s) = F (s)/Z, with Z =

∑
s∈T F (s). A flow function that fulfills the

condition: R(x) =
∑

s∈Tx
F (s) (every terminal state has a total flow matching its reward), results in

a probability over schedules P (x) =
∑

s∈Tx
F (s)/Z that is proportional to the reward P (x) ∝ R(x),

and further entails that Z =
∑

x R(x) [4, 5].

For any Markovian flow, we can decompose the probability of a trajectory in terms of the forward
probability: P (s) =

∏n
t=1 PF (st|st−1). This way, we can generate trajectories s by sampling

a sequence of actions starting from s0. In Section 2 we described how to limit the action space
appropriately to guarantee that every sampled schedule is valid. Similarly, we can define a backward
probability PB that factorizes the trajectory probability conditioned on a terminal state: P (s|sn =
x) =

∏n
t=1 PB(st−1|st).

The training objectives in previous works aim for consistency between the flow in the forward and
backward directions [5, 23]. Malkin et al. [23] formulate the trajectory balance constraint as:

Z

n∏
t=1

PF (st|st−1) = R(x)

n∏
t=1

PB(st−1|st) (2)

3



Based on Equation 2, they propose to estimate Z, PF , and PB by optimizing the trajectory balance
loss which is the squared difference between the logarithms of the l.h.s. and the r.h.s. of Equation 2.

3.1 Log-partition variance loss

In order to apply the trajectory balance loss in the conditional case, we would need to learn an
additional regression model that estimates the log-partition function logZ conditioned on GC .
Training such a network accurately is difficult and in practice, we found this to lead to non-convergent
training behaviors. Instead, we can rewrite Equation 2 to implicitly estimate logZ based on the
forward and backward flows of a single trajectory s, where PF and PB are neural networks with
parameters θ:

ζ(s;θ) = logR(x) +

n∑
t=1

logPB(st−1|st;θ)−
n∑

t=1

logPF (st|st−1;θ) (3)

In the optimal case, ζ(s;θ) is equal to the true logZ which is the same for all trajectories corre-
sponding to the same computation graph GC . Thus, our optimization goal turns into minimizing the
variance of ζ(s;θ) over different trajectories s with the loss:

LV(s;θ) = (ζ(s;θ)− Es [ζ(s;θ)])
2 (4)

In the experiments, we use the training distribution to estimate Es [ζ(s)] with a mini-batch of sampled
trajectories.

3.2 Temperature-conditioned Topoformer

Reward temperature. We compute the log-reward as logR(x;m,σ) = (U(x) − m)/σ where
U(x) is the speedup of the schedule x, m is the number of devices, and σ ∈ R+ plays the role of a
temperature. A low temperature concentrates the distribution around the modes and increases the
selectivity of the generator. This is useful since there can be many more schedules with low speedup
when compared to good ones. For example, when simply setting the reward equal to the speedup, we
observed that finding schedules with high speedup requires a prohibitively large amount of samples.
We expect this temperature term to allow trade-offs between diversity and shifting the mean of the
sampling distribution towards better schedules.

Training with a constant temperature can lead to low performance (when set too high), and low
diversity or unstable training (when set too low). Furthermore, different computation graphs can
have different ideal temperature values, making this approach less suitable when learning conditional
GFlowNets. Instead, we propose to learn a single model for multiple different reward functions, by
conditioning the policy networks (PF and PB) on the temperature σ. Approximating the temperature-
conditioned policy with a neural network is feasible because flows for a given temperature can be
continuously morphed into flows for any other temperature when R(x;m,σ) is continuous with
respect to σ. We provide a proof for the following theorem in Appendix A.
Theorem 1 (Flow Continuity). Let {Ri}∞i=1 be a sequence of positive reward functions such that for
all terminal states x, (Ri(x)/R(x)) → 1 as i → ∞. Then, for any flow FR with reward R, there
exists a sequence of flow functions {FRi}∞i=1 with FRi(s) → FR(s) for all s ∈ T .

