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Abstract

Many analog circuit design optimization problems involve performing expensive
simulations to evaluate circuit configurations in terms of multiple objectives and
constraints; Oftentimes, practitioners have preferences over objectives. We aim to
approximate the optimal Pareto set over feasible circuit configurations by minimiz-
ing the number of simulations. We propose a novel and efficient preference-aware
constrained multi-objective Bayesian optimization (PAC-MOO) approach that
learns surrogate models for objectives and constraints and sequentially selects
candidate circuits for simulation that maximize the information gained about the
optimal constrained Pareto-front while factoring in the objective preferences. Our
experiments on real-world problems demonstrate PAC-MOO’s efficacy over prior
methods.

1 Introduction

Although there is a powerful set of design automation (DA) tools for digital circuits, the research and
development of DA tools for automating analog circuit design is still in its infancy. Traditionally, the
input parameters of analog circuits (e.g., lengths and widths of transistors) are tuned manually using
the vast experience of human designers for each design specification. However, this manual approach
is not practical to meet the time-to-market requirements for analog circuits due to the huge demand
for high-performance and low-power analog circuits for rapidly emerging application scenarios, as
well as the circuits, becoming more complex due to scaled technology.

The design automation of analog circuits can be naturally formulated as a Multi-Objective Optimiza-
tion (MOO) problem. The goal is to find optimal Pareto set of design parameters to achieve the best
trade-offs among multiple conflicting design objectives. There are many challenges in solving such
optimization problems. First, the size of the design space is large and evaluating each candidate
circuit requires performing a computationally expensive circuit simulation. Second, there are many
constraints to determine the circuit feasibility and practicality, which we cannot evaluate without
performing circuit simulations. In many circuit design problems, the fraction of feasible circuit
candidates that satisfy all constraints is very small. Third, the designer prefers some objectives more
than others (e.g., efficiency over settling time). In such cases, it suffices to find a subset of the optimal
Pareto set that meets the specified preferences. The overall goal is to approximate the solution of
a given MOO problem specification for analog circuit design by minimizing the number of circuit
simulations, thereby accelerating the DA process.

Bayesian optimization (BO) is an efficient framework to solve black-box optimization problems
with expensive objective function evaluations [13, 10]. There are some BO algorithms for handling
the large design space challenge. However, none of them can handle the constraint and feasibility
challenges. To fill this important gap, we propose a novel and efficient information-theoretic approach
referred to as Preference-Aware Constrained Multi-Objective Bayesian Optimization (PAC-MOO).
PAC-MOO builds surrogate models for both output objectives and constraints based on the training
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data from past circuit simulations. PAC-MOO employs an acquisition function in each iteration to
select a candidate circuit configuration for performing simulation. The selected circuit configuration
maximizes the information gain about the constrained optimal Pareto front while factoring in the
designer preferences. The experimental results demonstrate that PAC-MOO without any preferences,
outperforms baseline methods by finding a high-quality Pareto set of circuit designs in fewer num-
ber of simulations. When preferences over objectives are specified, PAC-MOO was able to find
circuit configurations with higher preferred objective values as intended by sacrificing the overall
hypervolume indicator.

Contributions. Our key contribution is the development and evaluation of the generic information-
theoretic algorithm PAC-MOO to efficiently solve a broad class of analog circuit design optimization
problems. Specific contributions include: 1. A tractable acquisition function based on information
gain to select candidate circuits for performing simulations, 2. Approaches to increase the chances of
finding feasible circuits and to incorporate preferences over objectives. 3. Evaluation of PAC-MOO
on two challenging analog circuit design problems and comparison with prior methods.

2 Preference-Aware Constrained Multi-Objective Optimization
Circuit design problem as MOO. We are given a design space X with d design variables, where
each candidate design x ∈ X is a d-dimensional vector of parameters corresponding to a circuit
configuration. We want to optimize K ≥ 2 objective functions {f1(x), · · · , fK(x)} over the given
circuit design space X. We assume L black-box constraints of the form c1(x) ≥ 0, · · · , cL(x) ≥ 0
over the design space X. We can evaluate these constraints for a given design x by performing a
circuit simulation to get (yc1 , · · · , ycL), where yci = Ci(x) for all i ∈ {1, 2, · · · , L}.

