HloEnv: A Graph Rewrite Environment for Deep
Learning Compiler Optimization Research

Chin Yang Oh® Kunhao Zheng* Bingyi Kang Xinyi Wan Zhongwen Xu
Shuicheng YAN Min Lin Yangzihao Wang

Sea Al Lab
Singapore
{ohcy, zhengkh, linmin, wangyzh}@sea.com

1 Introduction

Research on DL compiler optimization is still facing the following challenges: First, due to their
non-unified implementations, there is no systematic interface that has a wide coverage of optimization
types. Second, most existing works focus on specific sets of passes. Third, current DL compiler
optimization benchmarks use either closed-source or small datasets with a limited set of DL models.
The community has not yet centered its efforts to build a publicly accessible dataset of real-world DL
computation graphs.

We propose the following to address these challenges. First, we develop HloEnv, an environment
for the optimization agent to inter-operate XLA (Leary & Wang,[2017)), a production-quality cross-
framework DL compiler. This environment provides a common representation for any type of graph
rewrites. Second, we present a dataset with broad coverage of High-Level Operations (HLO) graphs
drawn from real-world JAX-implemented machine learning code. We extract these graphs from a
variety of open-source repositories on GitHub which span over a spectrum of various domains. This
provides a more representative dataset of workloads for DL compiler optimization research (details
in Appendix [B). Third, based on a thorough analysis of XLA optimization passes, we determine two
XLA passes with the most significant impact on the runtime of the compiled program. We explore
using simple heuristics and search-based algorithms to further optimize these passes. The source
code for both HloEnv and the dataset is released at|https://github.com/sail-sg/hloenv.

The design of HloEnv points to a potential future where DL compiler engineers only need to develop
and maintain a simple set of rewrite rules and leave the complicated heuristics to machine learning-
generated optimization strategies that generalize to both new DL models and new DL hardware.

2 System Design of HloEnv

2.1 Overview of HloEnv

HloEnv aims to provide a flexible interface that allows for easy control of the XL A optimization
passes and pipelines (details in Appendix [A). Each pass and pipeline in HloEnv can be individually
set to dry-mode to allow us to intercept and control the rewrites they perform.

From the decision-making and control point of view, our system defines a Markov Decision Process
(MDP) M = (S, A, P, R). S stands for the state space, in our case, the augmented graph. From the
state, the agent computes the action in the action space A that decides which rewrite rules to apply.
P describes the transition function of the HloEnv, i.e. the change of the graph when certain rewrite
rules are applied. R is the reward generated from the decision, which in our case is the improvement
in runtime between the old and new graphs.

*Equal contribution

36th Conference on Neural Information Processing Systems (NeurIPS 2022) ML for Systems Workshop.

https://github.com/sail-sg/hloenv

Frontend Optimization Environment

Decision Making Agent
Modified XLA Pipelines

(> Heuristics-based
Methods
augmented HLO graph | |
with alternative nodes Actions Search-based
Methods

Originall XLA Pipelines

—{ Opt|m|zed HLO Module }
Backend Optimizations

Figure 1: HloEnv’s Python interface parses an HLO text file into an HLO graph and loads it into the
frontend optimization environment. A user-specified set of XLLA passes/pipelines is then applied to
the HLO graph. HloEnv executes the original pass/pipeline directly if dry-mode is turned off, while it
captures these rewrites without actually applying to the source graph when dry-mode is turned on. An
augmented graph that contains both the source graph and all the rewrite opportunities is generated for
the user. Using the augmented graph as input, the user can develop various decision-making agents
to decide which rewrites to apply. This process can be repeated until the output HLO graphs stay
unchanged (converge). The user can then use XLA’s backend APIs to generate the final device code.

HloEnv allows to design the action space at both a macro (the order of passes and composition of
passes in a pipeline) and a micro level (decision on whether to apply individual rewrites from a pass).

2.2 The Alternative Graph Representation
® ® ®
VAN
© . Bl A

XLA A (CD) Reroute CD CD
Dry Run [:>
O) e /0
=20 @9 &)
3 4

1 2

0
=
c
3
o

Figure 2: The alternative graph-based optimization pipeline.

Existing XLA passes operate greedily by making an immediate replacement once a rewrite rule
has its match. However, we want to have control over the application of each rewrite. We can
achieve this by intercepting a few core graph modification APIs in XLA. Through this method, we
introduce a dry-mode to XL A, which when enabled, saves the necessary information of all the rewrite
opportunities while keeping the source graph unchanged. The dry-mode generalizes to any type of
graph rewrite, and enables joint consideration of multiple rewrite rules that potentially conflict with
each other. As shown in Fig. 2] When a source graph is processed in a pass with dry-mode enabled,
we capture each rewrite opportunity instead of applying them. We then augment the graph with the
identified rewrite opportunities using a special kAlternative instruction (yellow triangle), resulting
in an alternative graph. This alternative graph serves as the state for the agent. After decisions are
made on which input path to take for each kAlternative instruction in the reroute step (details
in Section [3)), HloEnv applies a pruning step to remove all unused nodes and perform additional
clean-up. We also develop a DAG hash function for de-duplicating the dataset and uniquely labeling
the state when performing a search over the state space (details in |C).

Commonly, two rewrites on the same graph can interfere with each other, i.e., their matched pattern
overlaps. Therefore, in existing XL A pipelines, rewrites happen sequentially in a pre-defined order to
avoid race conditions. In our pipeline, two interfering rewrites are both inserted as alternatives. This
enables our agent to make a more knowledgeable decision based on all available opportunities. Two
or more interfering rewrites can cause the resulting graph to violate the acyclic constraint. Hence we
introduce a cycle detection function to reject all such alternatives.

The generality of our alternative graph representation easily enables dry-mode for any new pass we
create, as long as it utilizes XLA’s core APIs. This is important as it allows us to easily introduce
modified versions of XL A passes into HloEnv, with larger action spaces for an agent or heuristic to
make the rewrite decisions. See our custom General Fusion pass in Section [F.4]for an example.

3 Optimization Strategies

By utilizing HloEnv’s ability to control individual rewrites, we explore alternative optimization
strategies, including heuristic-based and search-based methods. These methods select one input path
for each alternative node, as represented in the GenerateAction method in Algorithm T]below.

Algorithm 1 Frontend HLO Graph Optimization Pass

1: function OPTIMIZATION PASS(GP, pass_id) >G° = (V,E)
2 G° <+ Augment(G°, pass_id)

3 step < 0

4 while G°*° #£ G°** do > Loop while still having alternative nodes
5: a + GenerateAction(G**® pass_id) > Action space AT = Ay x - x Ap
6 G < ApplyAction(GS™, a) > Step 4 & 5 in Fig.
7 GetP L o Augment(GStPTY pass_id)

8: step <+ step+ 1

9: end while
10: return G°**° > The final optimized HLO graph

11: end function

Heuristic-Based Methods Heuristic-based methods use human-designed rules for decisions on
each alternative node in the alternative graph. We present a simplistic pick-first heuristic that always
takes the first choice available on each kAlternative instruction which leads to graph change. This
acts as a baseline for other methods and the original XL A pipeline.

Search-Based Methods Search-based methods explore multiple actions at each graph state while
backtracking is allowed and determine an optimal decision sequence starting from G to an end
graph GV. We exhibit two search-based methods: beam search (BS) and factorized Monte-Carlo tree
search (f-MCTS) (details in Appendix @])

4 Experiments

We develop a tool to generate sub-datasets with different ranges of instruction numbers: 10 to 20
(94332 sub-graphs) and 20 to 40 (3118 sub-graphs). We refer to these 2 sub-datasets as inst-10-20
and inst-20-40. For each of the passes/pipelines analyzed (Algebraic Simplification and Fusion), we
further filter these sub-datasets for our experiments.

4.1 Evaluation and Metrics

We note 7'(G) the runtime, given a graph G. Based on our profiling of the runtime noise, we define
T(G) = min(G.evaluate(10).async_timing). For both pass/pipeline, we compute the runtime
ratio of the final optimized graph w.r.t. XLA p = T(Gmethod)/T(Gx1.a) and report its avg, max
and min across the dataset. We also report the proportion of the graphs with performance better or
worse compared against XL A using a specific criteria. We statistically set p < 0.94 (resp. p > 1.06)
as the criteria for faster (resp. slower) than XL A to avoid false positives caused by noise. We identify
Grethod = Gx1a Using our custom HloDagHash.

Table 1: Results on all sub-datasets of 2 passes. f-MCTS is factorized MCTS with uniform prior.