Topoformer architecture. For the neural network architecture of our policy, we use the Topo-
former [12], which has been recently introduced for learning topological orderings of computation
graphs. It builds on the Transformer encoder architecture [34] and additionally masks the multi-head
attention depending on the topology of the computation graph. Both forward and backward policies
use separate MLP heads on top of a shared Topoformer encoder. Taking inspiration from the success-
ful use of time conditioning in diffusion models [32, 15], we add temperature conditioning by first
embedding the temperature using an MLP to produce eσ , and then reuse the embedding in every first
linear layer block of the Topoformer:

lin(h, eσ) = linscale(eσ)⊙ lin(h) + linshift(eσ) (5)

Here linscale and linshift are linear layers and ⊙ is the elementwise multiplication [29]. In contrast
to diffusion models, we observe better performance on large temperature ranges with the ReLU [26]
activation function. We hypothesize that this is connected to the monotonicity of the underlying
policy function with respect to decreasing temperatures (see the appendix, Corollary 1) and the
propensity for linear extrapolation of ReLU MLPs [37].

4



Table 1: Robustness results on a single computation graph. Higher diversity correlates with better
robustness against a mismatch of the proxy and the target, with GFlowNet achieving the best diversity
and the best target performance on average.

Speedup Diversity

Proxy Noisy
Runtimes

Bandwidth
Limited

Latency
Limited GED dinv dsen

List scheduling 3.23±0.00 2.75±0.00 1.02±0.00 1.74±0.00 0 0 0
BRKGA 3.22±0.00 2.86±0.15 1.29±0.45 1.80±0.34 55.92±2.56 22.83±2.39 56.21±1.50
PPO 3.28±0.07 3.07±0.09 1.38±0.49 1.87±0.38 85.08±3.54 31.71±0.05 105.64±0.08
GFlowNet 3.21±0.02 3.05±0.04 1.78±0.03 2.11±0.03 94.79±0.15 42.08±0.33 115.98±0.09

4 Experiments

In this section, we evaluate different aspects of our generative scheduling approach. First, we restrict
training and evaluation to a single computation graph, which corresponds to the same unconditional
setting considered by previous works on GFlowNets [4, 10, 20]. Next, we train with multiple
computation graphs and evaluate on unseen ones. To the best of our knowledge, this is the first
time that generalization of conditional GFlowNets is tested empirically. Finally, we verify the
generalization ability on real-world computation graphs of neural networks.

Candidate sampler. We consider two heuristic and two neural methods for generating candidate
schedules. The first is our GFlowNet approach described in Section 3 from which we generate 1000
samples at temperature σ = 0.005 and take the top 100 following the proxy. Second is the critical
path-based list scheduling, a heuristic algorithm for scheduling on homogeneous devices [25]. List
scheduling first forms a topological order of the operations and then assigns them in that order one
by one to a free device. Third is the Biased Random Key Genetic Algorithm (BRKGA) [13], a
genetic algorithm that has previously shown good performance on scheduling tasks [27]. We use the
top 100 schedules from the final population as the candidate schedules. Fourth is Proximal Policy
Optimization (PPO) [31], a deep reinforcement learning method that has been successfully applied
to scheduling problems [40]. PPO also trains a stochastic policy, which makes it a natural choice
for comparison with GFlowNets [4]. We employ the same definitions of states, actions, and reward
function (with temperature σ = 0.25; lower was not beneficial) as the GFlowNet approach. Same as
for GFlowNets, we sample 1000 schedules and pick the top 100 as the candidate schedules.

Experimental setup and metrics. In all experiments, we only use the node time duration as a
feature of the computation graph. For simplicity and ease of reproducibility, we avoid any compli-
cated heuristics to add extra features. All our experiments are based on four homogenous devices.
We measure the performance in terms of the speedup U(x). For the diversity, we report three
different measures: graph-edit distance (GED), the L2 distance between the proxy start-times (dinv),
and the L2 distance between the proxy start-times concatenated with the device placement (dsen).
See Appendix C.2 for more details on diversity measures.