Preferences over black-box functions. The circuit designer can input preferences over multiple
black-box functions through the notion of preference specification, which is defined as a vector
of values p = {pf1 , · · · , pfK , pc1 , · · · , pcL} with 0 ≤ pi ≤ 1 and

∑
i∈I pi = 1 such that I =

{f1, · · · , fK , c1, · · · , cL}. Higher values of pi mean that the corresponding objective function fi is
highly preferred. In such cases, the solution to the MOO problem should prioritize producing circuit
configurations that optimize the preferred objective functions.

Problem Formulation - Constrained multi-objective optimization w/ preferences. Constrained
MOO is the problem of optimizing K ≥ 2 real-valued objective functions {f1(x), · · · , fK(x)},
while satisfying L black-box constraints of the form c1 ≥ 0, · · · , cL(x) ≥ 0 over the given cir-
cuit design space X. A simulation experiment with a candidate circuit design parameters x ∈ X
generates two vectors, one consisting of objective values and one consisting of constraint values
y = (yf1 , · · · , yfK , yc1 , · · · , ycL) where yfj = fj(x) for all j ∈ {1, · · · ,K} and yci = Ci(x) for
all i ∈ {1, · · · , L}. We define a circuit configuration x as feasible if and only if it satisfies all
constraints. Circuit configuration x Pareto-dominates another configuration x′ if fj(x) ≤ fj(x

′) ∀j
and there exists some j ∈ {1, · · · ,K} such that fj(x) < fj(x

′).

The optimal solution of the MOO problem with constraints is a set of circuit configurations X ∗ ⊂
X such that no configuration x′ ∈ X \ X ∗ Pareto-dominates a configuration x ∈ X ∗ and all
configurations in X ∗ are feasible. The solution set X ∗ is called the optimal constrained Pareto set
and the corresponding set of function values Y∗ is called the optimal constrained Pareto front. The
most commonly used measure to evaluate the quality of a given Pareto set is by calculating the
Pareto hypervolume (PHV) indicator [1] of the corresponding Pareto front of (yf1 ,yf2 , · · · ,yfK)
with respect to a reference point r. Our overall goal is to approximate the constrained Pareto set X ∗

by minimizing the total number of expensive circuit simulations. If a preference specification p over
the objectives is provided, the MOO algorithm should prioritize producing a Pareto set of circuit
design parameters that optimize the preferred objective functions.

Surrogate Modeling. Gaussian Processes (GPs) [15] are suitable for solving black-box optimization
problems with expensive function evaluations since they are rich and flexible models which can
mimic any complex objective function. Intuitively, two candidate circuit design parameters that
are close to each other will potentially exhibit approximately similar circuit performance in terms
of output objectives. We model the objective functions and black-box constraints by independent
GP models GPf1 , · · · ,GPfK ,GPc1 , · · · ,GPcK with zero mean and i.i.d. observation noise. Let
D = {(xi,yi)}t−1

i=1 be the training data from past t−1 function evaluations, where xi ∈ X is a
candidate design parameters of circuit and yi = {yif1 , · · · , y

i
fK

, yic1 , · · · , y
i
cL} is the output vector

resulting from evaluating the objective functions and constraints at xi using the circuit simulator.
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Overview of PAC-MOO. PAC-MOO algorithm is an instance of the BO framework, which takes as
input the analog circuit design space X, preferences over objectives p, circuit simulator, and produces
a Pareto set of candidate circuits as per the preferences after T iterations of PAC-MOO as shown in
Algorithm 1. In each iteration t, PAC-MOO selects a candidate circuit design xt ∈ X (i.e., design
parameters) to perform circuit simulation. Consequently, the surrogate models for both objective
functions and constraints are updated based on training data from the simulated circuit design.

