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Abstract

The constant demand of massive data exchange brings our actual networks on theirs
limits. With the aim to optimally configure a wireless network, the collaboration
of antennas with similar behavior can drastically improves their performance.
With the formalism of multi-agents linear stochastic bandit, we propose a novel
clustering approach based on an overlapping ellipsoids test coupled with a bipartite
graph labeling strategy to regroup similar antennas and improve their performance.
Our approach proposes a good recovery of the underlying antennas similarity
graph which improve the overall performance of the network. We demonstrate the
potential of this technique with experiments on synthetic and real data. We also
discuss the impact of the agent policy on the clustering quality.

1 Introduction

Context The increasing demand of massive data exchanges brings our actual networks on theirs
limits. Considering a network of wireless antennas, a promising direction of improvement would
be to allow them to automatically set theirs parameters. An efficient approach would be to allow
collaboration between antennas. The network will then benefit from a wider exploration of parameters
settings. However, the collaboration needs to take place when the group seek to find the –same–
optimal set of parameters. Thus, a challenging difficulty is to group the antennas adequately. In
this paper we study the clustering of collaborative agents in the exploration-exploitation dilemma.
We formalize our contribution by studying the problem of clustering multi-agents linear stochastic
bandit. Linear stochastic bandit is decision making problem where, at each iteration, each agent
needs to choose an action within a set and receive a stochastic reward. The objective is to maximize
the expected value of the cumulative reward.

Related work The linear stochastic bandit has a well developed literature. The setting was first
introduced by Abe and Long [1999], Auer [2002]. The corresponding algorithms could be divided in
two parts: the cumulative reward maximization ones [Li et al., 2010, Abbasi-Yadkori et al., 2011]
and the pure exploration setting for which the most rewarded action need to be estimated regardless
of the expenses during this exploration phase [Hoffman et al., 2014, Xu et al., 2018]. The multi-
agents setting was widely study the stochastic linear bandit [Ban and He, 2013, Gentile et al., 2014].
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Recently, the clustering of agents regained in interest [Gentile et al., 2014, Nguyen and Lauw, 2014,
Ban and He, 2021, Moradipari et al., 2022]. However, for each of theses contributions, the criterion
for clustering the agents (i.e. the antennas) does not take into account the exact confidence ellipsoid
toward their own unknown bandit parameter (i.e. their own optimal antenna settings).

2 Setting

Modeling We consider a set of K vectors (xk)Kk=1 in Rd modeling the set of possible parametriza-
tion of the antenna. The N antennas are divided in –two clusters– labelled with l ∈ {0, 1}, we
denoted by li the label for each antenna. Each cluster has an unknown bandit parameter θl (i.e. the
shared optimal parameter setting). At each iteration t, each antenna i chooses an arms ki,t, following
a policy π, and observe the reward ri,t = θ>l xki,t + ηi,t (i.e. the effect of the communication
quality). We suppose that, for each antenna i, (ηt)Tt=1 are conditionally R-subgaussian. The objective
is to maximize, in T rounds, for each antenna, the expected cumulative reward or equivalently to
minimize the regret ri = E

[∑T
t=0 maxk θ

>
li
xk − ri,t

]
. Classical bandit policy π uses the matrix

Vi =
∑T
t=0 xki,tx

>
ki,t

to estimate the unknown bandit parameter θ̂i. At each iteration t, a network
controller C manages the information sharing between antennas. As a baseline we consider the
decentralized controller Cdec which does not share any information between antennas as described
by Algorithm 1.