Runti i % of graphs of

antime rafo runtime ratio Identical

Pass Dataset Method w.rt. XLA antime ral denti
Faster Slower (€qual hash)

Avg. Max. Min. (<0.94) (>1.06)

pick-first 1.000 1.158 0.740 0.1 % 0.04 % 96.2 %

inst-10-20

Alg-Simp BS 0.981 1442 0383 112% 1.0% 34.9 %
2040 PiCkefirst 1000 1197 0883 0.19% 025% 922%

FMCTS 0995 1449 0570 53% 12% 55.5 %

i 1020 Pickefirst 0997 1709 0679 3.1% 03% 26.4 %

General BS 0986 1252 0430 52% 03% 11.7 %
Fusion o io0.qp Pickfist 0989 3313 0738 134% 19% 11.6 %
s f-MCTS 0992 1755 0349 145% 77% 49 %

4.2 Results

Pick First On both inst-10-20 and inst-20-40 (graphs being not exhaustively searchable), a pick-first
heuristic serves as a strong baseline: on average this heuristic is on par with XLA in the Algebraic
Simplification pass, and performs slightly better than XLA when utilized on the General Fusion pass.

Search-based Methods Search-based methods results in a faster average runtime over XL A and
heuristic-based methods on both inst-10-20 and inst-20-40 for the Fusion and Algebraic Simplification
passes. We remove pruning from beam search on inst-10-20 to perform an exhaustive search.

For the Algebraic Simplification pass on inst-10-20, BS-optimized graphs were 1.9% faster than
XLA’s, with the most optimized graphs performing up to 161.1% better (Fig.[7). On inst-20-40,
f-MCTS is on average 0.5 % faster than XL A. Additionally, the most optimized graphs were still
significantly faster than XLA and ran up to 75.4% faster (Fig.[8). In these cases, not performing
certain rewrites either directly improves performance, or allows for subsequent passes to make better
optimizations (e.g., by allowing for a later Fusion pass to fuse more instructions into a single kernel, or
allowing a different cuDNN call to be used). Exemplars of these cases can be found in Appendix [H.1]

For the General Fusion pass, on inst-10-20, BS-optimized graphs were 1.42% faster than XLA’s, with
the best graphs performing 132.5% faster (Fig.[I3). On inst-20-40, f-MCTS has approximately equal
performance to the pick-first heuristic. This is despite the best performing f-MCTS graph running
186% faster than XLA’s (Fig. [I4). One reason for this could be that greedily performing as much
fusion as possible is optimal in most cases. The winning cases are split into two general types: 1)
Trivial fusion cases, where the speed up happens due to the instructions being fused into a smaller
number of kernels and 2) Non-trivial fusion cases, where the number of kernels is the same or fewer,
but changes to the topology of the resulting graph result in a faster runtime. Exemplars of both these
types can be found in Appendix [H.2]

5 Future Research Directions

‘We hope that HloEnv and this HLO graph dataset provide valuable tools to the community to spur
progress in developing DL compiler systems. Building on the baseline presented in this paper, we
believe that a well-designed action space (system research) and a well-trained agent (ML research)
are both essential for this purpose. More specifically, we hope for HloEnv to enable DL compiler
development in the following directions: 1) open up opportunities for more types of decision-making
agents that improve native optimization passes for existing DL compiler systems such as XLA; 2)
reduce the effort needed to introduce new passes replacing the need for human-designed heuristics
with an optimization agent, as shown in our General Fusion case, and 3) lead to the development of
learning-based policies to generate optimization strategies that generalize to new DL models running
on new DL hardware.

References

Riyadh Baghdadi, Massinissa Merouani, Mohamed-Hicham Leghettas, Kamel Abdous, Taha
Arbaoui, Karima Benatchba, and Saman P. Amarasinghe. A deep learning based cost
model for automatic code optimization. In Alex Smola, Alex Dimakis, and Ion Stoica
(eds.), Proceedings of Machine Learning and Systems 2021, MLSys 2021, virtual, April
5-9, 2021. mlsys.org, 2021. URL https://proceedings.mlsys.org/paper/2021/hash/
3def184ad8f4755f1269862ea77393dd-Abstract.html.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In
9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021. OpenReview.net, 2021. URL |https://openreview.net/forum?id=YicbFdNTTy.

Rasmus Munk Larsen and Tatiana Shpeisman. Tensorflow graph optimizations, 2019. URL https:
//research.google/pubs/pub48051/.

Chris Leary and Todd Wang. Xla: Tensorflow, compiled, 2017.

Roman Novak, Lechao Xiao, Jiri Hron, Jachoon Lee, Alexander A. Alemi, Jascha Sohl-Dickstein, and
Samuel S. Schoenholz. Neural tangents: Fast and easy infinite neural networks in python. In 8th
International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?id=Sk1D9yrFPS,

Julian Schrittwieser, loannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy Lillicrap, and
David Silver. Mastering atari, go, chess and shogi by planning with a learned model. Nature, 2020.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, loannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go with
deep neural networks and tree search. Nature, 529(7587):484—489, jan 2016. ISSN 0028-0836.
doi: 10.1038/nature16961.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen
Simonyan, and Demis Hassabis. A general reinforcement learning algorithm that masters chess,
shogi, and go through self-play. Science, 362(6419):1140-1144, 2018. doi: 10.1126/science.
aar6404. URL https://www.science.org/doi/abs/10.1126/science.aar6404.

https://proceedings.mlsys.org/paper/2021/hash/3def184ad8f4755ff269862ea77393dd-Abstract.html
https://proceedings.mlsys.org/paper/2021/hash/3def184ad8f4755ff269862ea77393dd-Abstract.html
https://openreview.net/forum?id=YicbFdNTTy
https://research.google/pubs/pub48051/
https://research.google/pubs/pub48051/
https://openreview.net/forum?id=SklD9yrFPS
https://www.science.org/doi/abs/10.1126/science.aar6404

A XLA Preliminaries

XLA compiles computation graphs in High-Level Operations (HLO) IR format into machine instruc-
tions for different backends. As part of this compilation process, XL A runs a series of passes to
modify the HLO graph. The passes perform rewrites (using pattern matching and replacement) on
the HLO graph to optimize the performance or ensure the correctness of the graph. These passes can
be composed in a pipeline and recursively grouped in a parent pipeline. These passes/pipelines are
run sequentially in a fixed order and can be run either once or repeatedly in a loop until the pass no
longer changes the HLO graph.

B Dataset Information

The goal of our HLO dataset is twofold. First, we want to present a large-scale dataset for training
different computation graph optimization strategies. Second, we want the dataset to serve as an
ideal test-bed against which people could measure the performance of arbitrary computation graph
optimization strategies.

B.1 Dataset Collection

We manually select a list of JAX implemented repositories from GitHub, and harvest the HLO text
files by setting the XLLA_ DUMP_TO flag while running the model. In this way, we dump all the
unoptimized HLO graphs generated during JAX’s Just-In-Time (JIT) compilation process. We then
remove duplicate HLO text files by comparing hash using our HLoDAGHash implementation (see
Appendix [C]for more details), and filter the resulting files to remove the very small ones which have
minimal opportunities for optimization. After the above steps, we can guarantee three properties
of HLO graphs in our dataset: 1) They all come from real-world deep learning models; 2) They all
have different DAG and tensor shapes, and 3) They all provide at least some space for optimization
opportunities. In total, we build a dataset containing 40,711 HLO graphs from deep learning models
defined in 26 distinguished GitHub repositories.

B.2 Dataset Overview and Analysis

5%
36% 20% | 41% 9% 3% [WREZM 0% 14%

-
S
*

. o H e
o

0% 5% 13% 7% 0% 0% 3% 0% 0% 0% 0% 5% 0% 31% 5% 0% 0%
0% 13% 0% 1% 0% 0% 3% 0% 0% 2% 0% 4% 0% 0% 37% 10% 0% 0% 0% 0% 0% 0% 5% 17% 0% 0%

0% 6% 0% 1% 0% 0% 0% 0% 0% 2% 0% 7% 0% 0% 3% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0% 2% 0% 6% 1% 0% 0% 0% 0% 1% 0% 0% 0% 0% 3% 0% 0% [MEEZN 0% 0% 5% 0% 0% 0% 0% 0%

7 0% 15% 7% 2% 1% 0% 0% 1% 0% 1% 7% 12% 10% 0% 11% 15% 5% | 21% 19% 0% | 19% 15% 5% 0% 0% 14%
. & > & I & S 3 o + B o & S @ & i > i & i
g & & ¥ S & F & S G S S A N O
& & & & & & & S S F 3 & < & N N & N A & &
P N & < R S N < <& & o & N & & S S & <&
©® N & & s & & 5 ¢ ¢ o+ K © N ° © &
&S S ¢ $ & & &
& <

Figure 3: Distribution of the sizes of HLO graphs

Our dataset covers a broad range of network architectures, centering around modern, real-world
models in various domains. The GitHub repositories we pick include Vision Transformer (ViT) (Doso}

vitskiy et al.},[2021)), Neural-Tangent (Novak et al.,[2020), MuZero (Schrittwieser et al,[2020), and
&

more. Figure [3|shows that most HLO graphs generated during JAX’s JIT compilation contain less
than 1000 instructions. More than half of the repository set majorly contains a dataset with less
than 200 instructions. We also show a breakdown of top HLO opcodes that appear in our dataset in

Figure[d]

exponential
negate
custom-call

1.3%
reduce

broadcast
22.2%

1.5%
concatenate

1.6%

pad

1.8%
transpose
1.9%
subtract

dot
3.4%

tuple S
3.6%

compare
4%

reshape
7.4%

slice
4.7%
select
5.4%
call

5.4%

multiply
7.4%

Figure 4: Distribution of the Ops in our HLO dataset.