Preference-Aware Acquisition Function. The state-of-the-art MESMOC approach for solving MOO
problems [3] proposed to select the input that maximizes the information gain about the optimal
Pareto front for evaluation. However, this approach did not address the challenge of handling
preferences over objectives. To overcome this challenge, we propose an extension of MESMOC’s
acquisition function to maximize the information gain between the next candidate input for evaluation
x and the optimal constrained Pareto front Y∗ while factoring in preferences over objectives and
constraints:

α(x) = I({x,y},Y∗ | D) = H(y | D,x)− EY∗ [H(y | D,x,Y∗)] (1)

Due to space constraints, we provide the full derivation of the acquisition function in sections 5.1 and
5.2 in the appendix. The final form of PAC-MOO’s acquisition function is shown below:

AF (i, x) =

S∑
s=1

γi
s(x)ϕ(γ

i
s(x))

2Φ(γi
s(x))

− lnΦ(γi
s(x)) with i ∈ I and I = {c1, ..., cL, f1, ..., fK} (2)

αpref (x) ≃
∑
i∈I

pi ×AF (i, x) with i ∈ I s.t
∑
i∈I

pi = 1 (3)

where S is the number of samples, γci
s (x) =

y
ci∗
s −µci

(x)

σci
(x) , γfj

s (x) =
y
fj∗
s −µfj

(x)

σfj
(x) , ϕ and Φ are the

p.d.f and c.d.f of a standard normal distribution respectively.

Algorithm 1 PAC-MOO Algorithm
Inputs: Input space X , black-box functions {f1, ..., fK}, constraint functions {c1, ..., cL}, preferences p =
{pf1 , · · · , pfK , pc1 , · · · , pcL}, number of initial pointsN0, number of iterations T
1: Initialize Gaussian processes for functionsMf1 , · · · ,MfK and constraintsMc1 , · · · ,McL by evaluating

them onN0 initial circuit design parameters
2: for each iteration t =N0 to T+N0 do
3: if feasible circuit design parameters xfeasible /∈ D then
4: Select design parameters xt ← argmaxx∈X αprob(x) # eq. 4
5: else
6: Select design parameters xt ← argmaxx∈X αpref (x,p) in Algorithm 2

s.t (µc1 ≥ 0, · · · , µcL ≥ 0)
7: end if
8: Perform circuit simulation with the selected design parameters

xt: yt ← (f1(xt), · · · , fK(xt), C1(xt), · · · , CL(xt))
9: Aggregate data: D ← D ∪ {(xt,yt)}

10: Update modelsMf1 , · · · ,MfK andMc1 , · · · ,McL using D
11: end for
12: return the Pareto set of feasible circuit design parameters from D

Algorithm 2 Preference based Acquisition function (αpref )

αpref (x,p)

1: for Each sample s ∈ {1, · · · , S} do
2: Sample functions f̃j ∼Mfj , ∀j ∈ {1, · · · ,K}
3: Sample constraints C̃i ∼Mci , ∀i ∈ {1, · · · , L}
4: Solve cheap MOO over (f̃1, · · · , f̃K) constrained by (C̃1, · · · , C̃L)

Y∗
s ← argmaxx∈X (f̃1, · · · , f̃K) s.t (C̃1 ≥ 0, · · · , C̃L ≥ 0)

5: end for
6: for i ∈ I and I = {c1 · · · cL, f1 · · · fK} do
7: Compute AF (i, x) based on S samples of Y∗

s via Equation 13
8: end for
9: Return

∑
i∈I pi ×AF (i, x)
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Finding Feasible Regions of Design Space

The acquisition function defined in equation 3 will build constrained Pareto front samples Y∗
s by

sampling functions and constraints from the Gaussian process posterior. The posterior of the GP is
built based on the current training data D (circuit simulations performed in the past). The truncated
Gaussian approximation defined in Equations 9 and 10 (appendix) requires the upper bound y

fj∗
s and

yci∗s to be defined. However, in the early Bayesian optimization iterations of the algorithm, the circuit
configurations evaluated may not include any feasible circuit design parameters. This is especially
true for scenarios where the fraction of feasible circuit configurations in the entire design space is
very small (e.g., high-conversion ratio converter with inductor where many designs are not stable).
In such cases, the sampling process of the constrained Pareto fronts Y∗

s is susceptible to failure
because the surrogate models did not gather any knowledge about feasible regions of the design
space yet. Consequently, the upper bounds yfj∗s and yci∗s are not well-defined and the acquisition
function in 3 is not well-defined. Intuitively, the algorithm should first aim at identifying feasible
circuit configurations by maximizing the probability of satisfying all the constraints. We define a
special case of our acquisition function for such challenging scenarios as shown below:

αprob(x) =

L∏
i=1

Pr(ci(x) ≥ 0) (4)

This acquisition function enables an efficient feasibility search due to its exploitation characteristics
[7]. Given that the probability of constraint satisfaction is binary (0 or 1), the algorithm will be able
to quickly prune unfeasible regions of the circuit design space and move to other promising regions
until it identifies feasible circuit configurations. This approach will enable a more efficient search
over feasible regions later and an accurate computation of the acquisition function. The complete
pseudo-code of PAC-MOO is given in Algorithm 1.

