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Abstract

Self-attention and feedforward layers in large-scale Transformer models are overpa-
rameterized, limiting inference speed and energy efficiency. Tensor decomposition
is a promising technique to reduce parameter redundancy by expressing weight
matrices in an efficiently factorized form. Prior efforts used manual or heuristic
decomposition settings without hardware-aware customization, resulting in poor
hardware efficiencies and large performance degradation.

In this work, we propose a hardware-aware tensor decomposition framework,
dubbed HEAT, that enables efficient exploration of the exponential space of tensor
decompositions and automates the choice of tensorization shape and decompo-
sition rank with hardware-aware co-optimization. We jointly investigate tensor
contraction path optimizations and a fused Einsum mapping strategy to bridge the
gap between theoretical benefits and real hardware efficiency improvement. Our
two-stage knowledge distillation flow resolves the trainability bottleneck and thus
significantly boosts the final accuracy of factorized Transformers. We find that
our hardware-aware factorized BERT variants reduce the energy-delay product by
5.7x with less than 1.1% accuracy loss and achieve a better efficiency-accuracy
Pareto frontier than hand-tuned and heuristic baselines.

1 Introduction

Transformers have demonstrated record-breaking performance on natural language processing
(NLP) [15, 7, 2]. However, the overparametrized linear layers in multi-head self-attention and
feedforward networks (FFNs) limit the efficient deployment of Transformers. Compressing large-
scale Transformers is an essential problem in practical NLP tasks.

Tensor factorization can be applied to matrices by first tensorizing [1, 12] them (reshaping them into a
higher-order tensor) and then factorizing that tensor. Prior work has successfully applied this method
to reduce the number of parameters and computations in NNs by manually selecting the tensorization
shapes and ranks [12, 19, 9, 4, 10, 6, 24, 21, 8].

However, three critical issues remain unresolved. First, improvements in compression metrics do
not necessarily translate to better hardware efficiency, a distinction ignored by most prior work.
The number of multiply-accumulate operations (MACs) and parameters are imprecise indicators of
energy efficiency and execution speed on real hardware, so high compression ratios may not translate
to real hardware efficiency benefits. Moreover, we observe heterogeneous low-rank characteristics
in different weight matrices, but previous methods ignore this heterogeneity and manually assign a
global setting to all matrices based on heuristics [6, 9, 4, 11], failing to explore the huge design space.
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An additional challenge of factorized Transformers is the non-trivial performance drop after tensor
decomposition. Direct re-training cannot recover the accuracy of factorized Transformers due to the
optimization difficulty of cascaded tensor contractions, which hinders their practical deployment.

To solve these challenges, we propose HEAT, a hardware-efficient tensor decomposition framework
that features automated tensor decomposition with hardware-aware optimization. HEAT can efficiently
explore the huge design space of tensorization while significantly improving hardware efficiency
based on the following approaches: (1) compared to prior hardware-unaware tensor decomposition
work, HEAT incorporates hardware cost feedback in the tensorization optimization flow to find
expressive and hardware-efficient tensorization settings; (2) instead of manually selecting a global
rank setting via trial-and-error, HEAT leverages the heterogeneous low-rank property of different
tensors and adopts a novel Rank SuperNet-based method to automatically search for efficient per-
tensor rank settings in the exponentially large space with one-shot re-training cost; and (3) HEAT
resolves the trainability challenge of factorized Transformers by introducing a two-stage knowledge
distillation flow to significantly boost the task performance.

Our searched factorized BERT models outperform the original BERT with an estimated 5.7 x lower
energy-delay product (EDP) and surpass hand-tuned and heuristic baselines with 25%-30% lower
EDP and 1-3% accuracy improvement on the SQuAD-v1.1 and SST-2 datasets.

2 HEAT Automatic Tensor Decomposition Framework

2.1 Understanding Hardware-Efficient Tensor Decomposition
In tensor decomposition, a matrix W &€ RMX*N is tensorized into a high-order tensor X', which is
then approximated by the product or summation of a series of smaller core tensors. Representative
decompositions include CP [16], Tucker [22], and tensor-train matrix (TTM) [13]. For example, the
order-d TTM decomposition is formulated by

X((ir,1), -, (iaga)) =G (in, 1), ) - GV, (ias ja)), (M

where each G() € Rri-1XmiXnixri jq called a core tensor, the size of tensorized X is called
tensorization shape, i.e., s = (mq,--- ,ny, - ), where M =[], m; and N = [], n;. The variable
dimensions of cores are called decomposition ranks, i.e, 7 = (rg,71, -+ ,74—1,74). The compression
ratiois ¢ = ), ri_1mn;ri /[MN.

