External Memory Is All You Need: Tiny Deep
Learning on MCUs

Sulaiman Sadiq’ Jonathon Hare' Simon Craske!
ss2n18@soton.ac.uk jsh2Q@ecs.soton.ac.uk simon.craske@arm.com

Partha Majit Geoff Merrett'
partha.maji@arm.com gvm@ecs.soton.ac.uk

T University of Southampton, United Kingdom
¥ ARM Research, Cambridge, United Kingdom

Abstract

The majority of works in TinyML focus on deploying models within size constraints
of fast but limited internal storage and memory. While external alternatives are
typically ignored, recent empirical work showed that models deployed with slower
external memory combined with overlaying techniques outperform internal memory
approaches in accuracy and, somewhat surprisingly, latency. We perform an
in-depth analysis to explain these findings and further motivate efficient model
design for MCUs. We find that models designed to fit within internal storage
constraints lie beyond a point of diminishing returns where accuracy improvement is
achieved at the cost of significant extra computation, which is focused in inefficient
operations leading to high latency. We harness cheap external memories to alleviate
internal storage constraints and further propose an efficient overlaying strategy in
TinyOpsV2 with up to 10% lower latency. Using our insights, we deploy efficient
models achieving 6.7% higher accuracy and 1.4x faster inference latency than
internal memory approaches. Additionally, we outperform prior works utilising
external memory with 2.9% higher accuracy, setting a new state of the art in
TinyML ImageNet classification. Our work suggests using external memories is
the way forward for tiny deep learning on MCUs.

1 Introduction

The recent success of Deep Neural Networks (DNN5s) [4, 15, [11] combined with the increase in IoT
devices [6] has led to the development of the field of Tiny Machine Learning (TinyML) which aims
to develop models and frameworks suitable for inference locally on the microcontroller (MCU) based
IoT devices. The conventional approach that most works adopt is to squeeze the largest model into
fast but limited internal storage (/2048KB Flash) and memory (/512KB SRAM). Existing works
include quantisation, neural architecture search (NAS) or scaling down width or input resolution of
existing mobile models to meet the devices on-chip constraints [8 [7, [2, [10} [1]. External memories on
MCUs are typically ignored due to associated energy and latency overheads which can be up to 2x
higher. Recent work [10] has however empirically shown that external memory based approaches
combined with overlaying techniques are better in performance and energy efficiency which questions
whether considering only internal memory for tiny deep learning is the optimal approach.

We perform a systematic analysis of architectures derived from the mobile search space for the internal
and external memory design spaces in addition to the operations (Conv, 3x3, 5x5, 7x7 DepConv) in
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Figure 1: Accuracy vs. MACs curves drawn by fixing width multiplier and increasing input resolution
with widths chosen for diverse storage constraints. A ProxylessNAS model scaled down to width
0.50 and resolution 128 is referred to as prox-w0.50-r128. Beyond the point of diminishing returns,
increasing resolution from prox-w0.30-r112 to prox-w0.30-r176 according to F746 MCU constraints
achieves higher accuracy (7%) at the cost of significant extra MACs (19M). In comparison, prox-
w0.50-r112 achieves 2% higher accuracy with SM less MACs. Similarly, NAS based architectures
derived under internal storage constraints are sub-optimal compared to higher width architectures.

the architectures to explain these findings and motivate future model design for deep learning on
MCUs. We show that trying to extract maximum accuracy under internal storage constraints leads to
deployment of degenerate architectures. We alleviate the internal storage constraint by using slower
but plentiful external memories and accelerate the inference latency with the 10% faster overlaying
strategy of TinyOpsV2. We deploy efficient models from the TinyOpsV2 design space to achieve
record ImageNet performance with up to 6.7% higher accuracy and 1.4x faster inference latency.

2 Design Limitations of Internal Storage and Memory

We analysed MCU models (MCUNetV1/2) derived for internal memory and mobile models (e.g.
EfficientNet, ProxylessNAS, MNASNet, MbV2/3) which were scaled according to the diverse
internal storage (Flash) and memory (SRAM) constraints of MCU devices including L552 (192KB
SRAMY/512KB Flash), F469 (256KB/1MB), F746 (320KB/1MB) and the H743 (512KB/2MB) by
ST microelectronics. The storage and memory requirement dictated by the parameter count and
tensor sizes were controlled via channels or width of the model and input resolution respectively. A
ProxylessNAS model scaled down to width 0.50 and resolution 128 is referred to as prox-w0.50-r128.