3 Experimental Setup and Results

Baselines. We compare PAC-MOO with state-of-the-art constrained MOO evolutionary algorithms,
namely, NSGA-II [5] and MOEAD [16]. We also compare to the state-of-the-art BO for analog circuit
design algorithm, the Uncertainty Reduction via Multiple Acquisition Constrained (URMAC) [17].
We evaluated two variants of URMAC: URMAC-EI and URMAC-TS, using expected improvement
(EI) and Thompson sampling (TS) acquisition functions.

PAC-MOO: We employ a Gaussian process (GP) with squared exponential kernel for all our surrogate
models. We evaluated several preference values for the efficiency objective function. PAC-MOO-0
refers to the preference being equal over all objectives and constraints. PAC-MOO-1 refers to giving
80% preference to the efficiency objective while giving equal importance to functions and constraints,
resulting in a preference value pi = 0.5 ∗ 0.8 = 0.4 for the efficiency. With PAC-MOO-3, we
give more importance to the objective functions by assigning a total of 0.65 preference to them and
0.35 to the constraints. Additionally, we provide 88% importance to the efficiency resulting in a
preference value of pi = 0.65 ∗ 0.88 = 0.572. With PAC-MOO-2, we assign a total preference of
85% to the objective functions with 92% importance to the efficiency resulting in a preference value
of pi = 0.85 ∗ 0.92 = 0.782. We assign equal preference to all other functions.

Benchmarks: 1.Switched-Capacitor Voltage Regulator (SCVR) design optimization setup. The
constrained MOO problem for SCVR circuit design consists of 33 input design variables, nine
objective functions, and 14 constraints. Every method is initialized with 24 randomly sampled circuit
configurations. 2. High Conversion Ratio (HCR) design setup. The constrained MOO problem
for HCR circuit design consists of 32 design variables, 5 objective functions, and 6 constraints.
Considering that the fraction of feasible circuit configurations in the design space is extremely low
(around 4%), every method is initialized with 32 initial feasible designs provided by a domain expert.

A detailed explanation of the two analog circuits is included in section 5.3 in the appendix.

Hypervolume of Pareto set vs. No of circuit simulations. Figures 1a and 1b show the results for
PHV of Pareto set as a function of the number of circuit simulations for SCVR and HCR design,
respectively. We make the following observations. 1) PAC-MOO with no preferences (i.e., PAC-
MOO-0) outperforms all the baseline methods. This is attributed to the efficient information-theoretic
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(a) Hypervolume - SCVR (b) Hypervolume - HCR

(c) Efficiency - SCVR (d) Efficiency - HCR

Figure 1: Results of different multi-objective algorithms including PAC-MOO. The hypervolume
indicator and maximum discovered efficiency are shown as functions of the number of simulations

acquisition function and the exploitation approach to finding feasible regions in the circuit design
space. 2) At least one version of URMAC performs better than all evolutionary baselines: URMAC-EI
for both SCVR and HCR designs. These results demonstrate that BO methods have the potential for
accelerating analog circuit design optimization over evolutionary algorithms .3) The performance of
PAC-MOO with preference (i.e., PAC-MOO-1,2,3) is lower in terms of the hypervolume since the
metric evaluates the quality of general Pareto front, while our algorithm puts emphasis on specific
regions of the Pareto front via preference specification. This behavior is expected, nevertheless, we
notice that the PHV with PAC-MOO-1 and PAC-MOO-2 is still competitive and degrades only when
a significantly high preference is given to efficiency (PAC-MOO-3).