B.3 Sub-Dataset Filtering

Algebraic Simplification The Algebraic Simplification pass is used for both optimization and
correctness purposes. Hence it is possible that modifications to the rewrites applied by this pass result
in a graph that cannot be correctly evaluated on the backend. Of the 94332 inst-10-20 sub-graphs
generated, we filtered out 34000 graphs for which the correctness of the graph was not dependent on
any graph rewrites performed by the Algebraic Simplification pass. Filtering inst-20-40 results in
1619 graphs.

General Fusion Our implementation of a General Fusion pass allows almost any two instruc-
tions/computations to be fused. Additionally, fusion can result in the cloning of computation. As a
result, the action space for General Fusion is significantly larger than for the Algebraic Simplification
pass. To ensure our search algorithms can finish in a reasonable time, we empirically filter graphs
from the sub-datasets with action space less than 10,000 in size after the first optimization pass. Note
that the number of instructions in a graph can significantly increase over multiple rewrite operations
during a search. This filtering leads to inst-10-20 containing 28,507 graphs and inst-20-40 containing
2791 graphs.

C Details on the implementation of the HLoDAGHash Function

We require an HLO graph hash function for de-duplicating the dataset or uniquely labeling the state
when performing a search over the state space. However, the existing hash implementation in XLA
does not satisfy our needs. Its implementation is lacking in two ways which increase the number
of hash collisions: 1) It simply hashes the instructions in the HLO graph in post-order, and does
not recursively consider the structure and connections of each HLO instruction and computation in
the HLO graph; 2) Instruction specific parameters (e.g. the size and stride of an HLO Convolution
instruction) are not considered in the hash of each instruction as well.

Table 2: Commit hashes and GitHub URLSs of open-source repositories we used to generate our
dataset.

GitHub Repo Name Commit Hash URL

BayesNewton e3a7251 AaltoML/BayesNewton

GANs-JAX 099111f lweitkamp/GANs-JAX

brax 730e05d google/brax

deeperwin 5c8d497 mdsunivie/deeperwin

dm_pix 6accc96 deepmind/dm_pix

efficientnet-jax a65811f rwightman/efficientnet-jax

jax-bayes b91432c jamesvuc/jax-bayes

jax-enhance 3a3dd40e isaaccorley/jax-enhance

jax-flows 26dce81 ChrisWaites/jax-flows

jax-md 2b8754a google/jax-md

jax-models ae57505 DarshanDeshpande/jax-models

jax-rl 820cb5d henry-prior/jax-rl

jax-unirep b8048db ElArkk/jax-unirep

jax_muzero b8ab362 Hwhitetooth/jax_muzero

jaxlie 65d6351 brentyi/jaxlie

jaxrl 1286300 ikostrikov/jaxrl

jraph 36071d5 deepmind/jraph

maml_flax a4a8819 gcucurull/maml_flax

mlp-gpt-jax 571ccfo@ lucidrains/mlp-gpt-jax

neural-tangents 5bb274c google/neural-tangents

ott f4dafa8 ott-jax/ott

siren-jax 0806e61 KeunwooPark/siren-jax

i??&EGE1Xtures 4412de7 yuneg11/Scale-Mixtures-of-NNGP

Toy—neurgl—' 3a21d5d8 rasutt/Tgy—peural—

network-in-jax network-in-jax
Information-Fusion-

NuX bd996dd Lab-Umass/NuX

PINN-JAX 56128d9 ASEM00QO@/Physics-informed-

neural-network-in-JAX

Our custom Hl1oDAGHash function builds upon XLA’s hash implementation, but is designed to be a
more powerful hash that additionally accounts for graph topology and the parameters unique to each
instruction. This reduces the chance of a hash collision when determining if a graph has been seen
before, or is identical to another graph.

Implementation The H1oDAGHash algorithm walks the HLO graph, starting from the root instruc-
tion, in Depth-First Traversal order. At each instruction, we take the original XLA hash of that
instruction and additionally hash it with two things. The first is the HLoDAGHash of each operand of
that instruction (unlike the XL A hash which hashes the shape of each operand of that instruction). In
this way, we can ensure that two HLO graphs with the same post-order of instructions, but different
structures, will not have the same hash. The second is that the XLLA hash of each HLO instruction is
further hashed with the attributes specific to that instruction opcode (e.g. the slice starts, limits, and
strides of an HLO Slice instruction). This further decreases the chance of a hash collision between
two differing HLO graphs.

D Details on Alternative Optimization Strategies

D.1 Notations

We note G = (V, E) the HLO computation graph parsed from HLO text file by our utility; G =
(V E) the alternative graph augmented from G,V =V U {d}P, with D kAlternative nodes. In

reinforcement learmng setup, G corresponds to the state. The action space given G (or G) is denoted
as A = Ay x---xAp.Foralld=1,...,D,Ag={k —d Ak € V}and |A4| = in degree(d).
We note an action a = (aq)i_, € .AG We omit the superscript for A9 and note .4 when there is no
ambiguity.

In our sequential decision problem, we use superscript for G and a to denote the search steps: Starting
from a graph G°, we apply an action a” to produce the next graph G*'; we repeat the above for N
steps to get the final graph GV. We note T as the function for calculating the running time of graph
G described in[F3] specifically, Eq. [f]

D.2 Beam Search

For graph G* with action space A, beam search (BS) enumerates all next graph states {GfJrl }llﬁ
and uses a runtime upper bound as pruning rule to discard children violating Eq. [T]in the search tree,
equipping our beam search with adaptive bandwidth.

T(GIY) < a-T(GY).)]

Specifically, we maintain a stack .S with no size limit and a global minimum runtime 71, during the

search. S has one element GV initially. At every search step ¢, we pop from .S the graph G*; we apply

all possible actions a € A to its alternative graph G to obtain new graphs {Gf“} L“ill; we evaluate

the runtime of each new graph and only push it back into S with criteria Eq.

« controls the pruning when runtime degradation happens. The number of new graphs being pushed
back is capped by a pre-fixed expand budget. The search ends when the stack S is empty or a global
timeout is triggered. Beam search becomes exhaustive when we push all new graphs into the stack
(equivalent to setting o = +oc with no expand budget) at every step.

When the search finishes, we extract the graph with runtime 7T},,;,, and its trajectory starting from GV.

Beam search can achieve optimization at the cost of large search space as the number of
kAlternative nodes increases (e.g. for a graph with 10 kAlternative nodes with each node
2 choices, the search space is of size 21V). Therefore, an exhaustive search is only feasible on graphs
with a considerably small number of alternatives.

D.3 Factorized MCTS

To deal with graphs with arbitrary sizes, we base our search algorithm on the widely used (Silver et al.|
2016} 2018} Schrittwieser et al.l 2020) Monte-Carlo tree search (MCTS). However, our computation
graph optimization problem poses new challenges to existing MCTS methods. First, the optimization
spaces differ for each computation graph as the action space varies from search node to search node.
Second, the actions are naturally factorized in our problem, while the upper confidence bounds in
MCTS are usually developed for flattened actions. Third, one search node might have multiple
different parent nodes. Therefore, we propose factorized MCTS (f-MCTS) to address the above
challenges.

Factorized MCTS (f-MCTS) maintains a search tree to decide which action to take to transit from

G' to Gt For a trajectory (G, ..., G"), f-MCTS maintains N search trees, each with root node
G, ...,GN~1. Without loss of generality, we present the algorithm for one search tree with root
node G°.

We note (G, a) the state-action pair and G’ the graph obtained after applying a on G. We define the
reward function as follows:

R(G,a,G") = T(G) — T(G"). 2)

The action value function for G and a = (a1, ...,ap) is represented by Q(G, a1, . ..,ap), which
grows exponentially as the number of alternative nodes increases. To deal with the joint action

space A, we propose to replace the joint Q with a set of marginal Q value function Q4(G, aq) =
Ea,,i2a|Q(G,a1,...,ap)],d =1,...,D. Each Qq(G, aq) represents the expected value if only one
action a4 for d-th alternative node is taken. In this way, we can select actions for different alternative
nodes independently.