Diminishing Returns:  Our analysis revealed that for any particular width multiplier imposed by
internal storage constraints, there is an input resolution for which that width multiplier is optimal.
We term this as the point of diminishing returns as increasing input resolution beyond this point
when scaling existing mobile models or specialising architecture (MCUNet) under internal storage
constraints increases the computation significantly for a minor accuracy gain. This can be observed
in Figure [T| where ProxylessNAS scalings and NAS based MCUNet architectures are outperformed
by higher width scalings. However, the constraint of internal storage cannot accomodate the higher
widths. On the other hand, when reducing the complexity of the network to meet a certain MAC
budget, we observe that for a high width multiplier with lower resolution, the accuracy drops
significantly for a minor decrease in computation compared to a better scaling with the same MACs
which advocates for a balanced selection of the width and input resolution.

Skewed Scaling of Computation: We found MAC spon1 = 2% x R? chn (1)
that uniformly scaling down width of models 90 2

derived from the mobile search space concen- MACSconve = a”f” X R°ECinCout  (2)
trates computation in DepConv operations. This MACsgepcons = af? x RPEC;, K> 3)
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Figure 2: Left: Structure of MobilelnvertedConv block. The blocks have 1x1 Conv and DepConv
operations with varyiable filter sizes. Right: Latency of operations used in MobilelnvertedConv
blocks with varying complexity (MACs) sampled from scalings of mobile models. We find that 1x1
Convs are more efficient than DepConvs. Within the DepConv operations, 3x3 are the most efficient.

is explained by looking at the structure of the MobileInvertedConv blocks (Figure [2) which are
cascaded together to form the models and perform 95% of the total computation in the model. For
some width and resolution multipliers, o, 5 < 1 respectively, the computation (MACs) performed
in operations of the MobilelnvertedConv block can be calculated as in Equations |I| - |§| where R, E,
Ciy and Cy,,; are the input resolution, expansion ratio and input and output channels respectively.
As shown, lowering the width through a uniform multiplier, o, quadratically decreases computation
by a? in Conv operations, while decreasing only linearly by « in DepConv operations. This has
the effect of concentrating a larger percentage of computation in DepConv operations which are
less efficient than Conv operations as shown in Figure[2} This leads to lower width scalings having
high inference latency compared to higher widths under the same MAC budget. We observed the
same behavior in EfficientNet, MNASNet and MbV3 scalings as well as other inference frameworks
(STM32CubeAl, TFLite, TinyOpsV2). We note that even though higher width scalings would have
the lowest inference latency, they would have low accuracy as discussed in the previous section which
leads us to deploy balanced scalings in Section ]

3 External Memories are All You Need

External Memories and TinyOpsV2 In our work, we propose alleviating the internal storage and
memory constraints using external alternatives which are already available on MCUs so provide an
efficient way of bypassing the constraints. We improved upon the overlaying approach of [10].which
performs inference from slow external memory with internal-memory like latency. Firstly, we
modified the buffer allocation strategy so that any unused SRAM is allocated to the buffers used for
filter overlaying. This allowed overlaying of more filters in the network from slower external storage
to internal memory and reduced latency up to 10%. Secondly, for devices with larger cache, such
as the H743 with 16KB cache, we did not observe any benefit of overlaying filters hence this was
disabled. In the interest of space we focus only on key differences and encourage the reader to refer
to [10] for further information on the TinyOps overlaying strategy.

4 Experiments and Results

Model Deployment: We compare performance of models in the internal and TinyOpsV2 design
space on ImageNet classification. We used standard MCUs (F469, F746, H743) used in TinyML,
supplemented with 8MB of External Flash and SDRAM. Further details can be found in Appendix

Models were deployed with Tensorflow-Lite Micro (TFLM) and TinyOpsV2 with post-
training INTS8 quantisation. Due to unavailability of the MCUNet inference framework, MCUNetV1
models were deployed with TinyOpsV2. We used our insights to deploy balanced scalings of the
MbV3 architecture which used only efficient 3x3 DepConvs and 1x1 Convs (Figure 2).