Efficiency of optimized circuits with preferences. Since efficiency is the most important objective
for both SCVR and HCR circuits, we evaluate PAC-MOO by giving higher preference to efficiency
over other objectives. Figures 1c and 1d show the results for maximum efficiency of the optimized
circuit configurations as a function of the number of circuit simulations for SCVR and HCR design
optimization. 1) As intended by design, PAC-MOO with preferences outperforms all baseline
methods, including PAC-MOO without preferences. 2) The improvement in maximum efficiency
of uncovered circuit configurations for PAC-MOO with preferences comes at the expense of loss in
hypervolume metric as shown in Figure 1a and Figure 1b.

4 Conclusions

Motivated by challenges in hard analog circuit design optimization problems, this paper proposed
a principled and efficient Bayesian optimization algorithm called PAC-MOO. The key innovations
behind PAC-MOO include an effective exploitation approach to finding feasible regions of the design
space, and incorporating preferences over multiple objectives using a convex combination of the
corresponding acquisition functions. Experimental results on two challenging analog circuit design
optimization problems demonstrated that PAC-MOO outperforms baseline methods.
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5 Appendix

5.1 Acquisition Function

In this case, the output vector y is K + L dimensional: y = (yf1 , yf2 , · · · , yfK , yc1 · · · ycL) where yfj =
fj(x)∀j ∈ {1, 2, · · · ,K} and yci = Ci(x)∀i ∈ {1, 2, · · · , L}. Consequently, the first term in Equation (1),
entropy of a factorizable (K + L)-dimensional Gaussian distribution P (y | D,x), can be computed in closed
form as shown below:

H(y | D,x) =
(K + C)(1 + ln(2π))

2
+

K∑
j=1

ln(σfj (x)) +

L∑
i=1

ln(σci(x)) (5)

where σ2
fj
(x) and σ2

ci(x) are the predictive variances of jth function and ith constraint GPs respectively at
input x. The second term in Equation (1) is an expectation over the Pareto front Y∗. We can approximately
compute this term via Monte-Carlo sampling as shown below:

EY∗ [H(y | D,x,Y∗)] ≃ 1

S

S∑
s=1

[H(y | D,x,Y∗
s )] (6)

where S is the number of samples and Y∗
s denote a sample Pareto front. There are two key algorithmic steps to

compute this part of the equation: 1) How to compute constrained Pareto front samples Y∗
s ?; and 2) How to

compute the entropy with respect to a given constrained Pareto front sample Y∗
s ? We provide solutions for these

two questions below.

1) Computing constrained Pareto front samples via cheap multi-objective optimization. To compute a
constrained Pareto front sample Y∗

s , we first sample functions and constraints from the posterior GP models
via random Fourier features [8, 12] and then solve a cheap constrained multi-objective optimization over the K
sampled functions and L sampled constraints.

Cheap MO solver. We sample f̃i from GP model GPfj for each of the K functions and C̃j from GP model
GPcj for each of the L constraints. A cheap constrained multi-objective optimization problem over the K

sampled functions f̃1, f̃2, · · · , f̃k and the L sampled constraints C̃1, C̃2, · · · , C̃L is solved to compute the
sample Pareto front Y∗

s . Note that we refer to this optimization problem as cheap because it is performed over
sampled functions and constraints, which are cheaper to evaluate than performing expensive circuit simulations.
We employ the popular constrained NSGA-II algorithm [6, 5] to solve the constrained MO problem with cheap
sampled objective functions and constraints.

2) Entropy computation with a sample constrained Pareto front. Let Y∗
s = {v1, · · · ,vl} be the sample

constrained Pareto front, where l is the size of the Pareto front and each vi is a (K + L)-vector evaluated at the
K sampled functions and L sampled constraints vi = {vif1 , · · · , v

i
fK

, vic1 , · · · , v
i
cL}. The following inequality

holds for each component yj of the (K + L)-vector y = {yf1 , · · · , yfK , yc1 , · · · ycL} in the entropy term
H(y | D,x,Y∗

s ):

yj ≤ max{v1j , · · · vlj} ∀j ∈ {f1, · · · , fK , c1, · · · , cL} (7)

The inequality essentially says that the jth component of y (i.e., yj) is upper-bounded by a value obtained by
taking the maximum of jth components of all l (K + L)-vectors in the Pareto front Y∗

s . This inequality had
been proven by a contradiction for MESMO [2] for all objective functions j ∈ {f1, · · · , fK}. We assume the
same for all constraints j ∈ {c1, · · · , cL}.