4.1 Proxy errors: diversity for robust scheduling

1.5 2.0 2.5 3.0
Proxy Speedup

0.5

1.0

1.5

2.0

2.5

3.0

Ta
rg

et
 S

pe
ed

up

Latency Limited
Bandwidth Limited
Noisy Runtimes

Figure 2: Proxy and target speedup correla-
tions.

We examine how differences between the proxy and
the target performance model can affect the final run-
time. To do so, we first focus on a single computation
graph that is used both for training and testing to avoid
possible confounding factors that may happen in the
generalization setting. We design three different tar-
get models that each reflect a different failure mode
of the proxy, as discussed in Section 2. In the first
setting node durations are incorrectly profiled (Noisy
Runtimes). In the second and third settings, the target
models the memory movement across devices with a
linear model [33], which can be either bottlenecked by limited bandwidth (Bandwidth Limited), or by
high latency (Latency Limited). The linear model has been shown to be a good makespan estimator
for certain devices [16, 9]. In Figure 2, we show the correlation between the proxy and the different
target environments. For all three targets, the proxy is highly correlated but can have target speedups
that differ by a factor of up to ×2 for the schedules with high proxy speedups.

5



Speedup Diversity

Proxy 1 Proxy 100 GED dinv dsen

List scheduling 3.44 3.44 0 0 0
BRKGA 3.46 3.45 46.59 12.75 40.11
PPO 3.48 3.46 69.54 13.45 80.84
GFlowNet 3.46 3.41 92.02 24.27 90.17

Table 2: Generalization to unseen synthetic com-
putation graphs. The Speedup Proxy 100 column
reports the average proxy speedup over the top
100 schedules.

1.00 1.25 1.50 1.75 2.00 2.25
Speedup

0.00

0.01

0.02

0.03

0.04

Pr
ob

ab
ilit

y

Temperature: 1

1.00 1.25 1.50 1.75 2.00 2.25
Speedup

0.00

0.01

0.02

0.03

0.04
Temperature: 0.25

1.00 1.25 1.50 1.75 2.00 2.25
Speedup

0.00

0.01

0.02

0.03

0.04

Temperature: 0.05

1.00 1.25 1.50 1.75 2.00 2.25
Speedup

0.0

0.1

0.2

0.3

0.4

0.5

Temperature: 0.005

Figure 3: Sample reward distribution for dif-
ferent inference temperatures in the conditional
GFlowNet. Lower temperatures allocate more
probability mass to better schedules.

We report the speedups and diversity measures in Table 1. The results highlight that any method
that can generate multiple good candidate schedules achieves higher speedups than list scheduling,
which only produces a single unique schedule. Furthermore, if the candidate schedules are more
diverse — as is the case for GFlowNet — the target performance is also better on average. The results
confirm our hypothesis that a diverse set of candidate schedules can improve robustness towards a
misspecified proxy.

4.2 Generalizing to unseen synthetic computation graphs

Next, we evaluate how well our conditional GFlowNet can generalize to unseen computation graphs.
The computation graphs in the training dataset have 50 nodes each and are sampled from two
different random graph distributions, whereas the test dataset additionally samples from three other
random graph distributions. For details on the generative process of the computation graphs, we refer
to Appendix C.4.

Results in Figure 2 demonstrate that the conditional GFlowNet can generalize to previously unseen
computation graphs, regardless of whether they originate from the same random graph distribution.
Next, we ablate our proposed temperature conditioning method by generating 1000 samples at
different temperature values given a computation graph of size 25. In Figure 3, we observe that
decreasing the temperature does indeed shift the sample distribution to the right and also sharpens
it when the temperature approaches zero. Notably, the temperature σ = 0.005 is not in the training
distribution, which demonstrates that the model can extrapolate to temperature values outside of the
training range. Surprisingly, we observe that training with a variable temperature can improve the
performance further than is possible with a fixed temperature, which we demonstrate in Appendix D.

4.3 Real world computation graphs

Finally, we verify the generalization ability on a small set of real-world computation graphs used for
the commercial development of our artificial intelligence hardware and software products (see Ap-
pendix C.5 for details). We report the speedup on the same target models used in Section 4.1 to assess
robustness on unseen real-world computation graphs. The results are in Table 3.