Table 1: Models from the TinyOpsV2 design space outperform MCUNet designed for internal
memory. Additionally, we use our insights to deploy balanced scalings of the MbV3 architecture
to outperform MNASNet architectures. MCUNetV2[9] statistics were taken from authors papers as
models weren’t available. Models marked as (Repr.) are reproduced by us.

DESIGN MACs PARAMS Acc LATENCY

PLATFORM MODEL SPACE ™M) M) QAT (%) (MS)
MCUNETV1-F469-INT8 8] (REPR.) INTERNAL 67.3 0.73 N 59.47 3022
MNASNET-Ww1.00-rR080 [10] (REPR.) TINYOPSV2 48.2 4.38 N 60.83 2146
MBV3-w0.75-R128 (OURS) TINYOPSV2 43.5 2.49 N 62.58 1460

F469 MCUNETV2-F469 [7] INTERNAL 119 < Y 649 -
MBV3-w1.00-R160 (OURS) TINYOPSV2  111.3 3.96 N 68.19 3942
MCUNETV1-F746-INT8 [8] (REPR.) INTERNAL 81.8 0.74 N 61.47 1838
MNASNET-W1.00-r128 [10] (REPR.) TINYOPSV2 103.5 4.38 N 68.01 1367
F746 MBV3-w1.00-R160 (OURS) TINYOPSV2  111.3 3.96 N 68.19 1307
MCUNETV1-H743-INT8 [8] (REPR.) INTERNAL 125.9 1.7 N 67.9 1158
MNASNET-W1.00-R144 (OURS) TINYOPSV2  142.8 4.38 N 69.55 1009

H743 MCUNETV2-H743 [7] INTERNAL 256 <2 Y 71.8 -
MNASNET-w1.00-rR192 (OURS) TiINYOPSV2  231.3 4.38 N 72.02 1625

Table 2: Models from external design space have lower energy per inference and lower latency.
Models in internal memory design space were deployed with Tensorflow Lite Micro (TFLM).

DESI MA PARAM A RRENT POWER ENERGY
PLATFORM MODEL SIGN Cs S cc Cu N oW NERG

SPACE (M) M) (%) (MA) (MW) mJ)

F469 PROXYLESS-W0.30-R152 INTERNAL 23.75 0.72 51.96 51 255 308
MBV3-w0.50-r112 TINYOPSV2  16.28 1.33 52.37 74 370 250

F746 PROXYLESS-W0.30-R176 INTERNAL 31.5 0.72 53.68 146 730 501
MBV3-w0.55-R128 TINYOPSV2  27.7 1.55 58.29 162 810 373

Accuracy and Latency: We achieve 6.4% higher accuracy and 1.4x lower latency than MCUNetV 1
on the F746 with the MbV3-w1.00-r160. Even though the MbV3-w1.00-r160 has higher MACs,
the latency is lower due to computation in more efficient 3x3 DepConv operations. On the F469,
MbV3-w0.75-r128 outperforms MNASNet-w1.00-r080 since it is a better scaling where the width
is not too high for the resolution. For the H743, we used scalings of MNASNet since MbV3 was
limited by maximum accuracy of 70.5% achieved by the base model. Compared to MCUNetV2 the
mobile models yield up to 4% higher accuracy under the same MAC budget without quantisation
aware training (QAT).

Energy Efficiency: We compare the required energy per inference of internal and external memory
based solutions. We can observe in Table [2] that even though TinyOpsV2 has a higher power
consumption, this is easily offset by the lower latency of the efficient models and scalings in the
TinyOpsV2 design space leading to lower energy per inference in addition to higher accuracy.

5 Conclusions

In our study we showed that the constraint of internal storage leads to deployment of degenerate
architectures which yield sub-optimal accuracy and latency. We proposed an efficient alternative of
using available external memories with the overlaying strategy of TinyOpsV2. We outperformed
prior internal memory approaches with up to 6.7% higher accuracy and 2.3x faster inference latency
in addition to achieving 2.9% higher accuracy and 1.5x faster latency than previous external memory
approaches to set the new state of the art in TinyML ImageNet classification. We demonstrate how
it is possible to squeeze more performance out of low-powered MCUs for edge inference. There is
ofcourse, the potential for misuse of this technology which could lead to negative societal impacts,
however these are rather application dependent. We note that we manually selected scalings and
architectures via hit and trial which might be sub-optimal and further performance might be achievable
via NAS in the external memory design space. Nevertheless, we observed that architectures we
deployed significantly outperformed prior approaches, suggesting that external memory based model
design is the way forward in TinyML.
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6 Paper Checklist

Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? Yes. We show limitations of internal memory in Section Zand they can
be overcome through external memories in Section [3| with supporting experimental results in ]

Have you read the ethics review guidelines and ensured that your paper conforms to them?
Yes.

