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Abstract

Many hardware design problems require navigating a combinatorial search space
to find solutions that balance multiple conflicting objectives, e.g., area and delay.
While traditional approaches rely on hand-tuned heuristics to combat the large
search space, reinforcement learning (RL) has recently achieved promising results,
effectively reducing the need for human expertise. However, the existing RL
method has prohibitively high sample complexity requirements. In this paper, we
present a novel multi-objective reinforcement learning algorithm for combinatorial
optimization and apply it to automating designs for prefix adder circuits, which
are fundamental to high-performance digital components. We propose to track
the evolving Pareto frontier to adaptively select reset states for an episodic RL
agent. Our proposed reset algorithm balances exploiting the best-discovered states
so far and exploring nearby states to escape local optima. Through empirical
evaluations with a real-world physical synthesis workflow on two different design
tasks, we demonstrate that our new algorithm trains agents to expand the Pareto
frontier faster compared to other baselines. In particular, our algorithm achieves
comparable quality results with only 20% of the samples compared to the scalarized
baseline. Additional ablation studies confirm that both exploration and exploitation
components work together to accelerate the Pareto frontier expansion.

1 Introduction

Many hardware design problems are combinatorial, such as chip design [1, 2] and verification [3].
They are often NP-hard so people design domain-specific heuristics to exploit problem structures to
produce good solutions in a reasonable amount of time. Crafting those heuristics is time-consuming
and requires a deep understanding of a particular problem. Automating this process has a significant
impact on many applications and has been an increasingly popular area of research.

In this work, we focus on a multi-objective hardware design problem of prefix adder design [4],
which is an essential building block for digital circuits. Recently, reinforcement learning (RL) agents
achieved better performance than commercial tools [5] in this task. The existing approach circumvents
the multi-objective property and applies linear scalarization [6] to reduce it to a scalar version. The
scalarization method requires a large number of samples, leading to scalability issues. For example,
the method in [5] takes over 8000 CPU days to optimize a single adder. We propose a much more
sample-efficient multi-objective RL algorithm by resetting RL agents to promising initial states. Our
empirical evaluations show a 5x reduction in sample complexity while matching or outperforming
existing baselines.

In summary, our contributions are as follows:

• We propose adaptively resetting new episodes to states derived from the Pareto frontier
constructed from an agent’s cumulative past experience. Our proposed method consists of
two components: 1) identify a particular state on the Pareto frontier for modifications; 2) a
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state perturbation method to ensure diversity of resulting reset states. Such a reset algorithm
tackles the classical exploration-exploitation challenges in the context of initial states.

• We provide a comprehensive study with multiple baseline reset methods on a real-world
circuit design problem and demonstrate the efficacy of the proposed method in terms of final
Pareto frontier quality and computation savings.

• We provide an ablation study on the two components to show that both contribute positively
to the overall improvement.

2 Related Works

Multi-objective Reinforcement Learning. Several papers have studied applying reinforcement
learning to solve multi-objective optimization problems [6, 7, 8, 9, 10, 11]. Different approaches
include reducing to a scalarized version [6, 8] or tackling the multi-objective problem directly [9].
However, most empirical evaluations are on toy environments such as Deep Sea Treasure and a
multi-objective version of Mountain Car [12]. In this work, we study a practical problem in prefix
circuit design [5].

Data-driven Algorithm Design. In contrast to hand-crafting decision modules in heuristic algo-
rithms, the principle of data-driven algorithm design seeks to learn them from data. There are two
main categories based on interactions with a traditional algorithm [13]. The first one is to replace
(parts of) an algorithm with learned components. For example, in the branch-and-bound algorithm for
solving integer programs, researchers have studied replacing the branch variable selections [14, 15],
node selections [16] and cutting plane generation [17]. Recently, end-to-end models have performed
competitively in solving traveling salesman problems [18, 19]. The second category is “algorithm
configuration”, where one improves an algorithm by tuning its many parameters without explicitly
changing its decision modules. For example, in the integer program solver Gurobi, there are many
important parameters controlling its solving behavior, such as branching strategies [20]. Different
data-driven approaches are applied toward learning to set those parameters to their best values,
including genetic algorithms [21] and model-based optimization [22].