Table 3: Generalization on real-world graphs. GFlowNet retains a high diversity and exhibits
consistently better performances than the baselines on the target models. PPO uses the same
hyperparameters as in the previous experiments but does not manage to converge on this dataset.

Speedup Diversity

Proxy 1 Proxy 100 Noisy
Runtimes

Bandwidth
Limited

Latency
Limited GED dinv dsen

List scheduling 2.74±0.00 2.74±0.00 2.51±0.00 0.89±0.00 1.43±0.00 0 0 0
BRKGA 2.59±0.18 2.58±0.18 2.46±0.16 1.55±0.17 1.80±0.18 52.32±21.59 17.14±8.17 42.64±12.23
PPO 2.41±0.20 2.23±0.27 2.28±0.26 0.91±0.20 1.43±0.10 53.05±7.27 42.70±3.44 64.92±4.08
GFlowNet 2.71±0.03 2.66±0.01 2.71±0.01 1.73±0.01 1.95±0.03 87.95±0.13 26.56±0.56 91.33±0.15

5 Conclusion
We have empirically demonstrated how the conventional optimization approach to scheduling, which
optimizes a proxy of the real makespan, is brittle to modeling failures in the proxy itself. Our
proposed approach evaluates multiple schedules on the target and thereby achieves more robustness
to discrepancies between the proxy and the target. We demonstrated that GFlownets can sample a
diverse set of candidate schedules that achieve better target performance than alternative methods
which achieve lower diversity. Further, we showed that conditioning on temperature allows a trade-off
between diversity and proxy performance, and that conditional GFlowNets can generalize to unseen
computation graphs. Interesting future directions include scaling up our method to larger graphs and
integrating scheduling heuristics to speed up training.

6



References
[1] Ravichandra Addanki, Shaileshh Bojja Venkatakrishnan, Shreyan Gupta, Hongzi Mao, and

Mohammad Alizadeh. “Placeto: Learning Generalizable Device Placement Algorithms for
Distributed Machine Learning”. In: Advances in Neural Information Processing Systems 32
(NIPS 2019) (2019). URL: https://par.nsf.gov/biblio/10169218 (cit. on p. 10).

[2] Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, and Dale Schuurmans. “Understand-
ing the impact of entropy on policy optimization”. In: International conference on machine
learning. PMLR. 2019, pp. 151–160 (cit. on p. 11).

[3] Réka Albert and Albert-László Barabási. “Statistical mechanics of complex networks”. In:
Reviews of modern physics 74.1 (2002), p. 47 (cit. on p. 11).

[4] Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio.
“Flow network based generative models for non-iterative diverse candidate generation”. In:
Advances in Neural Information Processing Systems. Vol. 34. 2021, pp. 27381–27394 (cit. on
pp. 3, 5, 10, 11).

[5] Yoshua Bengio, Tristan Deleu, Edward J Hu, Salem Lahlou, Mo Tiwari, and Emmanuel Bengio.
“Gflownet foundations”. In: arXiv preprint arXiv:2111.09266 (2021) (cit. on pp. 2, 3, 10).

[6] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. “Machine learning for combinatorial
optimization: a methodological tour d’horizon”. In: European Journal of Operational Research
290.2 (2021), pp. 405–421 (cit. on p. 1).

[7] J. Blank and K. Deb. “pymoo: Multi-Objective Optimization in Python”. In: IEEE Access 8
(2020), pp. 89497–89509 (cit. on p. 11).

[8] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen,
Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. “{TVM}: An automated {End-
to-End} optimizing compiler for deep learning”. In: 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). 2018, pp. 578–594 (cit. on p. 1).

[9] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser, Eunice
Santos, Ramesh Subramonian, and Thorsten Von Eicken. “LogP: Towards a realistic model of
parallel computation”. In: Proceedings of the fourth ACM SIGPLAN symposium on Principles
and practice of parallel programming. 1993, pp. 1–12 (cit. on p. 5).