During the search procedure, we associate each search node with a computation graph state G.
Each search node maintains a set of statistics {T'(G), {Na(G, aq), Qa(G, aq), Ps(G,aq)}a=1,..D}
representing the running time 7', marginal visit counts N, marginal action value () and factorized
policy P for each of the alternative vertices. For each action a there is an edge (G, a, G') storing the
transition information and the corresponding reward . The search repeats the following three stages
for a given number of budgets.

Selection: We use superscript k to denote the search depth in the tree. The root node is thus given
by G. All simulations start from the same root graph state G° and finish when a leaf graph G* is
achieved or a cycle is formed. For each time-step k along the search path, a joint action a” is obtained
by selecting each afl according to the upper confidence bound (UCB) score described below:

> N(G,bd)+cQ+1>>]

14+ Nu(G,aq)

& Zbd Nd(G7 bd)
aqg = argmax |Q4(G,aq) + Pa(G,a4) —————— | c1 + log .
aq 2

3)
P, is a prior policy while ()4 accumulates knowledge from simulations. ¢; and ¢, are two hyperpa-
rameters to trade off the relative importance of P; and Q4. At the beginning of a search, UCB relies
more on the prior policy but gradually moves its attention to value statistics. In our experiments, we
choose ¢; = 1.25 and co = 19652 following AlphaGo (Silver et al.,|2016).

Expansion: Expansion happens when a computation graph is visited for the first time in the search
tree, i.e., when a simulation terminates. Consider a terminal transition (Gz’l, afﬁl, GZ), a new
node representing G will be created and added to the search tree. Once prior policies {pfi}g’:l
for kAlternative nodes {d}? and a value function vg(G) to obtain the value v’ are given. The
node statistics will be initialized to {Nq(G*, aq) = 0, Qa(G*, aq) = 0, P4(G*, aq) = p4}2_,. The
running time is set to 7¢ = T(G*). The reward for the current transition is also initialized by

R(G*',a*~1,G") = T'~! — T*. Note that, for the expansion of the root note representing G°,
there will not be a reward as transitions exist.

Backup: Each simulation generates a search path {G°, G, ... G*}. The statistics of nodes/graphs
along this path need to be updated in reverse order. Let 7' denote the reward for transition
(Gt1,at=1, GY), and be the discounting factor. The (¢ — k)-step return estimation at k-th step is
given by

-1k

Gk:: Z ,YTTk+1+T+,Y€7kU€’)
=1

where v is the value for G*. For k = /¢,...,1,0 we update the marginal statistics for each
(G',al)a=1,....p as follows:

Nd(Gk, a’“) . Qd(Gk,ak) + Gk

G*. ak) = d d , Vd=1,...,D;

Qd(ad) Nd(Gk,as) (5)
Na(GF,ak) == Ny(G*,ak)+1, vd=1,...,D.

However, the reward and value might have an arbitrary scale in our setting. We propose to normalize
the Q values such that) € [0, 1] to get a stable calculation of the UCB score. To this end, we keep
track of the minimum (Q) i) and maximum (Q),ax) values observed in the search tree. A normalized
Q value is thus obtained by Q = % When we calculate the UCB score in Eq. [3] we are
actually using normalized Q instead of un-normalized ones in Eq.[3]

E Analysis of XLA Optimization Passes

We conduct a pass analysis on the optimization passes in XLA’s frontend to determine their impact
on runtime performance. Thanks to the flexible interface provided by HloEnv, we can easily reorder

10

and disable any pass in our Python analysis script and evaluate its effect on the resulting HLO
graph’s runtime. Without loss of generality, we only consider optimization-focused passes (ignoring
passes strictly for ensuring runtime correctness) and restrict our analysis to NVIDIA GPUs, the most
commonly used backend for existing DL compilers. From this analysis, we select optimization passes
with the most significant impact to explore how changes in their rewrites can potentially improve
performance over XLA’s heuristics (Section 3)).

Overview There are 222 passes in total, of which 143 passes operate on the HLO graph when
compiled for GPU. We ignore correctness-critical passes and select 21 runtime/memory optimization-
focused passes for our analysis. For each of these passes, we utilize HloEnv to remove all instances
of the pass type from the optimization pipeline and measure how this removal changes the runtime of
the resulting HLO graph as compared to a fully optimized HLO graph with all optimization passes
(see Table[3).

Table 3: Analysis on selected XLA optimization passes. A higher runtime ratio indicates that the pass
improved runtime since its absence in the optimization pipeline resulted in a higher relative runtime.

% Affected HLOs Runtime ratio w/ and w/o the pass
Removed Pass/Pipeline %Changed ;72)1119[)63 ((7;11)%%) Avg. Ratio I(ACVI%arEgitcll())
ZeroSizedHloElimination 7.46 0.32 0.46 1.000 1.004
AlgebraicSimplifier 36.85 0.92 5.91 1.012 1.033
DotMerger 5.31 0.03 0.36 1.001 1.019
SortSimplifier 5.35 0.05 0.36 1.001 1.019
TupleSimplifier 5.73 0.08 0.38 1.001 1.021
WhileLoopSimplifier 7.20 0.07 2.24 1.012 1.165
HloConstantFolding 11.24 0.14 0.63 1.002 1.018
ConditionalSimplifier 5.47 0.14 0.42 1.001 1.020
TransposeFolding 542 0.08 0.42 1.000 1.023
AllReduceFolder 5.46 0.16 0.43 1.001 1.024
AllReduceReassociate 5.48 0.13 0.42 1.001 1.023
AllGatherBroadcastReorder 5.54 0.18 0.46 1.001 1.025
CudnnVectorizeConvolutions 5.46 0.15 0.44 1.001 1.023
CublasPadForGemms Pipeline 5.52 0.18 0.46 1.001 1.023
GpuTreeReductionRewriter 5.71 0.21 0.52 1.001 1.024
GemmRewriter 8.56 2.03 1.78 1.047 1.552
GemmBroadcastFoldingRewriter 5.54 0.20 0.44 1.001 1.024
Fusion Pipeline 49.22 0.25 44.61 1.579 2.178
AllGatherCombiner 5.49 0.28 0.46 1.001 1.019
AllReduceCombiner 5.57 0.26 0.53 1.001 1.023
ReduceScatterCombiner 5.59 0.27 0.51 1.001 1.023

Measurement of Performance Impact We analyze the impact on the performance of an optimiza-
tion pass/pipeline on the HLO dataset from two perspectives: the proportion of the dataset affected by
that pass (% Affected HLOs), and the average change in performance as a result of that pass (runtime
ratio w/ and w/o the pass). The results can be shown by a few metrics presented in Table

* the percentage of graphs that have been transformed by the pass (%Changed) as determined
by comparing their HloDagHash;

* the percentage of graphs that have improved/degraded performance (%Impr./%Degr.);
* the average improvement in runtime they result in across all graphs (Avg. Ratio);

* the average improvement in performance specifically for the graphs that change when the pass
is removed, i.e., graphs which the pass affects on (% Avg. Ratio - Changed).

Some passes have a significant impact on performance on the graphs that they affect but only affect a
minimal number of graphs (e.g., WhileLoopSimplifier). Hence these passes have a lower average
difference in the performance change. Due to runtime noise, we evaluate a graph as having improved
performance when the relative runtime ratio against XLA (i.e., the runtime of that graph divided by
the runtime of the fully XL A optimized graph) is less than 0.94, and degraded performance when it is
above 1.06 (see Appendix [F.3|for more details on how we set these limits).

11

Passes/Pipelines of Significance There are two passes/pipelines which have the most significant
impact on the HLO graphs on which they operate. Hence we choose to focus our experiments on
these two passes/pipelines. These are the AlgebraicSimplifier pass and the Fusion pipeline (consisting
of a variety of passes related to instruction fusion). Of most significance is the Fusion pipeline,
which affects the most significant percentage of HLO graphs and results in the largest performance
improvement. AlgebraicSimplifier similarly affects a large percentage of HLO graphs but results in a
more negligible general performance improvement (see Table [3).

Insights Results from Table (3| show that these optimization passes do not always result in a
runtime improvement. For example, removing the GemmRewriter pass results in 2.1% of the HLO
graphs showing more than 6% of runtime improvement. This applies even for a trivial pass like
HloConstantFolding, which seems like it should always be applied. Our pass analysis found cases
where removal of the HloConstantFolding pass resulted in a final graph that ran approximately
two times faster (see Fig. [0]in Appendix [G). This demonstrates that there is much room for further
optimization in many of the passes and pipelines, even at the macro level of deciding whether to run
them on a given HLO graph.

12

F Experiments

F.1 Hardware and Software Environment

We empirically found that competing processes running on the same machine is a major source of
noise in the runtime evaluation of a graph. To get the best estimation of runtime in a real-world
environment, we directly evaluate the runtime of an HLO graph on a clean bare-metal GPU node
with minimal other processes running. The GPU node has two AMD EPYC 7352 24-Core processors
(with hyper-threading 96 cores), 512GB of main memory, and eight 40GB memory NVIDIA A100
GPUs. All tests run on Ubuntu 20.04 with CUDA 11.2, cuDNN 8.1.1, and TensorFlow 2.9.1.