3 The Prefix Adder Design Problem

3.1 Markov Decision Process Formulation

We now describe the prefix adder design problem, originally proposed in [5]. Given k inputs,
x0, x1, · · · , xk−1, their prefix sums are k terms such that yi = xi ◦ xi−1 ◦ · · ·x0 for 0 ≤ i ≤ k − 1,
where ◦ is a binary associative operator [23]. A prefix adder computes all the prefix sums and is
represented as a prefix graph as in Figure 1. There are two competing objectives to optimize in a
prefix graph: delay and area. For example, the left adder computes prefix sums sequentially and
the right one parallelizes the process by introducing an intermediate node depicted in green, which
computes x3 ◦ x2. The benefit of parallelization is that we can finish computing all prefix sums faster,
visually shown by a lower depth in the adder, but it requires more area, which appears as an extra
node in the prefix graph. We create a multi-objective MDP by defining the state space as all valid
prefix graphs and the action space as all modifying actions we can perform on a prefix graph. The
actions include removing an existing node and adding a new node. This MDP has a deterministic
transition function. For a state action pair (s, a) and its resulting new state s′, the vector reward is
[area(s)− area(s′), delay(s)− delay(s′)], where the areas and delays are computed by physical
syntheses with OpenPhySyn 1 [24].

3.2 Evaluation Metrics

We evaluate optimization results with two metrics: hypervolume and linear scalarization scores. In a
multi-objective optimization problem with n objectives, we say a solution x Pareto dominates another
one x′ if xi ≤ x′

i for all 1 ≤ i ≤ n. Given a set of solutions, the Pareto frontier consists of those
not Pareto dominated by any solution, illustrated by the blue dots in Figure 2a. All the solutions on

1https://github.com/scale-lab/OpenPhySyn, BSD-3-Clause license
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Figure 1: Two 4-bit prefix graph examples. The nodes at the top are inputs. Labels are outputs for
each node. With the addition of the green intermediate node on the right, we have a prefix adder with
a lower delay (lower depth) for the cost of a larger area (more nodes). For a k-bit adder, the valid
state space has size O(2k
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Figure 2: A two-objective example to illustrate the definitions. (a) Every green triangle is Pareto-
dominated by some blue circle. The blue circles together comprise a Pareto frontier. (b) Given a
reference point, the enclosed region represents all points (within the boundary) Pareto-dominated by
some point in the Pareto frontier. The hypervolume is the volume of this region.

the Pareto frontier is Pareto optimal. The hypervolume of a Pareto frontier is the region’s volume
within the boundary given by a reference point (Figure 2b. In our adder design problem, we have two
objectives so the hypervolume is the area between the Pareto frontier and a reference point.

For a delay weight w ∈ (0, 1), we can compute a preference vector [w, 1− w] which specifies the
desired trade-off between area and delay. The linear scalarization score of a design is w · delay +
(1− w) · area. We will compare various methods across different delay weights.

4 Adaptive Pareto Reset Algorithm for Multi-objective RL

In this section, we describe our proposed adaptive Pareto reset algorithm (Algorithm 1) for multi-
objective RL. Our reset algorithm creates a new reset state in three steps: first, we identify k states
in the current Pareto frontier that align best for a preference (line 5-6) (having the lowest k linear
scalarization scores). Next, we randomly choose one of the k states (line 7). Then we perturb
the chosen state to create a new initial state (line 8). The perturbation function can be problem
specific, and it serves to inject diversity into the initial state distribution. This three-step procedure is
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Algorithm 1 Adaptive Pareto Reset for Multi-objective RL

Input: Preference set W , an initial policy π, the size of a greedy set k, a perturbation function
perburb, the number of training episodes N , the time horizon for each episode T

1: Initialize the Pareto optimal set pareto← ∅
2: for episode← 1, · · · , N do
3: Initialize the objective vector v0 ← ∞⃗ (we aim to minimize each objective)
4: Sample a preference w ∈ W
5: For each state in pareto, compute its linear scalarization score wtv
6: Find the k states with the k smallest scores
7: Randomly choose 1 out of the k states as s
8: Perturb to create the initial state s0 ← perturb(s)
9: for t← 0, · · · , T do

10: Select an action at = π(st, w)
11: Observe a new state st+1

12: Receive a vector objective vt+1

13: Reward rt ← vt − vt+1

14: if st+1 is not Pareto-dominated by all states in pareto then
15: Store st+1 with its objective values: pareto← pareto ∪ {(st+1, vt+1)}
16: end if
17: end for
18: end for

