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Abstract

Large neural network models are commonly trained through a combination of ad-
vanced parallelism strategies in a single program, multiple data (SPMD) paradigm.
For example, training large transformer models requires combining data, model,
and pipeline partitioning; and optimizer sharding techniques. However, identify-
ing efficient combinations for many model architectures and accelerator systems
requires significant manual analysis. This work presents an automatic partitioner
that identifies these combinations through a goal-oriented search. Our key findings
are that a Monte Carlo Tree Search-based partitioner leveraging partition-specific
compiler analysis directly into the search and guided goals matches expert-level
strategies for various models.

1 Introduction

The rapid rise of large neural networks with significant memory and compute requirements have
made partitioning strategies critical for enabling their training and inference. For example, large
language models such as GPT-3 [2], Gopher [22], PaLM [5] or Chinchilla [10] have relied on various
combinations of Megatron-style layer sharding [28, 20], batch/data parallelism, pipeline parallelism
[19, 35, 11], or ZeRO sharding/offloading [23, 25].

Model sizes across applications have been outpacing device memory and FLOPS growth: Google
TPU [14, 15] v2 reports 46 TFLOPS / 16 GB of HBM per chip, while v4 reports 275 TFLOPS / 32
GB2 over a period where model parameters – and consequently FLOPS requirements – increased by
approximately 4 orders of magnitude. The use of sophisticated parallelism strategies is, therefore,
unavoidable. Despite progress in the development of partitioning APIs (e.g., GSPMD-style [34, 18]
partitioning annotations exposed in front-end APIs by JAX [1]) or parallelism frameworks such as
DeepSpeed [24], customizing new research models to hardware configurations often still requires
expert analysis to account for model-specific compute and communication patterns. Recent work has
proposed automated parallelism frameworks specifically targeting large neural network training. For
example, Alpa [37] defines a hierarchical space of intra- and inter-operator parallelism and solves
sub-problems through integer linear programming (ILP). Unity [29] as an extension of FlexFlow
[13] and TASO [12] jointly optimizes parallelism and algebraic transformations through hierarchical
search. There exists work on applying RL for the partitioning problem [31], recently combining RL
with a constraint solver and achieving good generalization properties [32].
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We approach automated parallelism with a different philosophy. Our automated SPMD partitioner is
closely integrated with our PartIR compiler stack. PartIR [30] provides our partitioner with the ability
to validate partitioning decisions, expose a host of static analyses about the module, automatically
propagate sharding decisions across a module, and produce analytical cost model estimates. The latter
is obtained using a simulator of a lowered and communication-optimized partitioned module at the
compiler level. By contrast, ILP-based encodings [37] attempt to address scalability issues in large
graphs by e.g. heuristically grouping operators to prune the search space effectively – furthermore,
there may be communication optimizations post-ILP that cannot be captured when deciding the
parallel plan. FlexFlow [13] addresses scalability by making the simulator in their MCMC search
incremental and relies on pre-defined layers/block-operators (e.g. Multi-Head Attention). On the
other hand, our approach can partition any array operation of a low-level tensor IR (XLA) that
high-level NN libraries compile. As we show, our tight compiler integration allows our search to be
data and size efficient and run routinely as part of our user (typically researchers) iterative workflows.

In this work, we extend our automated partitioner, Automap [27], to support partitioning a model
across multi-dimensional device topology and discover expert-level composite SPMD partitioning
strategies. Our contribution is a design of a goal-oriented Monte Carlo tree search (MCTS) [3] that
decomposes the problem into smaller sub-problems. Furthermore, we incorporate a partitioning-
specific compiler analysis into the MCTS to reduce both the nodes and edges of the tree, improving the
search’s robustness. We show that our partitioner discovers composite expert-level SPMD strategies
for common models, such as Transformers and GraphNets. Moreover, it produces significantly better
than human-written strategies for models as UNet, for which no known strategy is available.

2 Background

2.1 Logical Meshes and Composite Strategies

Figure 1: The composite strategy of batch and model
parallelism over mesh {batch:N, model:M}. We also
show communication patterns that may emerge; on the
left, possible communication along the model axis (e.g.,
Megatron activation reductions), and on the right, com-
munication along the batch axis (e.g., gradient reduc-
tions). The color coding denotes the unique parameter
shards that each device holds; e.g., all devices along the
batch axis holds the same shard of parameters.