F.2 XILA version

HloEnv, along with all our experiments presented in this paper, was developed from
the following version of XLA (https://github.com/tensorflow/tensorflow/commit/
0bd7a41db27060eaaeb5da4c4572cafba29c6690).

F.3 Profiling an HLO Graph

To evaluate the effectiveness of any given optimization strategy, it is critical to get an accurate
runtime oracle €2 : Optimized_HLO_Module — Runtime. To approximate oracle €2, researchers in
the community either build a cost model or directly evaluate the runtime. The cost model is either
learning-based (i.e. trained from a supervised dataset) (Baghdadi et al.||2021) or rule-based. The latter
requires a large amount of engineering effort as it needs to predict the runtime without evaluation,
e.g. Grappler (Larsen & Shpeismanl [2019) for Tensorflow Graph. On the other hand, although
direct runtime evaluation often suffers from real-world noises, given an environment with sufficient
computing resources where noise can be controlled, it provides a way to do an accurate evaluation
with minimum cost. In this paper, we use the direct runtime evaluation.

To profile the runtime of an HLO graph we need to obtain both the executable and parame-
ters. We obtain the executable by calling the standard compiler provided by XLA while setting
run_backend_only to prevent the re-invocation of HLO passes. For parameters, we randomly gener-
ate N(0, 1) for floating-point parameters and fill const values for other types. A fixed random seed
is used to keep the parameters consistent across the optimization process so that we can verify the
correctness of optimizations.

Reducing timing noise There is random variation in the evaluation timing of an HLO graph.
Additionally, when an executable runs multiple times, the initial run is consistently much slower
than subsequent runs of that executable. To reduce this noise in the evaluation timing, we evaluate
the executable multiple times. The first three runs are treated as warm-up runs and are ignored,
and the executable is then evaluated at least 10 additional times. Experiments showed that running
the evaluation more than 10 times did not significantly reduce the variance in the final determined
runtime. We then take the minimum of the timing results across all runs. We take the minimum of
the results instead of the average due to the half-normal distribution of the timing.

Additionally, we obtain three different measurements of the evaluation timing, with each being
progressively more fine-grained:

* full execution timing: The time measured from the moment the evaluation begins till when
it concludes;

» asynchronous evaluation timing: The time taken from the asynchronous dispatch of the
computation to the moment it returns;

* compute timing: The time spent in nanoseconds for the execution, without accounting for
data transfer.

Experiments showed that the full execution timing measurement resulted in more evaluation timing
noise, while the compute timing measurement was too fine-grained and missed out on some of
the performance improvements as a result of memory-related optimizations. Hence, asynchronous
evaluation timing is utilized as the main timing metric for our experiments.

13

https://github.com/tensorflow/tensorflow/commit/0bd7a41db27060eaae55da4c4572cafba29c6690
https://github.com/tensorflow/tensorflow/commit/0bd7a41db27060eaae55da4c4572cafba29c6690

Thus, the formula for obtaining the runtime formally reads:
T(G) = min(G.evaluate(10).async_timing). (6)

Additionally, it was determined that noise was higher when both GPUs coupled to a single NUMA
node were utilized. Hence when obtaining our experimental results, we ensured that only a single
GPU in each NUMA node was utilized (four out of eight GPUs on the bare-metal system total).

Profiling effects timing noise on evaluation of relative graph performance In our experiments,
we have to frequently evaluate the relative performance of two HLO graphs, for instance in comparing
whether the heuristic-based optimized graph performs better than XL A, or the relative change in
performance when a particular XLA optimization pass is removed from the full optimization pipeline
as seen in Table[3

To determine what relative ratio can be used to determine with confidence that one HLO graph
has faster run-time than another HLO graph, we profile the expected noise seen when evaluating
the relative run-time ratio of two HLO graphs under the same conditions as our experiments (i.e.
only single GPU utilized per NUMA node). This is done by evaluating the same HLO graph twice
and taking the ratio of the first runtime divided by the second runtime. This is repeated 500,000
times to obtain a distribution of the expected range in runtime ratios for a given HLO graph. We
perform this profiling on 10 different graphs, spanning the range of runtimes seen in our HLO dataset
(approximately 25000 ns to 1000000 ns)

From this distribution, we determine upper and lower bounds for the ratios, above/below which we
can say with reasonable confidence that a degradation/improvement in run-time is not due to noise.
This is evaluated by determining the ratios above and below which 99.9 of the data points lie. From
our results, we can see that any run-time ratio < 0.94 and above 1.06 likely represents an actual
change in performance (Fig. [5).

Non-empirical evaluation using HLO graph Cost Analysis The impact of an optimization pass
on an HLO graph can also be estimated by performing an HLO Cost Analysis on the resulting HLO
graph, and seeing how the module changes in the metrics of 1. number of FLOPs, 2. number of
Transcendentals, and 3. Bytes accessed.

F.4 Pass Selection and Modification

We select the Fusion pipeline of passes and the Algebraic Simplification pass to evaluate the perfor-
mance of our alternative optimization strategies. As we have found by a comprehensive pass analysis,
these passes have the most significant impact on performance.

Algebraic Simplification Pass There are five separate Algebraic Simplification passes at different
locations in the optimization pipeline. For our experiments, we selected the third Algebraic Simplifi-
cation pass in the entire pipeline for optimization and disabled the other four Algebraic Simplification
passes. This pass was selected for two reasons: 1) It can be isolated from the passes before and after.
In contrast, the first Algebraic Simplification pass is located in a smaller pipeline that is run multiple
times in a loop and has potential inter-dependency with these other passes. Selecting this pass for
optimization results in a higher percentage of correctness issues; 2) The third Algebraic Simplification
pass is run to convergence, i.e., it runs multiple times until it no longer modifies the HLO graph. This
gives us a larger space for optimization over multiple runs. To obtain a fair comparison, the same four
passes were disabled in the XLLA pipeline. The resulting pipeline was used to obtain the reference
results.

Fusion Pipeline XL A’s Fusion Pipeline consists of various passes (e.g., MultiOutputFusion,
HorizontalFusion, etc.) that fuse different instructions and computations patterns. These passes
are sequentially run in a fixed order. Additionally, they contain many hand-written heuristics that
determine whether a fusion should occur. In our alternative graph-based representation, however,
the philosophy is to keep both alternatives and delay the heuristics to the routing step. Therefore,
we remove heuristic decisions from XLA’s existing pipeline but keep only the rewrite rules. As a
testimony, we introduce a General Fusion pass that is heuristics-free to replace the existing fusion
pipeline. General Fusion has much shorter lines of code than the original fusion passes and provides
a much larger search space.

14

Mean run-time: 24166 ns Mean run-time: 25447 ns

3000
30004 — 0.962 — 0.944
— 1.038 2000 1 — 1.055
2000 A
1000 1 1000 A
0 T T T T 0 T T T T
0.8 0.9 1.0 1.1 1.2 0.8 0.9 1.0 1.1 1.2
Mean run-time: 28606 ns Mean run-time: 29818 ns
— 0.948 3000 - — 0.962
15001 — 1.057 — 1.041
2000 4
1000 A
500 1 1000 4
0 T T T T 0 T T T T
0.8 0.9 1.0 1.1 1.2 0.8 0.9 1.0 11 1.2
Mean run-time: 33514 ns Mean run-time: 37172 ns
— 0.940 3000 4 — 0.969
2000 1 — 1.063 — 1.034
2000 A
1000+ 1000
0 T T T T 0 T T T T
0.8 0.9 1.0 1.1 1.2 0.8 0.9 1.0 1.1 1.2
Mean run-time: 60626 ns Mean run-time: 160943 ns
4000 1 — 0.971 i — 0.987
— 1.026 6000 — 1.013
4000 -
2000 4
2000 4
0 T T T T 0 T T T T
0.8 0.9 1.0 1.1 1.2 0.8 0.9 1.0 1.1 1.2
Mean run-time: 586672 ns Mean run-time: 905120 ns
15000 A — 0.996 — 0.992
— 1.004 10000 4 —— 1.008
10000 A
5000 1 5000 4
0 v v ¥ v v 0 " " " "
0.8 0.9 1.0 1.1 1.2 0.8 0.9 1.0 1.1 1.2

Figure 5: A profile showing the distribution of the runtime ratio noise of 10 different HLO graphs.
The blue and green vertical lines encapsulate 99.9% of the ratios.

F.5 Model Architecture and Running Time

Beam Search The pruning factor « in Eq. [I]is set to 20 to cover most cases.