Original (depth: 6, num nodes: 76) Variant 1 (depth: 8, num nodes: 69) Variant 2 (depth: 7, num nodes: 74) Variant 3 (depth: 7, num nodes: 73)

Figure 3: An example perturbation function for 32-bit prefix graphs. The first graph is an original
and the following three are sample graphs obtained by randomly removing 10% of nodes from the
original. Note that due to a legalization step to ensure a graph is a valid prefix graph, the number of
nodes is not exactly 10% fewer. This procedure generates a diverse set of results, both in terms of
depth and the number of nodes.

reminiscent of the fundamental exploration-exploitation problem in RL: first, we select a state in a
greedy fashion mixed in with some randomization, then we explore its neighboring state space via
perturbations. As a necessary step for the greedy selection step, we keep track of an evolving Pareto
frontier by adding new states (line 14-15).

In combinatorial optimization problems, the perturbation function generates a neighborhood from a
solution as is common in large neighborhood search algorithms [25]. For our prefix adder design
problem, the perturbation function accepts a prefix graph and randomly removes a fraction of its
nodes. Figure 3 shows an example of randomly removing 10% of nodes in a prefix graph. The goal
of the perturbation operation is to generate a diverse set of graphs that share structural features with
the original graph. This is confirmed in the examples where the resulting new graphs have different
depths and numbers of nodes. The structural similarity is visually present as well.

Perturbation functions exist for other combinatorial optimization problems as well. For example,
in TSP, one can modify an existing tour solution by performing k-opt operations [25]. In solving
general integer programs, one can mutate an existing solution by changing the values of a subset of
variables [26].

5 Experiments on Prefix Adder Design

In this section, we apply our adaptive Pareto reset algorithm to two prefix adder design problems,
one for 32-bit and the other for 64-bit. The state space for a k-bit adder is O(2k

2

) [5], so these two
problems pose significant challenges in exploration and thus make great case studies for validating
any speed-up effect brought by a new reset method.
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In Section 5.1, we provide details on the learning method, the model architecture, and baselines. We
present the main results in Section 5.2 with several baselines. In Section 5.3, we provide an ablation
study on the two components in the proposed reset algorithm: greedy selection and perturbation. The
results suggest both components strengthen the algorithm individually.

5.1 Experiment Setup

Environment Details & Model Architecture. We adopt the double DQN model [27] to represent
the RL policy. Following the model architecture by [28], our model takes a preference vector as
part of the input. For the 32-bit design task, the preference setW has 12 elements: {(w, 1 − w)}
for 12 values of w in the range between 0.05 and 0.95. Here, w is the delay weight specifying how
much we wish to balance delay and area. For the 64-bit design task, we use a preference set of 19
delay weights. To ensure ample coverage for each preference, we divide each preference set into four
groups and train a separate agent for each group. For each transition (s, a, s′) and a delay weight,
we compute Bellman update targets as follows, where θt and θ′t parametrize the online and target
networks respectively in double DQN [27].

T Q(s, a, w) = r(s, a, w) + γQ(s′, argmax
a′∈A

wTQ(s′, a′, w; θt); θ
′
t) (1)

We follow the feature representation in [5] to represent an N -bit prefix graph with an N ×N image.
We incorporate the preference as part of the input by first embedding the preference vector into an
image of the same shape, and then adding it to the prefix graph image, as shown in Figure 5. Our
DQN architecture combines convolutional layers and residual blocks similar to the architecture used
in AlphaZero [29]. There are multiple output heads corresponding to estimated Q values for delay
and area by adding or deleting nodes.

We follow the reset algorithm in Algorithm 1 with k = 5 and the perturbation function of pruning
10% of nodes in a prefix graph. We name this instantiation GREP (GReedy-Explore-Prune).