Did you discuss any potential negative societal impacts of your work? Yes (Section[5).

Did you describe the limitations of your work? Yes. As discussed, in Section [4] we use our
insights to manually identify better architectures. However, other approaches, e.g. NAS algorithms,
might be able to yield better performance.

Did you state the full set of assumptions of all theoretical results? Yes. We calculate how
computation is scaled in architectures assuming that they are derived from the mobile search space

with the structure of Mobile Inverted Conv blocks as shown in Figure 2]in Section 2}

Did you include complete proofs of all theoretical results? Yes. The calculations for how
computation is scaled in architectures are in Section 2}

Did you include the code, data, and instructions needed to reproduce the main experimental
results (either in the supplemental material or as a URL)? No. Due to constraints from our
funding sponsors, we are unable to share code.

Did you specify all the training details (e.g., data splits, hyperparameters, how they were
chosen)? Yes. These are given in Appendix [B]

Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? No. Due to compute constraints and the time required for ImageNet training we

trained every architecture only once with the same set of hyper-parameters.

Did you include the amount of compute and the type of resources used (e.g., type of GPUs,
internal cluster, or cloud provider)? Yes. This is given in Appendix [B]

If your work uses existing assets, did you cite the creators? Yes.
Did you mention the license of the assets? Yes
Did you include any new assets either in the supplemental material or as a URL? No.

Did you discuss whether and how consent was obtained from people whose data you’re us-
ing/curating? N/A.

Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? N/A.

Did you include the full text of instructions given to participants and screenshots, if applicable?
N/A.

Did you describe any potential participant risks, with links to Institutional Review Board (IRB)
approvals, if applicable? N/A.

Did you include the estimated hourly wage paid to participants and the total amount spent on
participant compensation? N/A.



A Deployment

A.1 Platforms

We used the STM32F746G Discovery, STM32F4691 Discovery and STMH7431 Eval boards for
deployment in our experiments. We use ARM Cortex-M class devices including M33, M4 and
M7 based devices. We used off-the-shelf development boards with SDRAM as volatile memory
connected on the FMC interface. For non-volatile load memory we use NOR Flash on the QSPI
interface, up to 16x larger than the internal flash as shown in Table[3]

Table 3: Cortex-M based off-the-shelf platforms used with varying specifications and constraints.

PLATFORM  ARCHITECTURE CLOCK (MHZ) INTERNAL EXTERNAL
D-CACHE (KB) SRAM (KB) FrLASH (KB) FMC (KC) O/QSPI (KB)
STM32F469 M4 180MHz X 256 1024 8192 8192
STM32F746 M7 216MHz 4KB 320 1024 8192 8192
STM32H743 M7 400MHz 16KB 512 2048 8192 8192

A.2 Energy Efficiency

Being development boards, the Discovery and Evaluation kits we used had a number of unpro-
grammable peripherals (LCD, Ethernet, etc) that weren’t needed but contributed to the power
consumption. Including these in our energy measurements would be disadvantageous to the internal
memory deployment scenarios. For fair comparison, this power consumption was calibrated away
by setting the MCUs to standby mode which has microWatt power consumption and adjusting
accordingly.

B Training & Testing Details

We trained the networks on ImageNet for 150 epochs using the standard SGD optimizer with
momentum 0.9 and weight decay le-4. A cosine annealing learning rate was used with a starting
learning rate 0.05. Random resized cropping and random horizontal flipping was applied to the
training data. Training was carried out on an internal 4-GPU setup with GTX1080TI and a 2-GPU
setup with V100s. Training each model took approximately 20 hours. We used TensorFlow’s int8
post-training quantization (both activation and weights are quantised to int8) with 500 samples
from the training data used as the calibration dataset. For deployment, explicit padding layers of
MCUNetV1 were fused to reduce latency for fair comparison. Models were deployed to the MCUs
with TinyOpsV2 and TensorflowLite-Micro (TFLM) available under an Apache 2.0 license.
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