Factorized MCTS The simulation budget is set to 400. We decay to half (capped by 50) each step
after an action is taken, and produce a new graph along the decision sequence. The budget decay
is based on the observation of the size shrink of action space after the first several steps. The value
function is given by the Monte-Carlo evaluation. We launch 5 rollouts of length 10 based on uniform
sampling. We report the running time of f-MCTS with a uniform prior for reference only, as most
computation is done on the CPU side while only the environment and Monte-Carlo evaluation require
a GPU. f-MCTS with uniform prior takes 50 A100 days on inst-20-40.

15

G Pass Analysis Graph Examples

XLA Optimized Graph without HloConstantFolding Pass

XLA Optimized Graph

— J/WL\L A
—

—

I\Lm i/ I“&*‘;—“’; ——

S

= N

idares = : Nl
T =)

W= ,

T

(a2

I x
! g
PR = o

b — -

Figure 6: No HloConstantFolding pass runtime/XLA runtime = 0.51 (96.1% faster). This graph
is too large to display its details, but the overall structure of both graphs can be seen to be visibly
different. This is an example of how the removal of a simple pass like HloConstantFolding can cause
compounding differences in the final result as the other passes/pipelines are applied.

16

H Search Optimized vs XL A Optimized Graph Examples
H.1 Algebraic Simplification
In these examples, the beam search and f-MCTS optimization strategies outperform XLA by

removing specific graph rewrites that directly impact performance or allow for later passes to better
optimize the graph.

Beam Search Optimized XLA Optimized

Parameter 2
BALA38B2.10)

Parameter

1
BASALINA3210)

Parameter |
| | B8 443811432001

tiply.S

mul
BABAAINE3210)

broadeast3
dimensions-0.4)
BAIBAAILE3210)

N
(woor |
y

Figure 7: BS runtime/XLA runtime = 0.383 (161.1% faster). By not performing some optimizations
during the Algebraic Simplification pass. The reshape instruction before the final broadcast
instruction does not get optimized out, making later fusion passes able to fully fuse the HLO graph
into one computation.

17

f-MCTS Optimized

Ci ion entry_

XLA Optimized

Parameter 0

€]
£64[14050,28,1]{1,2,0}

Parameter 1
£64[14050,28,28]{2,1,0}

copy
64[14050,28,17{2,1,0}

Parameter 1
164[14050,28,28]{2,1,0}

entry_comp ion
Parameter 0
164[14050,28,1]{1,2,0}

Fused expression for fusion
loop fusion
kind=kLoop

1

Parameter
64[14050,28,11{1,2,0}

copy.1
f64[14050,28,11{1,0,2}

~algorithm= ‘

Fused expresgion for fusion

Parameter 0

reshape.44
f64[14050,28,281{2,1,0} 64[14050,281{1,0}

loop fusion
kind=kLoop

Parameter 0
64[14050,1,28]{2,1,0}

broadcast.25
dimensions={0,2}

transpose.2
dimensions={0,2,1}
64[14050,28,281{1,2,0} 64[14050,28,281{1,2,0}

transpose.0
dimensions={0,2,1}
64[14050,28,11{1,2,0}

slice.1
slice={[1:14050], [0:28], [0:1]}
64[14049,28,11{1,2,0}

biteast.1
£64[14049,28]{1,0}

reshape.12
164[14049,28,1]{1,0,2}

reshape.11
f64[1,14049,28,11{2,1,3,0}
reshape.10
£64[14049,28,1]{2,1,0}

1

map.0
Subcomputation: add
dimensions={0,1,2}
64[14049,28,1]{2,1,0}
operand 0= f64[14049,28,1] 0

1

select.0
64[14049,28,11{2,1,0}
operand 0= pred[14049,28,1] true
operand 2= f64[14049,28,1] 0

1

dynamic-update-slice.0
164[14050,28,1]{2,1,0}
operand 0= f64[14050,28,1] 0
operand 2= s32[] 0
operand 3= s32[] 0
operand 4= s32[] 0

lo
pad.1
padding=-1_0x0_0x0_0

164[14049,28,1]12,1,0}
operand 1= fb4[] 0

Figure 8: f-MCTS runtime/XLA runtime = 0.57 (75.4% faster).

preserves the map instruction and batch-gemm custom call.

18

N

multiply.1
f64[14050,28,281{1,2,0}

bitcast.1
64[14050,28,281{2,1,0}

reduce.4
Subcomputation: add
dimensions={1}
f64[14050,28]{1,0}
operand 1= f64[] 0

reshape.43
f64[14050,28,11{2,1,0}

slice.26
slice={[1:14050], [0:28], [0:1]}
164[14049,28,11{2,1,0}

1

select.2
f64[14049,28,11{2,1,0}
operand 0= pred[14049,28,1] true
operand 2= f64[14049,28,1] 0

1

dynamic-update-slice.2
f64[14050,28,11{2,1,0}
operand 0= f64[14050,28,1] 0
operand 2=s32[] 0
operand 3=s32[] 0
operand 4=5s32[] 0

l

slice.25
slice={[1:14050], [0:28], [0:1]}
64[14049,28,11{2,1,0}

The f-MCTS optimized graph

Beam Search Optimized XLA Optimized

Computation entry_computation.clone Computation entry_computation.clone
rameter 1

= Parameter
132[1,2,3,8]{3,2,1,0¢ 132[4,5,6,31{3,2,1,04

Parameter 0
132[4,5,6,31(3.2,1,04

Parameter 2 copy. copy.1
32[1,1,1,1.8]{4,3.2,1,0} 32[4,5,6,3]12,1,3.0} 32[1,2,3.8]{1.,0, Parameter 2 copy
£32[1,1,1,1,8]{4.3.2,1,0} 132(4,5,6,3]12,1,3.0}

Fused expression for fusion
oop fusion

kind=kLoop
Fused expression for fusion

Parameter 0
52[1,1,1,1,81{4.3,2,10} kind=kLoop
e Parameter 0
et 132[1,1,1,1.81{4.32,1,0}

cast.3 Parameter |
dimensions={0.1,2,3.4} 132[4,5,5.81{2,1,3,0}
B32[1,1,1,1,.8]{4.3.2.1,0} tuple-element 0 of cudnn-cony.

0 reshapes
£32(8] e
reshape.1 p
£32[4,1,5,58]1324.0.1}
0
v v broadeast5 5
broadcast.2 multiply.0 dimensions= (4} PSS 400
dimensions={ 1.4} £32[4,1,55,8](3.2.4.0,1} 132[4,1,5,5,8]{3.24.0.1} S
132[4,1,5.5.8]{3.2.4.0,1} 2(4,1,5,5,8] 0.612372398
1 (]
(1 .0
add.0 5.81{3,24.0,1
132[4,1,5,5.81{324,0,1}
0
0
maximum.0
g

compare.0
direction-EQ
pred[4,1,5.5.8]{3.2.4,

compare.0
directic
operand 0~ 13[4,

pred4,1,5,5,8] {3,
operand 0= £32[4,15,

Jo

40,1}
810

select.0
s,

8]13.2.4

copy3
£32[4,1,5,5,81{4,32,1,0}

copy3
£32[4,1,55814,3.2,1,04

ROOT

conv_result
activation
alg

Parameter 1
£2[1238](3.2,1.0}

broadcast.2
dimensions~{}

copy.1
32(1.2.3,8]{1,0.2.3} 32(8]
operand= £32[] 0

window={siz

1
cudnnSconvBi
8112,13,0}, u

](2.1.3.

esul

Figure 9: BS runtime/XLA runtime = 0.71 (40.8% faster). In this case, the beam search optimization

results in a different set of instructions and custom calls.

19

Beam Search Optimized

C ion entry_ ion.clone.clone.clone.clone.clone

Parameter 2 Parameter 0 Parameter 1

$32[64,11{1,0} 32[128,2]{1,0} $32[64,11{1,0}
Fused expresgion for fusion
loop fusion
kind=kLoop

Parameter 1 Parameter 0 Parameter 2

$32[64,11{1,0} 32[128,2]{1,0} $32[64,11{1,0}
J71 / \ J71
ather.0 N gather.1
offset_dims={1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=1 offset_dims={1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=1

slice_sizes={1,2 slice_si s

£32[64,2]{1,0 £32[64,2]{1,0}
v v
reshape.2 reshape.5
£32[64,1,2]{2,0,1} £32[1,64,2]42,1,0}
| £
reshape.0 reshape.4
£32[64,2]{1,0} £32[64,21{1,0}
broadcast.1 broadcast.2
dimensions={0,2} dimensions={1,2}
32[64,64,21{2.1,0} 132[64,64,21{2.1,0}

\ /
0
subtract.0
32[64,64.2]{2,1,0}
0

add.0
32[64,64,2]1{2,1,0}
operand 1= f32[64,64,2] 0.5

XLA Optimized
Computation entry_computation.clone

Parameter 2 Parameter 0 Parameter 1

$32[64,1]{1,0} £32[128,2]{1,0} $32[64,11{1,0}
Y — T— |
gather.5854 g gather.5849
offset_dims={1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=1 offset_dims={1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=1
slice_sizes={1,2} slice_sizes={1,2}

£32[64,2]{1,0} £32[64,2]{1,0}

Fused expression for fusion
loop fusion

kind=kLoop
Parameter 0 Parameter 1
32[64,2]{1,0} £32(64,2]{1,0}
broadcast.3 broadcast.4
¥ : [1 .