Baselines. We compare with 5 baseline methods. The first one (SCALAR) is the scalarized DQN
algorithm in [5], where the multi-objective RL is reduced to a single-objective version by training a
separate agent for each preference vector. The following three are multi-objective RL baselines. They
differ in their episode reset methods. DEFAULT chooses to reset an episode to either a ripple-carry
or a Sklansky graph [30], which are prefix graphs with the minimal number of nodes and the minimal
depth, respectively. RANDOM randomly chooses a prefix graph from the current Pareto frontier
as the new reset state. GREEDY chooses the prefix graph with the minimal weighted score for the
preference vector of the new episode (line 4 in Algorithm 1). Finally, we have a non-RL baseline with
GA (genetic algorithm) as a classical baseline popular in combinatorial optimizations for the 32-bit
environment. Each GA run optimizes for a single preference vector. All of the RL-based methods ran
for 4 days except for 32-bit SCALAR runs, which ran for 7 days. Each run used 4 NVIDIA A100
GPUs for double DQN training and 96 CPUs for physical synthesis. Due to the high computational
resource demand, we repeat the 32-bit experiment with 3 random seeds and the 64-bit experiment
with 2 random seeds. GA runs lasted 5 days and each uses 48 CPUs.

5.2 Main Results

Method 32 bit 64 bit
Hypervolume # Min Hypervolume # Min

GA 96.64± 0.15 0 − −
SCALAR 103.01± 0.08 6 156.80± 0.74 8
DEFAULT 101.85± 0.13 1 150.92± 1.18 2

GREP 103.96± 0.05 8 164.91± 0.19 16

Table 1: Compared to non-adaptive reset schemes (SCALAR, DE-
FAULT), GREP achieves higher hypervolumes at convergence and
has a higher number of minimal linear scalarization scores. GA is
significantly worse when compared to RL-based methods.

Compare with Non-
adaptive Reset Baselines
and GA. We first compare
GREP with SCALAR and
DEFAULT, which are two
methods with non-adaptive
reset schemes. Figure 4
shows the hypervolume
growth as the total CPU
time grows. Because of the
reduction approach SCALAR
takes, it requires a lot more
CPU time compared to GREP
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(a) Hypervolume progress for the 32-bit environment.
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(b) Hypervolume progress for the 64-bit environment.

Figure 4: In both environments, GREP increases hypervolume at a faster path than other methods
and achieves the highest value at convergence.

and DEFAULT. GREP matches the hypervolume of SCALAR at convergence with only 2.4% and
3.9% of the CPU time for the 32-bit and 64-bit settings, respectively. Comparing GREP with
DEFAULT at convergence, GREP achieves a 2.1% and 9.3% increase in hypervolume (Table 1).
Given they have the same CPU compute resources, such an improvement demonstrates the efficacy
of our proposed reset algorithm in improving the Pareto frontier. Moreover, GREP also performs
competitively across the entire preference space. In the 32-bit environment, GA plateaus at a much
lower hypervolume. This supports the conjecture that the prefix graph search space is hard for a
stochastic search approach to navigate and that we need RL to explore more efficiently.

Method 32 bit 64 bit
Hypervolume # Min Hypervolume # Min

RANDOM 103.80± 0.05 7 160.56± 0.37 0
GREEDY 103.14± 0.17 2 161.52± 0.45 2

GREP 103.96± 0.05 9 164.91± 0.19 17

Table 2: GREP compares favorably with other adaptive reset base-
lines in the 32-bit environment and is significantly better in the 64-bit
environment.

Compare with Adaptive Re-
set Baselines. We compare
with two baselines utilizing
adaptive reset, RANDOM
and GREEDY. Table 2 shows
the hypervolume and the num-
ber of preferences with mini-
mal linear scores for the three
methods. We provide the full
table with all linear scalariza-
tion scores in the appendix. GREP outperforms other methods in both metrics. RANDOM proves to
be relatively strong in the 32-bit environment but is clearly much worse in the 64-bit environment.
RANDOM and GREEDY represent two extremes in the exploration-exploitation trade-offs. GREP
strikes a balance and achieves better performance overall. An interesting observation is that in the
32-bit environment, RANDOM is particularly strong for preferences where one values delay more
(see the full table in the appendix), which suggests exploration is more beneficial in this region of the
Pareto frontier. We leave the question of adapting reset schemes according to preference vectors as
future work.

5.3 Ablation Studies

In this section, we provide ablation studies on two components in the GREP reset algorithm. We first
remove the exploration step (line 7 in Algorithm 1) and replace it with the greedy selection, i.e., we
always pick the prefix graph with the minimal weighted score to perform the pruning. We label this
variant as NO-EXPLORE. The second variant, named NO-PRUNE, removes the pruning step (line
8 in Algorithm 1). Both components aim to increase the diversity of reset states. As shown in Table 3,
removing either component results in a statistically significant reduction in hypervolume and worse
overall linear scalarization scores.
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6 Conclusion

Method 32 bit 64 bit
Hypervolume # Min Hypervolume # Min

NO-EXPLORE 103.66± 0.08 7 163.17± 0.25 5
NO-PRUNE 103.33± 0.14 4 161.61± 2.54 5

GREP 103.96± 0.05 10 164.91± 0.19 15

Table 3: Removing either the EXPLORE or the PRUNE step results
in lower hypervolumes at convergence and worse linear scalarization
scores.