To find a hardware-efficient decomposition, the goal is to determine the tensorization shape s and
rank 7 for each matrix W that minimizes energy-delay product while maintaining high accuracy.
However, the design space is too large and discrete to explore with brute-force methods. For example,
for a 12-layer BERT model, there are 10532 different possible tensorization settings.

We formulate the search as a three-level hierarchical optimization as follows,

Level 3: Train factorized model: ©(s*,7") = argmin L(O(s™,7"), Dirn ),
©

Level 2: Searchrank: 7" = argmin (1 — Acc(©"(s",7)))Cost™(s",r|a)”,
™

O%(s",r) = argmin L(O(s", ), Dirn), )
©

Level 1: Search shape: s* = Paretos (Cost™(s,7|a),€,c)

e=||W —W'(s,7)||7/||W|l#, Cost*(s,r|a) = min min Cost(s,r,m,p|a).
m p

In Level 1, given an accelerator architecture «, we find a Pareto optimal tensorization shape s*
that minimizes decomposition error €, compression ratio ¢, and the minimum hardware cost Cost*
obtained by optimizing tensor contraction path (p) and hardware mapping (m). We use a standard
energy-delay product (EDP) as the hardware cost to reflect both energy consumption and runtime
cost. Then in Level 2, we search for optimal per-tensor rank settings * while minimizing hardware
cost and maximizing the task-specific performance. In Level 3, we train the factorized Transformer
model with the optimal (s*, r*) settings to find its optimal parameters ©*(s*, r*).
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Figure 1: Overview of our hardware-efficient automatic tensor decomposition framework HEAT.

2.2 The Proposed HEAT Framework

To solve this three-level optimization problem efficiently, we propose a three-stage framework HEAT,
which is summarized in Fig. 1. In the first stage, we simulate each shape candidate on a given
inference accelerator architecture « and build a hardware cost table for all shapes T, from which we
select one Pareto optimal shape s* with low decomposition error €, low compression ratio ¢, and low
hardware cost. All matrices with the same size share this tensorization shape. We import the optimal
shape s* to the second stage, a one-shot rank search flow that can efficiently explore per-tensor rank
settings with minimum model re-training cost. With the searched optimal shape and rank (s*, r*),
we enter the last step, a knowledge distillation-based re-training flow to recover the accuracy.

2.2.1 Level 1: Pareto Optimal Tensorization Shape Search

To determine the real hardware cost of a given tensorization, we must find a near-optimal tensor
contraction path p and map the operation to the target architecture o with an optimal mapping m.

Tensor Contraction Path Optimization. A factorized linear layer requires a series of tensor
contractions, which can be described by a symbolic Einsum equation as shown in Fig. 2. The order in
which these tensors are contracted, or the contraction path, is critical to hardware efficiency. Simply
following the left-to-right association order leads to considerable computation and intermediate
storage overhead due to the many outer product operations. In contrast, a MAC-optimal path reduces
hardware cost by orders of magnitude [20]. Note that we can pre-compute certain einsum nodes that
have static inputs to eliminate redundant memory and computation cost. Hence, we only need to
implement the pre-computed MAC-optimal path on the hardware accelerator.
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Figure 2: Our pre-computed MAC-optimal contraction path can 51gn1ﬁcantly reduce hardware cost.

Mapping from Fused Einsum to Hardware. To efficiently implement factorized tensor operations,
we customize our accelerator Simba-L [18] to perform a 1024-element matrix-vector multiplication
each cycle to achieve high utilization on factorized Einsum workloads [18]. Based on this architecture,
we implement a memory-efficient fused Einsum, minimizing redundant DRAM accesses by storing
intermediate results in on-chip SRAM whenever possible to obtain the minimum hardware cost
Cost™*(s, r|a). Then we use Timeloop [14] to search for an efficient mapping m while minimizing
energy-delay product, map the fused Einsum to the accelerator, and evaluate the energy and runtime.
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Search for the Pareto Optimal Shape: s*. We perform integer factorization on the matrix
height/width and select the top candidates with maximum entropy, since we prefer uniform shapes
across axes. Then we decompose the matrix to get the approximation error and evaluate their costs to
form a cost table 7. We automatically detect the points on the Pareto-optimal surface and heuristically
select the best shape s* with the lowest decomposition error. We repeat this process for all different
sizes of matrices in the model, completing the Level 1 optimization.