Leveraging composite partitioning techniques has enabled the training of recent large models [2, 22,
10]. The main idea is to structure the available accelerator devices into an n-dimensional logical mesh
(which will typically, but not necessarily, correspond to the physical communication topology). For
instance, we may view 32 TPU devices as a 4x8 mesh or a system of 2 GPU servers with 16 GPUs
each as a 2x16 mesh. Once we are given such a logical mesh of available devices, e.g., with a 2D
mesh, a conventional strategy would be to do batch parallelism over one axis and parameter sharding
(model parallelism) over the other. Figure 1 graphically depicts this strategy. ZeRO-style sharding of
the optimizer [23] (on top of batch parallelism, and possibly also parameter sharding) is simply a
different stage that shards the optimizer parameters along the axis used for batch parallelism.

Conceptually, each stage of a composite strategy, like the above, optimizes for specific objectives. For
example, batch parallelism and parameter sharding typically improve runtime (while also reducing
memory requirements); whereas ZeRO-style optimizer sharding aims mainly towards improving
memory (but may improve runtime too, as the typically memory-bound vector operations of the
optimizer update are sharded, as was already observed in precursor work [33]). ZeRO “stage-2”
optimizer sharding may not increase communication cost since it replaces AllReduce operations with
pairs of parameter AllGather and gradient ReduceScatter. ZeRO “stage-3” aims to further improve
memory by introducing a separate parameter AllGather for the forward and the backward pass of
a model; hence may slightly increase the runtime in favor of keeping smaller tensors live across
forward and backward computation. Note that, in our setting, the logical mesh will be given ahead of
time by the user; the partitioner’s task is to discover composite strategies like those described above
based on user-provided objectives.
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// worklist = {%arg0, %arg1, %arg2}
func f(%arg0, %arg1, %arg2) {

%0 = add(%arg0, %arg1)
...

}

// worklist = {%arg2}
func f(%arg0, %arg1, %arg2) {

%0 = tile 0 "x" (%r : range <N>) {
%slice0 = slice 0 %arg0[%r]
%slice1 = slice 0 %arg1[%r]
%a = add(%slice0, %slice1)
yield %a

}
...

}

Figure 2: Sharding argument %arg0 along axis batch in the left module causes %arg1 to also
become sharded; leaving us with a worklist of just %arg2 and the rewritten module on the right.

2.2 PartIR rewriting for SPMD partitioning

The PartIR compiler infrastructure accepts a user-defined ML model in the form of an MLIR [17]
module, a user-provided mesh, and exposes rewrite actions on that module to express forms of
shardings. The key idea behind PartIR rewriting is to express parallelism of array operations, like z
= matmul(x, w), as parallel tiling or reduction loops, specifically tagged with the axis over which
these parallel loops range. e.g:

// Tiling loop derived from sharding x
// along dimension 0 on "batch" axis.
%z = tile 0 "batch" (%r : range <N>) {

%xs = slice 0 %x[%r]
%zs = matmul(%xs, %w)
yield %zs

}

// Reduction loop derived from sharding
// both inputs along a contracting
// dimension on "model" axis.
%z = sum "model" (%r : range <M>) {

%xs = slice 1 %x[%r]
%ws = slice 0 w[%r]
%zs = matmul(%xs, %ws)
yield %zs

}

Compiler-exposed sharding actions, of the form partition(parameter_id, dimension, axis),
introduce and propagate such tiling loops across the MLIR module, based on powerful propagation
rules that depend on the semantics of the array operations in hand.

Search with PartIR actions Automap [27] applies such actions to the module, guided by a worklist
consisting of the module arguments (e.g., model parameters, optimizer state and the data tensors
passed to a training step function). Suppose the compiler detects that the sharding of an argument can
be propagated to another argument. In that case, both are removed from the worklist and no longer
considered for further sharding actions (See Figure 2 for an example.)

As a result, a very small number of sharding actions can lead to high-quality partitions (e.g., low
communication overhead) within a reasonable search budget. This can be amplified by further
compressing the worklist with user-provided groupings of parameters that should be equi-sharded
(e.g. all transformer blocks across a large transformer model). The overall search is driven by a cost
model, typically simulated runtime cost and peak per-device memory obtained statically.

3 Multi-axis search

In this work, we extend Automap [27] to support multi-axis automatic partitioning, a capability that
our PartIR stack already supports through nesting tiling and reduction loops, as well as multi-axis
loop propagation. However, multi-axis partitioning increases the search complexity exponentially
for every axis. The search must consider the dependency between partitioning decisions and the
argument for partition, axis, and dimension. Compiler static analysis together with Automap’s [27]
worklist mechanism described above helps us prune the partitioning decision branching factor. This
section outlines the major additions needed to reduce the complexity of the problem and reach fast
expert-level sharding on several representative models.