This work introduces a new
reset algorithm for multi-
objective RL which balances
the exploration-exploitation
trade-offs in initializing new
episodes. By modifying states
from the evolving Pareto fron-
tier, our algorithm places an
agent in states that are simul-
taneously promising, based
on their similarities to known good states, and diverse, thanks to the exploration and perturba-
tion applied. We validate our approach with a challenging real-world prefix circuit design problem
and our empirical results demonstrate that the proposed algorithm enables significant improvements
in sample efficiency.
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A Appendix

A.1 Prefix Adder Basics

Parallel prefix computations can be represented as a directed acyclic prefix graph where every
computation unit zi:j is a graph node that performs a single operation on a pair of inputs: zi:j =
zi:k ◦ zk−1:j where i ≥ k > j. We use the notation from [31] where the most and least significant
bits (MSB, LSB) of computation node zi:j is (i, j). Using this notation we will term the node (i, k)
as the upper parent of (i, j) and the node (k − 1, j) as its lower parent.

9



Every legal N -input prefix graph must have input nodes (i, i), output nodes (i, 0) for 1 ≤ i ≤ N − 1,
and the input/output node (0, 0). Furthermore, every non-input node must have exactly one upper
parent (up) and one lower parent (lp) such that:

LSB(node) = LSB(lp(node))

LSB(lp(node)) ≤MSB(lp(node))

MSB(lp(node)) = LSB(up(node))− 1

LSB(up(node)) ≤MSB(up(node))

MSB(up(node)) = MSB(node) (2)

A.2 Reinforcement Learning Environment

The PrefixRL state space S consists of all legal N -input prefix graphs. N -input graphs can be
represented in a N ×N grid with rows representing MSB and columns representing LSB. Note
that the input nodes (MSB = LSB) will lie on the diagonal, output nodes will lie on the first
column (LSB = 0) and locations above the diagonal (LSB > MSB) cannot contain a node. The
remaining (N−1)(N−2)/2 locations where non-input/output nodes may or may not exist define the
O(2(N−1)(N−2)/2) = O(2N2

) state space of N -input prefix graphs. For example, 32-input graphs
will have |S| = O(2465) with a lower exact value because not all combinations of nodes in those
locations will meet the legality constraints in (2).

The action space A for an N -input prefix graph consists of two actions (add or delete) for any
non-input/output node i.e. where LSB ∈ [1, N − 2] and MSB ∈ [LSB + 1, N − 1]. Hence,
|A| = (N − 1)(N − 2)/2. The environment evolution through T always maintains a legal prefix
graph by:

1. Applying a legalization procedure after an action that may add or delete additional nodes to
maintain legality.

2. Forbidding redundant actions that gets undone by the legalization procedure.

During legalization, the upper parent of a node, up(node), is the existing node with same MSB and
the next highest LSB. The lower parent of a node is computed using the node and its upper parent
(2):

(MSBlp(node), LSBlp(node)) = (LSBup(node) − 1, LSBnode)

An illegal condition happens only when the lower parent lp(node) of a node does not exist, so the
legalization procedure adds any missing lower parent nodes.

The action of adding a node that already exists (in nodelist) is redundant and is forbidden. Deleting
is limited to nodes in minlist (nodes that are not lower parents of other nodes) to prevent legalization
from adding back deleted nodes.