2.2.2 Level 2: Weight-Sharing Per-Tensor Rank Optimization

One-Shot Rank Search via Weight-Sharing SuperNet. The challenges in the Level 2 optimiza-
tion are twofold: (1) the exponentially large per-tensor rank search space and (2) the prohibitive
cost of accuracy evaluation on a shape-rank pair. These

barriers make it impossible to select the best rank by enu- ~ ~ .- @ ' o~
meration. Inspired by the high efficiency in weight-sharing SubNet ¢ SubNet ¢ + 1
neural architecture search (NAS) [23, 3], we build a rank Share Weights |

SuperNet where each SubNet corresponds to a per-tensor :'r'l Wi ;_ """ 0
rank setting. As shown in Fig. 3, at each iteration, we 721287160 )i 1 (1607760 )i
randomly sample valid ranks for each tensor, and different .73 64/64 ] i I :
SubNets share the same set of parameters. Hence, we can .'r TR I/_V_ N

efficiently explore a large space of different rank settings. > (S5 1160 [ — -
Per-Tensor Rank Selection via Evolutionary Search. r3% _____ % _____
We randomly sample 2,560 SubNets from the Rank Super-

Net and train a random forest P : (s,7) — Acc to predict Sample Ranks at Each Iteration

the validation accuracy based on the factorization settings, o

which is a fast proxy to reduce validation cost. In addition ~ Figure 3: Rank SuperNet training flow.
to accuracy maximization, network hardware cost must also be considered. The total energy E.,: and
runtime 7}, of the model is simply the sum of all layer costs. We use evolutionary search to find the
optimized factorization settings: min,. (1 — Acc)(Eyot - Ttot)”, where v is empirically set to 0.25.

2.2.3 Level 3: Trainability Boost with Two-stage Distillation

Optimization of factorized tensors is difficult, making Liovit A

trainability a bottleneck for factorized Transformers. To Ll:ea‘r—Ll’_"fear \

solve this issue, we propose a two-stage distillation flow. P s \’\\%

First, we perform optimal layer-wise projection to find : |hT.M.hS | - T

the tensor decomposition that minimizes matrix approx- [ ] CFeN i ﬂhzdden

imation error, minwy: Y, [[W; — Wj|| . Then we dis- F@ . m"

till the layer-wise knowledge from the teacher 7' to the AT Lattn: i Zattn A S

factorized student S both on the attention maps A and :|q Kk v r: lakv]| " min Liogi

hidden states h on each Transformer block. S e \/\/
Lattn + Lhidden = Z L i 4 L tden [Teacher [Student \\/

— Z CosEmbed(A?, AT) + CosEmbed(hY, hT) ©) Figure 4: Layer-wise and logit distillation
; for factorized Transformers.

After the layer-wise alignment, we only apply last-layer logit distillation to provide more optimization

freedom for the student: Liogit = 2 L1 (v /7. y7/7) + 3 Lor (v, yT).

3 Results

Results on BERT-base SQuAD-v1.1. We compare our searched factorization settings with (1)
the original fine-tuned BERT, (2) SR-Manual: manually-selected shape and rank settings, and (3)
S(Ours) -R(TensorLy): searched optimal tensorization shapes and heuristic ranks by TensorLy [11]
based on the target compression ratio. In Table 1, HEAT achieves the best performance-efficiency
Pareto front, surpassing manual and heuristic tensor decomposition baselines.

With TTM decomposition, HEAT improves the F1 score by +0.65% with 8% fewer parameters and
8.8% lower hardware cost on average. The compact HEAT-al benefits the most from our heterogeneous
per-tensor rank settings and outperforms manual and heuristic decomposition with +1.6% higher F1



Table 1: Compare our HEAT-series with baseline decomposition methods on BERT-base SQuAD-v1.1
in terms of #Params, F1 score, and energy-delay product (EDP) across three decomposition methods.

TT™ Tucker CP
Model #Params EDP #Params EDP #Params EDP
F1 (% F1 (% F1 (%
oL PO g | ang FEOOT rigr | any FEOOT ey
BERT-base ‘ 109.50 88.16 34.31 ‘ 109.50 88.16 34.31 ‘ 109.50 88.16 34.31
SR-Manual-1 35.04 83.60 24.27 38.10 81.90 5.63 43.13 68.95 4.48
SR-Manual-2 38.71 84.74 25.86 39.71 82.31 6.85 54.27 79.22 7.57
S(Ours)-R(TensorLy)-1 36.15 83.89 24.42 35.81 80.43 4.06 46.38 85.81 5.45
S(Ours)-R(TensorLy)-2 39.78 85.49 27.18 39.48 82.00 4.93 55.52 87.21 9.37
HEAT-al 41.60 86.01 25.06 42.14 83.41 4.91 48.88 87.11 5.99
SR-Manual-3 42.37 86.05 28.87 42.64 83.45 7.87 60.88 81.96 10.70
S(Ours)-R(TensorLy)-3 43.33 85.84 29.05 42.63 82.96 5.66 60.31 87.74 9.62
HEAT-a2 46.42 86.71 28.93 50.96 85.51 7.45 59.08 87.79 9.01
SR-Manual-4 50.90 86.99 32.57 52.94 85.05 12.21 69.12 84.31 12.40
SR-Manual-5 60.68 87.29 39.25 59.17 86.50 17.00 83.98 86.59 18.50
S(Ours)-R(TensorLy)-4 51.76 86.64 33.55 51.87 85.19 9.27 68.79 87.62 14.40
S(Ours)-R(TensorLy)-5 61.45 87.74 49.27 62.26 86.76 11.90 82.43 88.14 18.00
HEAT-a3 54.68 87.36 32.72 63.62 86.35 10.40 74.15 87.91 14.50
Avg. Improv. | -8.15% +0.65 -8.80% | +0.09%  +1.03  -30.28% | -9.07% +3.45  -25.30%