{02} {1,2}
£32[64,642]{2,1,0) | £32[64,64,2]{2,1,0}
: 0

subtract.0
£32[64,64,2]{2,1,0}

0

add.0
32[64,64,21{2,1,0}
operand 1= f32[64,64,2] 0.5

ROOT |

Figure 10: BS runtime/XLA runtime = 0.79 (26.6 % faster). By not performing some optimizations
during the Algebraic Simplification pass, later fusion passes can fully fuse the HLO graph into one
computation.

20

H.2 Fusion

H.2.1 Trivial Examples

In these examples, the beam search reduces the number of computations as compared to XLA by
performing additional fusions of instructions and/or computations.

Beam Search Optimized

Computation entry_computation.clone.clone.clone.clone.clone.clone

Parameter 0 Parameter 1
f64[] fo4[]

Fused expression for fugion.2
loop fusion
kind=kLoop

Parameter 0 Parameter 1
f64[] f64[]

N L

divide.0
f64[]

|

broadcast.3
dimensions={}
f64[14050]

ll
multiply.1

f64[14050]
operand 0= constant.3 f64[14050]

ll
subtract.2

f64[14050]
operand 0= f64[14050] 1

Figure 11: BS runtime/XLA runtime = 0.63 (58.7% faster). This is an example where the beam
search finds a more optimized case that trivially involves just performing additional instruction and

computation fusions.

21

XLA Optimized

Computation entry_computation.clone

Parameter 0 Parameter 1
f64[] f64[]

N A

divide.18511
fo4[]

Fused expresgion for fusion
loop fusion
kind=kLoop

Parameter 1
f64[]

|

broadcast.0
dimensions={}
f64[14050]

ll
multiply.0

f64[14050]
operand 0= constant.3 f64[14050]

ll
subtract.Q

f64[14050]
operand 0= f64[14050] 1

Beam Search Optimized

C ion entry_ fon.clone.clone.cl
Parameter 3 Parameter 2 Parameter 4
132[] £32[1,163]{2,1.0} | 132[16,1.3]{2,1.0}
Flised expression for fusin
Toop fusion
kind=kLoop
Parameter 0 Parameter 1

£32[1,163]{2,1,0) | 132[16,1,3]{2.1,0}

X
Parameter 0 Parameter 1 add.2.clone.1
£32[16,163]{2,1.0; | £32[16,16,3]{2,1.0} 132[16,3]{1.0}
0 J]l

multiply.127
132[16,16,3]42,1,0}

tuple.164
(£32[16,16.3], £32[16.3]. 32[16,3], £32[16,3])
operand 1= tuple-clement 0 of fusion
operand 2= tuple-clement | of fusion
operand 3= tuple-clement 2 of fusion

y \\\
| RoOT |
\‘\ 4

XLA Optimized

Computation entry_computation.clone

Parameter 4

Parameter 3 rameter
132[16,1,3{2.1,0}

Parameter 2
132[] 132[1,16,3]{2.1,0}
Fused expression for fusion

loop fusion
kind=kLoop

Parameter 1 Parameter 0
£B2[1,163]12,1,0) | 132[16,1,3]{2,1,0}

Parameter |
132(16,16,3]{2.1.0}

Parameter 0
132(16,16,3]{2,1.0}

0 1

bit
13201

multiply.127
32[16,16,31{2,1,0}

add.0
£32[16,3]{1.0}

cast
3]{1,0}
1
3

tuple.164
(£32[16,16,3], 32(16,3], 32(16,3), 32(16,3])

A

Figure 12: BS runtime/XLA runtime = 0.65 (53.8% faster). A second example is where the beam
search finds a more optimized case that trivially involves just performing additional instruction and

computation fusions.

22

H.2.2 Non-trivial Examples

In these examples, the beam search and f-MCTS optimized graphs outperform the XLLA graphs

despite fusing fewer instructions/computations.

Beam Search Optimized

Computati

entry_

XLA Optimized

Computation entry_ I

Parameter 2 Parameter 3 Parameter 0 Parameter 1
B21284,43 8143210} | | B2[1284438]{432,10} | | $B2[1284438]1{432,10} | £2[1284.4,38]{432,1.0}

Fused expression for fusion.3
loop fusion

in

Parameter 0 Parameter 1 Parameter 2 Parameter 3
£B2(12844381{432,1,00 | | B21284438]{432,1.0) | | B21284438](432,10) | | £32(128,44,3,8]{432,1,0}
§ v

multiply multiply. !
£B21284438]1432.1.0) | | £2[128.44,3,8]{43.2,1.0}

1
(]

add.2
£32[128,4,4,3,81{4,32,1,04

bitcast.3
£32(12848,8](2,1,0§

Fused expressipn for fusion.5
loop fusion

kind=kLoop

Parameter 0
32[128,48,8]{2,1.0}

reduce.3
Subcomputation: add
dimensior 1
£32[128,8]{1,0}
operand 1= 132[] 0

Parameter 2 Parameter 3
32[1284,4,3,8]{4.32,1,05 | | f32[128,4,4,3.8]{4,3,2,1,0}

Parameter 0 Parameter 1
£32[1284,4,3,8]{43,2,1,0} | | 132[1284,4,3,8]{4,32,1,0}

Fused expression for fusion
p fusion
kind=kLoop.

Parameter 0 Parameter 1 Parameter 2 Parameter 3
32[1284,43,8]{4.32,1,04 | | B32[1284,438]{432,1,0] | B32[1284,438]{4,32,1,0} | | 132[1284.4,3,8]{4,32,1,0}

0 ll lu

iply

multiply.1
432,105 | £32(128.4438]14.3.2,1.0}

1
(]

add.0
132[128.4,4,3.8](4.3,2,1,0}

biteast.3

32[128,48,8]{2,1,0}

dmenions (1]
32[128,8]¢1,0}
operand 1= 132[] 0

v
bitcast.2
£32(1281,1,1.81{43,2,1,0}

ROOT

Figure 13: BS run-time/XLA run-time = 0.430 (132.5% faster).

f-MCTS Optimized

Computation entry_computation

Parameter 2
64[5300.1,1201{32.10)

Parameter 3
4(5300,1,120]13.2,1.0}

kLo
Parameter 0 Parameter | Parameter 2
TASS0LI205200) | | OS001L2015.210) | | 4(5300,1,1201132,1.0)
o
i

mulipiy22 negate.29
f64[5300,1,1.201 32,10} 64[5300.1:1.2013.2.10)

negate2s
E4[5300,1:1.20)3,

multply 1853

2
f4(5300,1,1.30]32.10)

Fused cxpresson for fusion 46
Toop fusion

exponenti

ncgates1
BS00L120132,10) | | B4S3001120]1

o
Parameter 2

matiph 36~
4(5300,1,1201132,1.0}

754[5300,
wple-element | of usion 33

negates2 negate 3
SOOI 3210) || BAIS00L20] 32,01

o

add.13 !
153001.1201(3.2..0)

Fused expresi
ooy

o for fusion.44
Loop

Parameter 0
S4(5300,1,1, 20113210}

reduce.12
Subcomputaion: add.
dimensions={1]
54[3300]
operand 1- 164110

bitcast2y
f54(5300.11113.2.1.0)

XLA Optimized

Computation entry_computation

Parameter 2
164[5300,1,1.20]{3.2,1.0}

Parameter 3 Parameter 4
£64[5300,1,1,20]{32,1.0} | | £64[5300,1,1,201{3.2,1,0}

Parameter 0 Parameter |
£64[5300,1,1,201{32,1.0} | | £64[5300,1,1,20]{3.2,1,0}

Fused expresdion for fusion
loop fusion

kind=KLoop

Parameter 0 Parameter | Parameter 2 Parameter 3 Parameter 4
f64[5300,1,1,201{3.2,1,0} | | £64[5300,1,1,20]{3.2,1,0} | | f64[5300,1,1.20{3,2,1,0} | | 64[5300,1,1,201{32,1.0} | | f64[5300,1,1,201{3.2,1,0}

0 1 0
multiply.1
00,1,1.20]3,2,1,0)

!

negate.1
F645300,1,1,20] {3

negate3 multiply.3
164[5300,1,1.20]{3,2,1,04 | | f64[5300,1,1,20]{3.2,1.0}

fo4[53

exponenti negate.d
) || 64[5300,1,1,20) 64[5300,1,1,20]13,2,1,0}

1

multiply.
64[5300.1,1,20}{3.2.1.0}

negate.0
F64[5300,1,1,20]{3.2,1,0}
!
add.0
!