A.3 Genetic Algorithm Details

For our genetic algorithm baseline we use a standard genetic algorithm with crossover and mutation
[32]. Similar to the SCALAR baseline we run multiple single-objective genetic algorithm runs
and generate the Pareto frontier from the union of all explored prefix adders. We use a population
size of 1000. The individuals of the population are the flattened representations of the prefix graph
with a Boolean value representing whether or not that prefix node is present. A single mutation
is represented by a random inversion of a single Boolean value. Each individual is initialized by
randomly choosing either the ripple-carry or Sklansky prefix structure and performing 200 random
mutations. Each generation we assign a fitness score to each individual as the weighted score of delay
and area. Each successive generation is generated by taking the top 50% most fit individuals from the
previous generation and from them generating a new population. The new population is generated
40% by a mutation procedure, 40% by a crossover procedure, 10% by preserving the top individuals
from the previous generation unchanged and 10% by the random initialization procedure mentioned
above. The mutation procedure creates a new individual by randomly sampling a single parent and
then performing up to 50 random mutations. The crossover procedure creates a new individual by
randomly sampling two parents and then randomly choosing one of those two parents to supply the
value at each node location.
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A.4 Double DQN Training Details
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Figure 5: The DQN architecture in the double DQN model. We use B = 32 and C = 256.

Based on the N ×N grid based representation of prefix graphs described in Section A.2, the input to
the neural network is a N ×N × 4 tensor where the 4 channels encode node features as:

1. 1 if node (MSB,LSB) in nodelist, 0 otherwise

2. 1 if node (MSB,LSB) in minlist, 0 otherwise

3. level of node (MSB,LSB) in nodelist, 0 otherwise

4. fanout of node (MSB,LSB) in nodelist, 0 otherwise

where the fanout of a node refers to the number of children it has and the level of a node refers to its
topological depth from input nodes in the prefix graph. Features are normalized to [0, 1].

For both 32-bit and 64-bit environments, we use the architecture in Figure 5 with 32 residual blocks
and 256 channels. The preference embedding network consists of 2 feedforward layers, each with 64
hidden units and the ReLU activation function.

For the double DQN training, we use a learning rate of 4× 10−5. The batch size is 192 for 32-bit
and 18 for 64-bit. The target network is synchronized with the online network after every 60 updates.

During policy rollout, we use ϵ-greedy to explore. Our ϵ value is randomized similar to the scheme
in [33]. Specifically, we first sample a random number i between 0 and 1023, then the ϵ value is
calculated as 0.4(1+7i/1023) for a new episode.

A.5 Full Linear Scalarization Scores

For each delay weight w, the linear scalarization score is w ∗ delay + (1 − w) ∗ area, where the
delay and area are normalized from their raw values. The delay normalization scalar is 0.1 and the
area normalization scalar is 100.

11



A.5.1 Linear Scalarzation Scores for the 32-bit Environment

Delay Weight GA SCALAR DEFAULT GREP
0.05 2.105 +/- 0.0 2.092 +/- 0.0 2.101 +/- 0.001 2.075 +/- 0.001
0.08 2.194 +/- 0.007 2.191 +/- 0.002 2.206 +/- 0.002 2.163 +/- 0.001
0.1 2.239 +/- 0.007 2.235 +/- 0.002 2.256 +/- 0.003 2.216 +/- 0.003
0.2 2.417 +/- 0.006 2.412 +/- 0.003 2.442 +/- 0.006 2.388 +/- 0.003
0.3 2.575 +/- 0.009 2.562 +/- 0.004 2.593 +/- 0.006 2.536 +/- 0.004
0.4 2.717 +/- 0.01 2.708 +/- 0.004 2.724 +/- 0.004 2.668 +/- 0.001
0.5 2.846 +/- 0.009 2.775 +/- 0.0 2.781 +/- 0.002 2.786 +/- 0.003
0.6 2.967 +/- 0.007 2.819 +/- 0.0 2.826 +/- 0.004 2.826 +/- 0.004
0.7 3.078 +/- 0.006 2.86 +/- 0.001 2.865 +/- 0.003 2.86 +/- 0.004
0.8 3.168 +/- 0.012 2.885 +/- 0.0 2.889 +/- 0.003 2.884 +/- 0.002
0.9 3.191 +/- 0.013 2.878 +/- 0.004 2.889 +/- 0.003 2.884 +/- 0.002
0.95 3.169 +/- 0.016 2.816 +/- 0.003 2.822 +/- 0.001 2.844 +/- 0.006