scores. With Tucker decomposition, HEAT-series boosts the F1 score by +1.03 with +30% higher
efficiency than handcrafted settings that typically reshape the matrix to a high-order tensor (e.g.,
order 6 or 8) [24, 21]. Though the accuracy per parameter of Tucker is slightly lower than TTM,
its accuracy-to-EDP ratio is 3-5x higher than TTM. CP decomposition is usually disfavored due to
unstable optimization [5], but our search framework finds an efficient CP tensorization shape and is
able to recover accuracy through re-training. HEAT-series overall can boost the F1 score by +3.45%
with 25.3% less hardware cost. Compared to the original BERT, our searched HEAT-al can maintain
accuracy (1.1% drop) with 5.7 x higher hardware efficiency.

Results on BERT-base SST-2. We re-train  apje 2: Evaluation of HEAT on SST-2 with decom-
HEAT-variants on SST-2 to evaluate the general- ,ogition settings searched on SQUAD-vI.1.
ization of the decomposition settings searched

on SQuAD. In Table 2, we observe that when
adapted to a new downstream task with a smaller
sequence length (128), our searched Tucker and

TT™ Tucker Cp
Fl (%)t EDP| | F1(%) EDP| | Fl1 (%)} EDP|

BERT-base | 91.74 521 | 91.74 521 | 91.74 5.21

Model ‘

S . . HEAT-al 90.02 424 | 8727 045 | 9140  0.50
CP factqnzatlon can still largely maintain the F1  {papan ‘ 0090 565 | 8842 060 | 9151 079
score with 4-10x higher hardware efficiency. HEAT-a3 9120 734 | 8991 102 | 9117 134

Results on Distil- T,ple 3. Compare three HEAT-variants with DistilBERT-base on SQuAD-
BERT SQuADv-1.1 | 4pd SST-2 datasets.
and SST-2. Our

tensor decomposition ‘ SQUADvL.I ‘ SST-2

method can also be TT™M Tucker Cp TT™M Tucker Cp
. | FIt EDP, FIt EDP| FIt EDP|| Acct EDP| Acct EDP| Acct EDP
applied to compact

DistilBERT | 86.90 858 8690 858 8690 858 |9197 130 9197 130 9197 130

Transformers as an HEAT-al | 8526 671 83.66 172 87.09 150 | 9140 123 9030 0.17 9128 0.13
orthogonal ~compres- HEAT-a2 | 8642 776 8521 256 §7.89 226 | 90.60 1.64 9130 023 91.06 0.20
HEAT-23 | 8692 874 8615 321 8818 3.63 | 90.60 2.10 90.60 029 9163 034

sion technique. Based
on DistilBERT [17], a 6-layer compact version of BERT-base, we searched three HEAT-variants
in Table 3. Our HEAT-series can achieve comparable F1 scores with 5.7x higher efficiency on
SQuAD-v1.1. On SST-2, HEAT-series can maintain the accuracy while saving 3-10x hardware cost.

4 Conclusion

In this work, we explore the large design space of hardware-efficient tensor decomposition using HEAT,
an automatic decomposition framework for Transformer model compression. We consider hardware
cost in the optimization loop and efficiently find expressive and hardware-efficient tensorization
shapes. Our SuperNet-based one-shot rank search flow can efficiently generate optimized per-
tensor decomposition rank settings. We employ a two-stage distillation flow to solve the trainability
bottleneck of factorized Transformers and significantly boost their task performance. Experiments
show that HEAT reduces up to 5.7x energy-delay product on our customized accelerator with less
than 1.1% accuracy drop. Compared to manual and heuristic tensor decomposition methods, our
searched HEAT-variants show 1-3% higher accuracy with ~30% less hardware cost on average.
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