Clustering module We introduce a novel clustering controller Cclu. At each round t, the controller
estimates the underlying antenna similarity graph G with N vertices and the corresponding adjacency
matrix denoted G, label each vertices (antenna) and shared the observations between antennas within
the same cluster. Each edge of G, {i, j}, are binary weighted taking 1 if the two confidence ellipsoids
of the unknown bandit parameter estimation of the two antennas are overlapping, 0 if not. At each
iteration, the controller estimates the edge value between each pair of antennas. To this aim, we take
advantage of the ellipsoid overlapping test introduce in Gilitschenski and Hanebeck [2012]. To avoid
clustering error, we keep a track of the local observations of each antenna –without sharing– to base
the overlapping test on it. The test detects the overlapping if the minimum of a convex function fi,j
is negative. This function involves the pair of local unknown bandit parameter estimations θ̂i

loc
and

θ̂locj , the local observation matrices V loc
i and V loc

j along with their local confidence level εloci and
εlocj . The confidence level of the ellipsoids could be tightly derived from Abbasi-Yadkori et al. [2011].
Note that, in contrast, the policy π is based on the shared observations too increase the performance
of the antenna. Following the update of the matrix G, we label the vertices to cluster the antennas.
In this contribution, we make the hypothesis of –only two underlying clusters among the antennas–.
With this hypothesis, we simply apply a coloring algorithm Asratian et al. [1998] on the assumed
bipartite G graph. Once all the antennas have a label, they share their observations within their cluster.
The overall procedure of the clustering controller is described in Algorithm 2.

Algorithm 1: Decentralized controller algorithm
Input :T , a policy π

1 initialization: t = 0 ;
2 repeat
3 % Choose a parameter setting to explore for

each antenna
4 for ∀i ∈ {1..N} do
5 Apply the policy π
6 until while t < T ;

Algorithm 2: Clustering controller algorithm
Input :T , a policy π

1 initialization: t = 0 ;
2 repeat
3 % G estimation
4 for ∀(i, j) with i, j ∈ {1..N} do
5 Edge-

(i, j) = 1 if minλ fi,j(λ) < 0 else 0
6 % Coloring of G
7 Apply the coloring algorithm on G
8 % Choose a parameter setting to explore for

each antenna
9 for ∀i ∈ {1..N} do

10 Apply the policy π with the shared
observations

11 until while t < T ;
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Figure 1: Evolution of the average estimation error
of the graph G. The error is defined as the `2-norm
of the difference between the estimated and the true
adjacency matrix G. The solid line corresponds to the
average on the number of trials and the transparent line
represent the standard-deviation across trials. The x-
axis is logarithmic.

Algorithm 1 The algorithm of the decentralized controller which do not shared any observation
between antennas. – Algorithm 2 The algorithm of the clustering controller which shared the
observations between antennas of the same cluster. At each iteration, the controller re-estimates the
underlying graph G and labels each antenna.

Remarks Several notes could be done. First, by considering only the observations of the antenna
–without sharing–, if the arms (xk)dk=1 spawn Rd and the noise is centered, the estimation of the
unknown bandit parameter is unbiased with the ordinary least square error. This means that, after a
certain iteration, all the ellipsoids should departure one from each others. Second, the choice of policy
π is determinant for the estimation quality of the adjacency matrix G. The more the policy explores
all the dimension of the problem, the more the confidence ellipsoids are reduced which make them
departure from each others if the corresponding antennas do not belong to the same cluster. Third,
Our approach has no constraint on the policy π, this means that our technique can be coupled with
policies such as LinUCB Li et al. [2010], LinGapE Xu et al. [2018] or E-Optimal Design Boyd et al.
[2004].

3 Experiments

We demonstrate the benefit of our clustering approach with synthetic and real data experiments. All
the results are reproducible with the package Bandpy1 along with the repository2 to reproduce the
figures of this paper.