# Min 0 6 1 8
Table 4: Linear scalarization scores for 32-bit non-adaptive reset baselines.

Delay Weight RANDOM GREEDY GREP
0.05 2.074 +/- 0.0 2.078 +/- 0.001 2.076 +/- 0.001
0.08 2.168 +/- 0.005 2.168 +/- 0.004 2.162 +/- 0.001
0.1 2.22 +/- 0.005 2.218 +/- 0.004 2.212 +/- 0.001
0.2 2.399 +/- 0.002 2.4 +/- 0.004 2.391 +/- 0.003
0.3 2.557 +/- 0.005 2.559 +/- 0.008 2.541 +/- 0.0
0.4 2.702 +/- 0.01 2.714 +/- 0.008 2.669 +/- 0.0
0.5 2.786 +/- 0.0 2.796 +/- 0.015 2.788 +/- 0.003
0.6 2.831 +/- 0.005 2.837 +/- 0.013 2.83 +/- 0.004
0.7 2.862 +/- 0.0 2.867 +/- 0.003 2.864 +/- 0.004
0.8 2.887 +/- 0.006 2.885 +/- 0.001 2.885 +/- 0.002
0.9 2.881 +/- 0.001 2.886 +/- 0.0 2.886 +/- 0.002
0.95 2.82 +/- 0.001 2.832 +/- 0.006 2.846 +/- 0.01

# Min 7 2 9
Table 5: Linear Scalarization scores for 32-bit adaptive reset baselines.

Delay Weight NO-EXPLORE NO-PRUNE GREP
0.05 2.077 +/- 0.001 2.082 +/- 0.002 2.075 +/- 0.001
0.08 2.166 +/- 0.001 2.167 +/- 0.001 2.163 +/- 0.001
0.1 2.217 +/- 0.001 2.216 +/- 0.004 2.216 +/- 0.003
0.2 2.39 +/- 0.005 2.4 +/- 0.007 2.388 +/- 0.003
0.3 2.539 +/- 0.008 2.557 +/- 0.01 2.536 +/- 0.004
0.4 2.677 +/- 0.006 2.706 +/- 0.011 2.668 +/- 0.001
0.5 2.785 +/- 0.005 2.795 +/- 0.009 2.786 +/- 0.002
0.6 2.829 +/- 0.006 2.846 +/- 0.013 2.826 +/- 0.004
0.7 2.863 +/- 0.002 2.87 +/- 0.006 2.86 +/- 0.004
0.8 2.885 +/- 0.001 2.883 +/- 0.002 2.884 +/- 0.002
0.9 2.894 +/- 0.002 2.876 +/- 0.004 2.888 +/- 0.002

0.95 2.839 +/- 0.005 2.827 +/- 0.005 2.845 +/- 0.006
# Min 7 4 10

Table 6: Linear Scalarization scores for 32-bit ablation studies.
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A.5.2 Linear Scalarzation Scores for the 64-bit Environment

Delay Weight SCALAR DEFAULT GREP
0.05 4.244 +/- 0.012 4.276 +/- 0.0 4.201 +/- 0.004
0.1 4.535 +/- 0.018 4.571 +/- 0.006 4.341 +/- 0.011
0.15 4.545 +/- 0.006 4.597 +/- 0.004 4.368 +/- 0.0
0.2 4.55 +/- 0.002 4.594 +/- 0.003 4.369 +/- 0.004
0.25 4.54 +/- 0.001 4.587 +/- 0.007 4.364 +/- 0.002
0.3 4.51 +/- 0.0 4.568 +/- 0.02 4.358 +/- 0.002
0.35 4.471 +/- 0.004 4.547 +/- 0.034 4.352 +/- 0.001
0.4 4.426 +/- 0.005 4.527 +/- 0.049 4.336 +/- 0.001
0.45 4.379 +/- 0.005 4.502 +/- 0.06 4.307 +/- 0.007
0.5 4.333 +/- 0.005 4.46 +/- 0.076 4.277 +/- 0.013
0.55 4.276 +/- 0.001 4.395 +/- 0.077 4.248 +/- 0.019
0.6 4.217 +/- 0.002 4.331 +/- 0.078 4.218 +/- 0.025
0.65 4.156 +/- 0.004 4.266 +/- 0.08 4.169 +/- 0.035
0.7 4.09 +/- 0.003 4.196 +/- 0.077 4.108 +/- 0.036
0.75 4.024 +/- 0.001 4.118 +/- 0.068 4.045 +/- 0.037
0.8 3.958 +/- 0.0 4.036 +/- 0.056 3.971 +/- 0.03
0.85 3.879 +/- 0.006 3.916 +/- 0.04 3.883 +/- 0.012
0.9 3.76 +/- 0.007 3.771 +/- 0.022 3.794 +/- 0.006
0.95 3.622 +/- 0.006 3.626 +/- 0.003 3.67 +/- 0.001