Figure 14: f-MCTS runtime/XLA runtime = 0.349 (186.5% faster).

23

f-MCTS Optimized XLA Optimized

Computation entry_computation Computation entry_computation
arameter 1

SO0} | | PAOOSTaA0) | | 2SBS0 0 Parameter 2 Parameter 3 Parameter 0 P:
B2[1,1003]{21.0} | | B2[11003]{2.10} | | B2(11003](2,1,0} | | f32[1,1003]{2.1.0}

Fubed expresion or fuston 20
Loopaiten fused expression for fusiof
oo

kind-KLoop 0

{
king

Parameter 0 Parameter | powers19
B201,100312,1.0) | | B2ALI03N210) ||| B2AL103112,1.0)
Parameter 4 Parameter 1 Parameter 2 Parameter 3 Parameter 4
B2L13]{2,1,0) | || B2[1,1003]42,1,05 | | $32[1,1003]{2,1,0; | | B2[1,100.3]42,1,0} | | 132[1,100,3]{2,1,0}
1 broadeast
0 J]l 0

Parameter 2
B201,100,3](2.1,0} 3000} T

Parameter 4
£3201,1,31{2,1.0}
operand=£32(] 999.999939

add.1
Parameter 0 power.0 add.0
Fbed xpression o fasion39 £32[1,1.3]{2,1.0} £32[1,1003]{2,10} || £32[1,100.3]{2,1,0}
lop fusion
kind-KLoop o/ \& DD/
2.0 tcast

Parameter 3
£32(1.1003]{2.1.0} subtract.1
132[1,100,3]{2,1,04

Parameter 0
B113){2,1.0}
0

v
e 2

multiply.1
dim ={2} £32(1,100,3]12,1,0}
B2(,10051(2.1,0) | operand 1= F32[1.100.5] 999.999939

broadeast.12

dimensions={2; e amste
BZ[Lmo.!HZSL)D) 32(1,100,3]{2,1.0} 1
0
| g subtract0
mlnrmu 2(1,100,3]{2,1,0}
32[1. wn:mxm 32(1,100,3]{2,1,0}
0
!
Parameter el
£32[1003]{1,0§ Subcomputation: add
dimensions={0}
ra operand 1= 132[] 0
e B0
s
operand 1= f32(] 0
:
log.0
32[1,31{1,0}
>
Figure 15: f-MCTS runtime/XLA runtime = 0.56 (78.6% faster).
f-MCTS Optimized XLA Optimized
=
t Koo
ey
164[1.20]¢1.0}
]
gl
bt Msmmm"u‘y
dvmc“swﬂi?(') bma" o]
64[500,20)¢1,0} \‘M[S(m 201¢1.0} £E41500,1, 112,10}
e
] Todl) e, IASOOLIZ0I32,10) | | TA[SO0 20} 32,10}
— ol
miighdo 5T oty exponentialy muliph3
o b2se | | s 5 nar waao el

C

operand i~ 1471 0

bitcast
S0 1]3.2.1.0)

Figure 16: f-MCTS runtime/XLA runtime = 0.65 (53.8% faster).

24

f-MCTS Optimized

Computation entry_computation

‘ Parameter | H Parameter 2 H Parameter 0 H Parameter 3 H Parameter 4
4702528281210y | | f64[7025.2828](2,10) | | f64[3512,1.28](2,1,0) | | 4351228114210 | | F6A3SI228,1112.1.0}

Fused expressioh for fusion.54
loop flsion

Kind=HLoop

‘ Parameter 0 H Parameter | H Parameter 2 H Parameter 0 H Parameter |
64[702528.281(2.1.0) | | f64[7025.2828](2,10) | | f64[3512,1.28](2,1,0} | | 4351228111210 | | F6A3S1228,1112.1.0}

Parameter § Parameter 6
164[1,28.11£2.1.0} 04[]
Fused cpression for fusion.39
Toop fusion
kind=KLoop
Parameter 2 Parameter 3
164[1,28.11£2.1.0} O[]

0 1
da.

add.4s negatey
f64[7025.28.281{2,1,0} F64[3512,1.28]{2,1,0}

slice.12
slice={[1:7025:2], [0:28:1], [0:28:1]}
64[3512,28,282.1,0

biteas
643512.28](1.0}

east.32
dimensions=10.2}
351228281120}

transpose.14
dimensions={0.2,1}
f64[3512,28,28]{12,0}

.33
2611120}

Parameter §
‘ (f64[3512,28,281{1,2,0}, pred[], 64[3512,28,28]{2,1,0}, pred.

copy2
£64(3512,28,381(2,1,0}
operand= tupie-clement 0 of call. 20667

‘ Parameter 7 ‘
164{7025.28.28]{2,1.0}

ice.20268
slice={[1:7025:2], [0:28:1], [0:28:1]}
164[3512.28.28] 21,0}

cublas-bat
custom_call cublasSgemm"
Tod[2,10}

batc
Ins b

Ihs_contracting_di
ths_b

atch_dim:
di

o 1

add.24
64[3512.28.11{2,1.0}

1
add.25 Parameter 8 Parameter 7
04[3512.25,11(2,1.0} 0}, predl], f64[3512.2828](2,1.03, pred...| | f64{7025,2828](2,10}

Fused expressidn for fusion.46
loop
Kind—KLoop

0

<op slice.20268
f64[351228.38) 2,10} slice={[1:7025:2]. [028:1, [0:28:1]}
ind= tuple-clement 0 of call 20667 T64[3512,2828](2,1,03

Parameter |
f64[3512,28,11{2,1,0}

broadcast.22
dimensions={0,2}
T64[3512,28,28]{3,1,0

Parameter 2
164[3512,28.28] 2,1.0}

reduce.24
Subcomputation: add

64[1.28,1) (2.0}

Parameter 1
£64[1,28,11{2,1,0} f64(]

‘multiply.
64351228

: a
2}
0}
110

dimensions={1}
64(3512.281 1,01
operand 1~ 164 0

dimensions={:
f64[3512.281 1
operand i- fo4]

XLA Optimized

Computation entry_computation

Parameter 5 Parameter 6 eter 0
164[] 1.28){2,1.04

Parameter 3 Parameter 4 Parameter 1 Parameter 2 P
64[3512,28,11{2,1.0} | | F64[3512.28,11{2,1,0} | | f64[7025.28.28](2,1,0} | | f64[702528.28](2.1,0} | | f64[35]

Fusedlexpression for fusion
Toop fission

Parameter 2 Parameter 3 Parameter 4 Parameter 5 Parameter 6 Parameter 7
64[3512,28,11{2,1.00 | | F64[3512.28,11{2,1,0} | | f64[7025.28.28](2,1,0} | | f64[702528.28){2,1.0} | | f64[3512,1.28]{2,1.0}

0 by

adds.
f64[3512,28,1]{2,1,04

add.6. negate.1
£64[7025.28,28)(2,1.0} f64[3512,1.28]{2,1,04

T64[351

biteast.1

T sticed y
64[3512.28.1]{2,1.0} ""““‘}é&fzf I I 164(3512,28){1,0}

inspose.2
dimensions={0.2,1}
164[3512,28,28]{1,2.0

it
6413512,

dimensions=10.2}
f64[3512,28,28]{1,2,0}

broadeast.2
dimensions={0,2}

Parameter 0
1643512,28 282,10} AL 1228281 (.10

iteast. 10
2828](2,1.0}

multiply.2
T64[3512,28,28] {2,1,0}

0

ce3 reduce.4
dd

Subcomputation: a

dimensions—{2}
£64[3512.28) 1.0}

operand 1- 04[]

\o

dd

N

add.3
164[3512.281{1,0}

as
64[3512,28,112,1,0}

Subcomputation: a
dimensions—{1}
£64[3512.28) (1.0}
operand 1- f64{] 0

pad.

padding=0 2 1x0_0_0x0 0.0
F64(7025,28, 11{2.1.0]
operand 1- i64{] 0

Figure 17: f-MCTS runtime/XLA runtime = 0.76 (31.6% faster).

25

	Introduction
	System Design of HloEnv
	Overview of HloEnv
	The Alternative Graph Representation

	Optimization Strategies
	Experiments
	Evaluation and Metrics
	Results

	Future Research Directions
	XLA Preliminaries
	Dataset Information
	Dataset Collection
	Dataset Overview and Analysis
	Sub-Dataset Filtering

	Details on the implementation of the HloDAGHash Function
	Details on Alternative Optimization Strategies
	Notations
	Beam Search
	Factorized MCTS

	Analysis of XLA Optimization Passes
	Experiments
	Hardware and Software Environment
	XLA version
	Profiling an HLO Graph
	Pass Selection and Modification
	Model Architecture and Running Time

	Pass Analysis Graph Examples
	Search Optimized vs XLA Optimized Graph Examples
	Algebraic Simplification
	Fusion
	Trivial Examples
	Non-trivial Examples