Synthetic data We first validate the proposed approach on synthetic data to demonstrate the gain
achieved by clustering the antennas together. We consider the scenario of N = 20 antennas equally
divided in two clusters with their corresponding unknown bandit parameter θ1, θ2 ∈ Rd, with d = 15,
drawn randomly from a centered and normalized multivariate Gaussian distribution. Similarly, we
generate K = 10 arms. The noise distribution is also a centered and normalized Gaussian. We
couple our clustering method with the LinUCB Li et al. [2010] algorithm to observe the effect of our
approach on the regret minimization. We consider T = 100 total iterations to properly underline the
different phases of the algorithm and fix the α-LinUCB parameter to 0.1. The agents start to shared
their observations at the iteration m = 100. We run the experiment 14 times to average the evolution
of the mean –across agents– regret

Figure 1 depicts the evolution of the average –across trials– estimation error of the graph G. The error
is defined as the `2-norm of the difference between the estimated and the true adjacency matrix G.
The x-axis is logarithmic and correspond to the number iteration t starting on the observations sharing
at t = m. We observe a decreasing of the estimation error which converge in average to a constant
error. Considering the remark 1, we explain that constant error by a number of total iterations value
T set too low, which however underlines how conservative but slow our graph estimation is.

Figure 2 displays the regret minimization for the baseline –without the clustering– and our approach.
We notice that both regrets decreases. However, when the antennas from the clustering controller
starts sharing their observations at t = m it produces a faster minimization of the regret. Remark that
the regret values does not start from the same point since the arms and the unknown bandit parameters
are drawn randomly which makes the worst regret different for each cluster.

1Available at https://github.com/hcherkaoui/bandpy/
2Available at https://github.com/hcherkaoui/neurips_2022_workshop/
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Figure 2: Evolution of the average regret com-
parison between the clustered and decentral-
ized controller. The solid line corresponds to the
average on the number of trials and the transparent
line represent the standard-deviation across trials.
The x-axis is logarithmic.

Figure 3: Evolution of the average regret com-
parison between the clustered and decentral-
ized controller. The solid line corresponds to the
average on the number of trials and the fine trans-
parent line represent the small standard-deviation
across trials. All the axes are logarithmic.

Real data To demonstrate the performance of our approach on real data. For the sake of replicability,
we consider the –public– dataset MovieLens3. We retain the N = 15 users –agents– with the highest
number of ratings and ensure that each movie was rated by all the retained users, by doing so we
obtain K = 19 movies –arms–. At each iteration, the agents choose an arm which corresponding
reward will be fetched from the dataset with a centered Gaussian noise of variance σ = 4 is added.
We couple our clustering method with the LinUCB Li et al. [2010] algorithm to observe the effect of
our approach on the regret minimization. We consider T = 300 total iterations and fix the α-LinUCB
parameter to 0.1. The agents starts to shared their observations at the iteration m = 30. We run the
experiment 7 times to average the evolution of the mean –across agents– regret.

Figure 3 exhibits the regret minimization for the baseline –without the clustering– and our approach.
We notice a slightly better regret minimization for the cluster controller. However, as opposed to
Figure 2, we do not distinguish a steep change in the regret minimization once the agents shared their
observations. Thus, the effect of the sharing in that case is not clear and a possible explanation is that
the hypothesis of two main clusters in the agents is too crude.

4 Conclusions

Conclusion In this work, we have introduced a clustering approach based on the estimation of the
underlying graph that describe the similarity between antennas. We took advantage of an overlapping
ellipsoids test and propose to use a simple bipartite graph labelling to recover the clusters. Despite
the limitation of two underlying clusters our approach offers a flexible usage with different bandit
policies. We demonstrate the potential of our approach with experiments on synthetic and real data.

Discussion Several aspects remains challenging. One of the difficulty with our approach is to
label the antennas in our underlying graph. With only two clusters a coloring algorithm suffices to
label accurately. However, an obvious extension would be to consider more than two clusters which
makes the labelling not trivial. Moreover, as underlined in this paper, the quality of estimation of the
underlying graph heavily depends on how well all the dimensions of the problem are explored. This
creates a dilemma since most of the state-of-the-art policies focus on the most uncertain directions of
the problem. A potential improvement would be to constraint the policy to reduce the uncertainty in
the direction of every eigen-vectors of the each ellipsoids to improve their separation.

3Available at https://grouplens.org/datasets/movielens/
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