[10] Tristan Deleu, António Góis, Chris Emezue, Mansi Rankawat, Simon Lacoste-Julien, Stefan
Bauer, and Yoshua Bengio. “Bayesian Structure Learning with Generative Flow Networks”.
In: arXiv preprint arXiv:2202.13903 (2022) (cit. on pp. 5, 10, 11).

[11] Paul Erdős, Alfréd Rényi, et al. “On the evolution of random graphs”. In: Publ. Math. Inst.
Hung. Acad. Sci 5.1 (1960), pp. 17–60 (cit. on p. 11).

[12] Mukul Gagrani, Corrado Rainone, Yang Yang, Harris Teague, Wonseok Jeon, Herke Van
Hoof, Weiliang Will Zeng, Piero Zappi, Christopher Lott, and Roberto Bondesan. “Neural
Topological Ordering for Computation Graphs”. In: arXiv preprint arXiv:2207.05899 (2022)
(cit. on pp. 4, 11).

[13] José Fernando Gonçalves and Mauricio GC Resende. “Biased random-key genetic algorithms
for combinatorial optimization”. In: Journal of Heuristics 17.5 (2011), pp. 487–525 (cit. on
p. 5).

[14] John L Hennessy and David A Patterson. Computer architecture: a quantitative approach.
Elsevier, 2011 (cit. on p. 1).

[15] Jonathan Ho, Ajay Jain, and Pieter Abbeel. “Denoising diffusion probabilistic models”. In:
Advances in Neural Information Processing Systems 33 (2020), pp. 6840–6851 (cit. on p. 4).

[16] Roger W Hockney. “The communication challenge for MPP: Intel Paragon and Meiko CS-2”.
In: Parallel computing 20.3 (1994), pp. 389–398 (cit. on p. 5).

[17] Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. “Stochastic blockmodels:
First steps”. In: Social networks 5.2 (1983), pp. 109–137 (cit. on p. 11).

[18] Edwin SH Hou, Nirwan Ansari, and Hong Ren. “A genetic algorithm for multiprocessor
scheduling”. In: IEEE Transactions on Parallel and Distributed systems 5.2 (1994), pp. 113–
120 (cit. on p. 1).

[19] Oscar H Ibarra and Chul E Kim. “Heuristic algorithms for scheduling independent tasks on
nonidentical processors”. In: Journal of the ACM (JACM) 24.2 (1977), pp. 280–289 (cit. on
p. 1).

7

https://par.nsf.gov/biblio/10169218


[20] Moksh Jain, Emmanuel Bengio, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Bonaventure
FP Dossou, Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang,
et al. “Biological Sequence Design with GFlowNets”. In: International Conference on Machine
Learning. PMLR. 2022, pp. 9786–9801 (cit. on pp. 5, 10, 11).

[21] Shauharda Khadka, Estelle Aflalo, Mattias Mardar, Avrech Ben-David, Santiago Miret, Shie
Mannor, Tamir Hazan, Hanlin Tang, and Somdeb Majumdar. “Optimizing Memory Placement
using Evolutionary Graph Reinforcement Learning”. In: International Conference on Learning
Representations. 2021. URL: https://openreview.net/forum?id=-6vS_4Kfz0 (cit. on
pp. 2, 10).

[22] Yu-Kwong Kwok and Ishfaq Ahmad. “Static scheduling algorithms for allocating directed task
graphs to multiprocessors”. In: ACM Computing Surveys (CSUR) 31.4 (1999), pp. 406–471
(cit. on p. 1).

[23] Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. “Trajectory
Balance: Improved Credit Assignment in GFlowNets”. In: arXiv preprint arXiv:2201.13259
(2022) (cit. on pp. 3, 10).

[24] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng, and Moham-
mad Alizadeh. “Learning scheduling algorithms for data processing clusters”. In: Proceedings
of the ACM special interest group on data communication. ACM, 2019, pp. 270–288 (cit. on
p. 1).

[25] Giovanni De Micheli. Synthesis and optimization of digital circuits. McGraw-Hill Higher
Education, 1994 (cit. on p. 5).