# Min 8 2 16
Table 7: Linear scalarization scores for 64-bit non-adaptive reset baselines.

Delay Weight RANDOM GREEDY GREP
0.05 4.224 +/- 0.005 4.212 +/- 0.007 4.201 +/- 0.004
0.1 4.354 +/- 0.017 4.376 +/- 0.017 4.341 +/- 0.011
0.15 4.396 +/- 0.01 4.413 +/- 0.016 4.368 +/- 0.0
0.2 4.424 +/- 0.006 4.437 +/- 0.007 4.369 +/- 0.004
0.25 4.45 +/- 0.004 4.454 +/- 0.003 4.364 +/- 0.002
0.3 4.468 +/- 0.004 4.462 +/- 0.003 4.358 +/- 0.002
0.35 4.462 +/- 0.009 4.45 +/- 0.006 4.352 +/- 0.001
0.4 4.452 +/- 0.012 4.439 +/- 0.014 4.336 +/- 0.001
0.45 4.434 +/- 0.01 4.427 +/- 0.023 4.307 +/- 0.007
0.5 4.414 +/- 0.011 4.416 +/- 0.031 4.277 +/- 0.013
0.55 4.391 +/- 0.013 4.404 +/- 0.04 4.248 +/- 0.019
0.6 4.368 +/- 0.016 4.364 +/- 0.031 4.218 +/- 0.025
0.65 4.324 +/- 0.004 4.304 +/- 0.037 4.169 +/- 0.035
0.7 4.272 +/- 0.014 4.235 +/- 0.039 4.108 +/- 0.036
0.75 4.202 +/- 0.024 4.139 +/- 0.026 4.045 +/- 0.037
0.8 4.105 +/- 0.015 4.039 +/- 0.013 3.971 +/- 0.03
0.85 3.973 +/- 0.006 3.906 +/- 0.022 3.883 +/- 0.012
0.9 3.814 +/- 0.004 3.748 +/- 0.021 3.794 +/- 0.006
0.95 3.628 +/- 0.003 3.582 +/- 0.016 3.67 +/- 0.001

# Min 0 2 17
Table 8: Linear Scalarization scores for 64-bit adaptive reset baselines.
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Delay Weight NO-EXPLORE NO-PRUNE GREP
0.05 4.197 +/- 0.013 4.214 +/- 0.002 4.201 +/- 0.004
0.1 4.306 +/- 0.004 4.358 +/- 0.015 4.341 +/- 0.011

0.15 4.391 +/- 0.033 4.445 +/- 0.043 4.368 +/- 0.0
0.2 4.426 +/- 0.044 4.487 +/- 0.042 4.369 +/- 0.004

0.25 4.438 +/- 0.042 4.524 +/- 0.04 4.364 +/- 0.002
0.3 4.438 +/- 0.036 4.536 +/- 0.041 4.358 +/- 0.002

0.35 4.434 +/- 0.033 4.518 +/- 0.043 4.352 +/- 0.001
0.4 4.424 +/- 0.027 4.496 +/- 0.042 4.336 +/- 0.001

0.45 4.4 +/- 0.018 4.472 +/- 0.04 4.307 +/- 0.007
0.5 4.376 +/- 0.01 4.446 +/- 0.039 4.277 +/- 0.013

0.55 4.353 +/- 0.001 4.405 +/- 0.046 4.248 +/- 0.019
0.6 4.317 +/- 0.016 4.359 +/- 0.053 4.218 +/- 0.025

0.65 4.272 +/- 0.031 4.298 +/- 0.069 4.169 +/- 0.035
0.7 4.192 +/- 0.027 4.22 +/- 0.072 4.108 +/- 0.036

0.75 4.104 +/- 0.017 4.112 +/- 0.056 4.045 +/- 0.037
0.8 4.011 +/- 0.004 3.994 +/- 0.037 3.971 +/- 0.03

0.85 3.916 +/- 0.01 3.866 +/- 0.019 3.883 +/- 0.012
0.9 3.806 +/- 0.019 3.729 +/- 0.008 3.794 +/- 0.006

0.95 3.63 +/- 0.021 3.588 +/- 0.0 3.67 +/- 0.001
wins 5 5 15

Table 9: Linear Scalarization scores for 64-bit ablation studies.
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