By combining the inequality (7) and the fact that each function is modeled as an independent GP, we can
approximate each component yj as a truncated Gaussian distribution since the distribution of yj needs to satisfy
yj ≤ max{v1j , · · · vlj}. Let yci∗

s = max{v1ci , · · · v
l
ci} and y

fj∗
s = max{v1fj , · · · v

l
fj
}. Furthermore, a common

property of entropy measure allows us to decompose the entropy of a set of independent variables into a sum
over entropies of individual variables [4]:

H(y | D,x,Y∗
s ) =

K∑
j=1

H(yfj |D,x, y
fj∗
s ) +

L∑
i=1

H(yci |D,x, yci∗
s ) (8)
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The r.h.s is a summation over entropies of (K+L)-variables y = {yf1 , · · · , yfK , yc1 , · · · ycL}. The differential
entropy for each yj is the entropy of a truncated Gaussian distribution [11] and is given by the following equations:

H(yfj | D,x, y
fj∗
s ) ≃ [

(1 + ln(2π))

2
+ ln(σfj (x)) + lnΦ(γ

fj
s (x))− γ

fj
s (x)ϕ(γ

fj
s (x))

2Φ(γ
fj
s (x))

] (9)

H(yci |D,x, yci∗
s ) ≃ [

(1 + ln(2π))

2
+ ln(σci(x)) + lnΦ(γci

s (x))− γci
s (x)ϕ(γci

s (x))

2Φ(γci
s (x))

] (10)

Consequently, we have:

H(y | D,x,Y∗
s ) ≃

K∑
j=1

[
(1 + ln(2π))

2
+ ln(σfj (x)) + lnΦ(γ

fj
s (x))− γ

fj
s (x)ϕ(γ

fj
s (x))

2Φ(γ
fj
s (x))

]

+

L∑
i=1

[
(1 + ln(2π))

2
+ ln(σci(x)) + lnΦ(γci

s (x))− γci
s (x)ϕ(γci

s (x))

2Φ(γci
s (x))

]
(11)

where γci
s (x) =

y
ci∗
s −µci

(x)

σci
(x)

, γfj
s (x) =

y
fj∗
s −µfj

(x)

σfj
(x)

, ϕ and Φ are the p.d.f and c.d.f of a standard normal

distribution respectively. By combining equations (5) and (11) with equation (1), we get the final form of our
acquisition function as shown below:

α(x) ≃
∑
i∈I

AF (i, x) with i ∈ I and I = {c1 · · · cL, f1 · · · fK} (12)

And

AF (i, x) =

S∑
s=1

γi
s(x)ϕ(γ

i
s(x))

2Φ(γi
s(x))

− lnΦ(γi
s(x)) (13)

5.2 Convex Combination for Preferences

We now describe how to incorporate preference specification (when available) into the acquisition function.
The derivation of the acquisition function proposed in Equation 12 resulted in a function in the form of a
summation of an entropy term defined for each of the objective functions and constraints as AF (i, x). Given
this expression, the algorithm will select an input while giving the same importance to each of the functions
and constraints. However, in circuit design optimization, efficiency is typically the most important objective
function. The designer would like to find a trade-off between the objectives. Nevertheless, candidate circuits with
high voltage and very low efficiency might be useless in practice. Therefore, we propose to inject preferences
from the designer into our algorithm by associating different weights to each of the objectives. A principled
approach would be to assign appropriate preference weights resulting in a convex combination of the individual
components of the summation AF (i, x). Let pi be the preference weight associated with each individual
component. The preference-based acquisition function is defined as follows (see Algorithm 2):

αpref (x) ≃
∑
i∈I

pi ×AF (i, x) with i ∈ I s.t
∑
i∈I

pi = 1 (14)

It is important to note that in practice if a candidate circuit does not satisfy the constraints, the optimization will
fail regardless of the preferences over objectives. Therefore, the cumulative weights assigned to the constraints
have to be at least equal to the total weight assigned to the objective functions:∑

i∈{c1···cL}

pi =
∑

i∈{f1,··· ,fK}

pi =
1

2
(15)

Given that satisfying all the constraints is equally important, the weights over the constraints would be equal.
Finally, only the weights over the functions will need to be explicitly specified.