[26] Vinod Nair and Geoffrey E Hinton. “Rectified linear units improve restricted boltzmann
machines”. In: Icml. 2010 (cit. on p. 4).

[27] Aditya Paliwal, Felix Gimeno, Vinod Nair, Yujia Li, Miles Lubin, Pushmeet Kohli, and Oriol
Vinyals. “Reinforced Genetic Algorithm Learning for Optimizing Computation Graphs”. In:
International Conference on Learning Representations. 2020. URL: https://openreview.
net/forum?id=rkxDoJBYPB (cit. on pp. 2, 5, 10).

[28] Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: algorithms and
complexity. Courier Corporation, 1998 (cit. on p. 1).

[29] Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. “Film:
Visual reasoning with a general conditioning layer”. In: Proceedings of the AAAI Conference
on Artificial Intelligence. 2018 (cit. on p. 4).

[30] Michael L Pinedo. Scheduling. Vol. 29. Springer, 2012 (cit. on p. 1).
[31] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. “Proximal

policy optimization algorithms”. In: arXiv preprint arXiv:1707.06347 (2017) (cit. on pp. 5,
11).

[32] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. “Score-based generative modeling through stochastic differential equations”. In:
arXiv preprint arXiv:2011.13456 (2020) (cit. on p. 4).

[33] Leslie G Valiant. “A bridging model for parallel computation”. In: Communications of the
ACM 33.8 (1990), pp. 103–111 (cit. on pp. 5, 11).

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. “Attention is all you need”. In: Advances in neural
information processing systems 30 (2017) (cit. on p. 4).

[35] Zheng Wang and Michael O’Boyle. “Machine learning in compiler optimization”. In: Proceed-
ings of the IEEE 106.11 (2018), pp. 1879–1901 (cit. on p. 1).

[36] Duncan J Watts and Steven H Strogatz. “Collective dynamics of ‘small-world’networks”. In:
nature 393.6684 (1998), pp. 440–442 (cit. on p. 11).

[37] Keyulu Xu, Mozhi Zhang, Jingling Li, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. “How neural networks extrapolate: From feedforward to graph neural networks”. In:
arXiv preprint arXiv:2009.11848 (2020) (cit. on p. 4).

[38] Cong Zhang, Wen Song, Zhiguang Cao, Jie Zhang, Puay Siew Tan, and Xu Chi. “Learning to
dispatch for job shop scheduling via deep reinforcement learning”. In: Advances in Neural
Information Processing Systems 33 (2020), pp. 1621–1632 (cit. on p. 10).

8

https://openreview.net/forum?id=-6vS_4Kfz0
https://openreview.net/forum?id=rkxDoJBYPB
https://openreview.net/forum?id=rkxDoJBYPB


[39] Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron Courville, and
Yoshua Bengio. “Generative Flow Networks for Discrete Probabilistic Modeling”. In: arXiv
preprint arXiv:2202.01361 (2022) (cit. on p. 10).

[40] Yanqi Zhou, Sudip Roy, Amirali Abdolrashidi, Daniel Wong, Peter Ma, Qiumin Xu, Hanxiao
Liu, Phitchaya Phothilimtha, Shen Wang, Anna Goldie, et al. “Transferable graph optimizers for
ml compilers”. In: Advances in Neural Information Processing Systems 33 (2020), pp. 13844–
13855 (cit. on pp. 5, 10).

9



A Proof for Theorem 1

In the following, we will denote FR to be the flow corresponding to a flow function F : T → R≥0

with corresponding reward R. That is, FR : T → R≥0 is a flow function such that for any terminal
state x we have R(x) =

∑
s∈Tx

FR(s), where
∑

s∈Tx
FR(s) =: FR(x) is the total flow at the

terminal state x.
Theorem (Flow Continuity). Let {Ri}∞i=1 be a sequence of positive reward functions such that for
all terminal states x, (Ri(x)/R(x)) → 1 as i → ∞. Then, for any flow FR with reward R, there
exists a sequence of flow functions {FRi}∞i=1 with FRi(s) → FR(s) for all s ∈ T .

Proof. Let {xi}Mi=1 be the set of terminal states and define

FRi(s = (s0, . . . , x)) := FR(s)
Ri(x)

R(x)
(6)

To see that FRi is a valid flow for Ri, we note that FRi ≥ 0 and

FRi(x) =
∑
s∈Tx

FRi(s) =
Ri(x)

R(x)

∑
s∈Tx

FR(s)

=
Ri(x)

R(x)
R(x) = Ri(x)

(7)

for any terminal state x. Finally, for any s ∈ T with terminal state x we have

FRi(s) =
Ri(x)

R(x)
FR(s) → FR(s) (8)

■

Corollary 1. Let Rσi
:= logR(x;m,σi) = (U(x) −m)/σi be a sequence of temperature condi-

tioned reward functions with σi ↘ σ0. Then, for any ϵ > 0 and flow FRσ0 there exists a neighborhood
(σ0, σ0+ δ) containing flow functions FRσ with FRσ (s)−FRσ0 (s) < ϵ for all s ∈ T . Furthermore,
we can approximate FRσ0 with monotonically changing flow functions FRσi .

B Related work

Reinforcement learning for scheduling. Reinforcement learning has been the predominant
machine learning approach to optimize the makespan for computation graph schedules [1, 27, 38].
The rewards used include simple analytical proxies of the makespan [27, 40], but also more refined
proxies which incorporate modeling of memory movements [1]. Khadka et al. [21] directly train on
the target hardware, but consider only a few computation graphs, and do not show generalization to
unseen ones. Addanki et al. [1] use a sophisticated simulator of the makespan which is customized to
the target hardware. Similar to our work, Zhang et al. [38] also construct the schedule piece-by-piece.
Instead of finding a single (local) mode of the proxy, our work proposes to learn the full distribution
over the proxy to improve the robustness against inaccuracies in the proxy.

Generative Flow Networks. GFlowNets have been applied to generating small molecules [4],
Bayesian networks [10], discrete images [39], and biological sequences [20]. We extend its appli-
cation to scheduling, a classical combinatorial optimization problem. Conditional GFlowNets have
previously only been theoretically discussed by Bengio et al. [5]. We enable training conditional
GFlowNets with our proposed log-partition variance loss and empirically demonstrate generalization
to unseen computation graphs. The log-partition variance loss only needs to parametrize the forward
and backward probabilities PF and PB . This is similar to the non-forward trajectory loss mentioned in
the appendix by Malkin et al. [23], which also does not involve learning any state flows, including the
initial flow Z. However, our loss does not mix forward and backward steps from different trajectories
and directly optimizes the consistency of the total flow Z for each trajectory associated with a given

10



computation graph GC . To control the selectiveness of the generator, previous works augment the
reward with a fixed temperature [4, 10, 20]. Instead, we condition the policy neural network on the
temperature term which allows us to tune the selectiveness of the generator at inference time.

C Experiment details

C.1 Candidate samplers

We use the popular open-source library pymoo [7] to implement the BRKGA candidate sampler. Our
PPO implementation is based on algorithm 1 at https://spinningup.openai.com/en/latest/
algorithms/ppo.html, and we follow [31] to implement the entropy regularisation by adding
the entropy term directly to the PPO-clip loss. We decay this entropy term during training similar
to Ahmed et al. [2]. We use the same learning rate for both the actor and the critic, and we decay it
with an exponential schedule.

We train GFlowNets conditioned on a temperature randomly sampled between 0.01 and 1. At
inference, we use 0.005 for the temperature in all experiments.

C.2 Metrics

The graph-edit distance (GED) compares two schedules in their chain-graphs form. In particular,
we can model a schedule for a computation graph, by constructing a chain graph for each device
that specifies the additional precedence constraints we introduce to complete the order in which
the operations are run on each device. The GED is then computed simply by taking the difference
between the adjacency matrices and normalizing it by the total number of edges.

The L2 distance between the start (dinv) times simply takes the start times as assigned by the proxy
model and computes the L2 norm of the difference.