5.3 Case Studies for Analog Circuit Design

This section briefly describes the two analog circuit design problems: switched-capacitor voltage regular (SCVR)
and high-conversion ratio (HCR) converter. Both SCVR and HCR circuits are extremely useful in providing
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power supply for data centers, large manycore chips, and portable devices. They can directly convert high
voltages (3.3V-48V) to low voltages (0.4V-1.8V). We will employ them in our experimental evaluation.

SCVR design optimization. A flying-capacitor crossing technique (FCCT) is used in the multi-output SCVR to
achieve dynamic capacitor optimization, as discussed in [17]. Figure 2a illustrates the operating principle of
an SCVR power stage with FCCT generating two outputs with 1/3x, and 2/3x conversion ratios. The FCCT
technique is realized by the additional SCV Rsh stage, which is comprised of four power switches and one
flying capacitor, Cs.

This SCV Rsh topology regulates Cs at 1/3x of the input voltage: in phase1, Cs is charged and generates an
additional current path to the 2/3x output; in phase2, Cs is discharged, generating an additional current path
to the 1/3x output. Thus, the additional SCV Rsh power stage provides a parallel current path to both outputs.
This path helps in reducing the portion of charges that each flying capacitor carries to the output. The reduction
in the charge flowing through the flying capacitors, in turn, decreases the power loss governed by the charging
and discharging of the capacitors, i.e., charge redistribution loss. Moreover, the charge passing through the
resistive elements also decreases. Hence, resistive conduction loss is reduced. We employ a four-output SCVR
for design optimization. The SCVR simultaneously generates four individual output voltages (Vout1, Vout2,
Vout3, and Vout4): Vout1, Vout2 are regulated at 1/3x conversion ratio, and Vout3, Vout4 are regulated at 2/3x
conversion ratio. The four outputs are regulated individually by a pulse-skipping modulation (PSM) [9] with a
fixed frequency clock for the 3:1 power stages and 3:2 power stages and adjust frequency for controlling the
SCV Rsh power stages. There are eight sub-power stages in the SCVR: two 3:1 power stages for Vout1 and
Vout2, two 3:2 power stages for Vout3 and Vout4, and four SCV Rshs (connected between Vout1 and Vout3,
Vout1 and Vout4, Vout2 and Vout3, Vout2 and Vout4, respectively). The controller feedback loop is self-stable
due to the comparator-based PSM methods. We want to optimize the flying capacitor and switching frequency to
enhance the performance under different load conditions.

HCR converter design optimization. For the HCR converter experiments, we use an inductor-first hybrid
power stage, which has been previously introduced in [14] with extending the conversion ratio from the original
value of 0.5 to 1 to a high conversion ratio of from 9 to 10. This converter can handle an input voltage of 5.5V-6V
with a nominal 1.8V CMOS process. Figure 2b presents the operational principle of an HCR power stage.
The inductor-first hybrid power stage consists of a power inductor directly connected to the input source and a
switched-capacitor stage, including flying capacitors and power switches. It can provide fine-grained voltage
regulation by using pulse-width-modulation (PWM) control. A fully integrated inductor-first hybrid converter
with 0.73-W/mm2 peak power density has been proposed by [14], which uses one flying capacitor and one
inductor to produce a voltage conversion ratio (VCR) between 1/2 and 1 by changing the duty cycle of the PWM
controller. In this proposed HCR inductor-first hybrid power stage, 4 flying capacitors and 12 power switches
are involved in achieving the 9 to 10 step-down conversion ratio and releasing the voltage stress for the power
switches. With the inductor-first structure, the power inductor current is reduced by more than 9x under the
high conversion ratio scenario, which results in a dramatic improvement in the converter’s efficiency. In order
to regulate the output voltage with fine line/load resolution and high power efficiency, a type-I compensation
circuit with the compensation capacitor Cpo is implemented in the PWM controller. We want to optimize the
flying capacitors, power inductor, power switches, switching frequency, and compensation capacitor to enhance
the performance and ensure stability.

(a) Power stage of the multi-output SCVR. (b) Power stage of the multi-output HCR.

Figure 2: Power stages of the multi-output HCR and SCVR analog circuits
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