The L2 distance including the device assignment (dsen) additionally concatenates the device placement
to the times.

C.3 Proxy errors: Diversity for robust scheduling

In this experiment, we consider a single real-world graph that has 78 nodes.

The linear memory model [33] computes the delay as a linear function f(m) = am + b of the
memory m with a modeling the amount of data that can be transferred per time and b modeling the
startup delay. In the Bandwidth Limited setting the a term dominates the delay, while in the Latency
Limited setting b has a greater effect.

C.4 Generalization to unseen computation graphs

We generate the synthetic graph dataset from random graph distributions over undirected graphs. To
get DAGs from these graphs, we randomly choose a direction for every edge in a way that produces
no cycles.

We sample the runtimes for each node from the uniform distribution U(0, 1).
For training, we use 1000 different computation graphs, with equally many sampled from the
two random graph distributions: Erdős–Rényi [11], and Layered Graphs [12]. We report test
performances on 50 different computation graphs with equally many sampled from the five different
random graph distributions: Erdős–Rényi [11], Layered Graphs [12], stochastic block model [17],
Watts-Strogatz [36], and Barabási–Albert [3].

C.5 Real World Computation Graphs

The computation graphs in this dataset originate from a diverse set of neural network architectures
with different applications, including for example classification and denoising. We train on 8 real-
world computation graphs of sizes below 100 nodes and evaluate on 4 different computation graphs
of sizes between a dozen and 128 nodes.

11

https://spinningup.openai.com/en/latest/algorithms/ppo.html
https://spinningup.openai.com/en/latest/algorithms/ppo.html


Sub-graph training. Training with a full computation graph might not always be necessary and we
hypothesize that learning on sub-graphs can lead to policies that generalize to the full computation
graph. This can be seen as a form of data augmentation and increases the amount of training
data, while simultaneously improving the training time. To speed up training, we apply the graph
subsampling strategy to randomly pick between 25 to 75 nodes at every training step.

In Table 3, we observe that the conditional GFlowNet retains the benefits of high diversity and
robustness to misspecifications in the proxy even when applied to graphs not seen during training
and of larger sizes. PPO shows unstable training behavior and the reward training curve does not
converge, despite using the same hyperparameters that worked for the previous two experiments. We
conjecture that this is due to the inhomogeneous maximum possible speedup of the training graphs
that lead to different reward scales per training graph. In comparison, GFlowNet still converges as
before without any changes to the hyperparameters.

D Temperature conditioning ablation

In order to increase the likelihood of sampling good schedules, one could introduce a fixed temperature
throughout training and inference. However, we have observed that this procedure is unreliable for
small temperatures. Figure 4 shows generalization performance during training on the synthetic
graph experiment of Section 4.2. As can be seen, choosing a temperature of 0.01 results in a smaller
maximum reward as opposed to training on a higher temperature of 0.03. On the other hand, sampling
a range of temperatures between 0.01 and 1 and evaluating on 0.01 samples the best performing
schedules on unseen computation graphs.

0 20000 40000 60000 80000 100000 120000
Training Steps

2.4

2.6

2.8

3.0

3.2

3.4

Sp
ee

du
p

Training Temperature
[0.01, 1]
0.01
0.03

Figure 4: The impact of different temperature regimes on top-1 generalization performance. Training
on single temperatures prevents learning when set too low (orange). On the other hand, training on a
range of different temperatures (blue) results in better performance when performing inference with
the minimum training temperature.

12


	Introduction
	Robust scheduling
	Generative Flow Networks for scheduling
	Log-partition variance loss
	Temperature-conditioned Topoformer

	Experiments
	Proxy errors: diversity for robust scheduling
	Generalizing to unseen synthetic computation graphs
	Real world computation graphs

	Conclusion
	Proof for Theorem 1
	Related work
	Experiment details
	Candidate samplers
	Metrics
	Proxy errors: Diversity for robust scheduling
	Generalization to unseen computation graphs
	Real World Computation Graphs

	Temperature conditioning ablation