3.1 Monte Carlo Tree Search for SPMD compilation

The automated partitioner is implemented as a Monte Carlo Tree Search (MCTS) [3] with upper
confidence bound for trees (UCT). The MCTS starts with no prior knowledge about the model’s
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partition, and by exchanging with PartIR partitioning actions for performance estimates, the MCTS
builds a policy that allows it to explore the partitioning space efficiently. Each action in the MCTS
translates to a one-hot encoding of a partitioning decision (argument, dimension and mesh axis). The
reward is the estimated performance calculated by PartIR and observed at the end of an episode.

The main users of our partitioner are researchers who partition their models during iterative research
workflows. In the next section, we discuss how the search can discover effective solutions quickly to
enable fast research iterations.

3.1.1 Domain specific enhancements over Automap

As in Automap [27], we leverage user equi-sharding annotations to partition repeated layers all at
once, as if partitioning a single layer, reducing the search space further. Moreover, we introduce
several domain-specific enhancements into the MCTS to improve its efficiency and reduce the
complexity of the problem in preparation for the multi-axis search.

Compressed state representation In the original Automap work, [27], the sequences of partition-
ing decisions identified the module’s state in the MCTS. However, PartIR infers and propagates
partitioning decisions of a single argument to other values across the module. For example, in
Figure 2, we can arrive to the module and worklist on the right by either partitioning %arg0 or %arg1.
This leads to an interesting observation; there could be several permutations of decisions within
the same axis that lead to a similar final partitioned model and increase the branching factor of the
search needlessly. PartIR provides a static analysis of the state of each variable of the model (e.g., on
which axes and dimensions it has already been sharded). We leverage this analysis to identify how
partitioning actions impact the module’s worklist. Such impact is then used to identify the state of the
module. This enhancement compresses the state-space of the MCTS, as there are fewer truly unique
states - akin to reducing the number of nodes in the tree, allowing the search to explore previously
infeasible regions to reach.

Action grouping Building on the previous finding, various partitioning decisions (actions) can lead
to the same state after propagation. This knowledge would save the search from having to take action
and find that out - akin to collapsing the out edge from the node, and effectively further reducing the
branching factor of the tree [4]. To achieve this, upon MCTS backpropagation, we assign the same
reward to any actions that lead to the same worklist sharding state. As a result, the MCTS expansion
policy does not have two consider separate actions that lead to the same worklist state, effectively
pruning the MCTS branching factor.

3.1.2 Meta-controller

Domain-specific enhancements reduce the search branching factor; however, the question of scaling
to handle the multi-axis complexity remains. This work proposes using a meta-controller to focus
the search effort on a single axis and a given objective. The meta-controller decomposes the global
objective into a hierarchy of goals of the form (axis, objective). The order of goals influences the
overall partitioning objective and reflects the expert’s preferences.

The meta-controller allocates a fixed budget to each goal and guides the search to focus on one
of them. Once a goal exhausts its allocated budget, the meta-controller analyses the best-found
partitioning strategy and replaces the model with the partitioned model if it finds it would improve
on the goal’s objective. After that, the search focus on the next goal. This design enables the search
to discover composite strategies by independently searching for partitioning strategies on each axis,
only considering a single objective. Exposing these scripted goals to the users allows them to encode
bespoke requirements, such as finer control over the trade-off between runtime and memory.

3.1.3 MCTS enhancements evaluation

This section evaluates how the enhancements described above enable Automap to work efficiently
in a multi-axis setting. Transformers are well understood and studied in the DNN scaling literature
[16, 10] and existing frameworks, such as DeepSpeed [24] Megatron-LM [28, 20], implement well-
known partitioning strategies for their partition (e.g. Megatron [28, 20] and ZeRO [23]). A success
metric for our work is to automatically discover Batch and Megatron model parallelism (BP and MP,
respectively), together with ZeRO-3 partition, given a Transformer model.
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(a) The odds that search discovers the composite
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Figure 3: MCTS enhancement that enables multi-axis search. ST: the state representation enhance-
ment, AG: action grouping, MC: meta-controller. + indicates the enhancement is enabled. Note that
it is impossible to do action grouping without partitioned arguments as the state.

Figure 3a shows the benefit of using the MCTS enhancements in improving the odds of discovering the
composite sharding strategy of BP+MT+ZeRO3. In all cases, only with the aid of the meta-controller
was the search able to discover the composite strategy. Enabling each enhancement improved the
odds of discovering the strategy, especially in constrained budget scenarios.

The search runs as part of the researcher development workflow and needs to be quick. In production,
our search budget is, on average, ≈ 1000 − 2000 trajectories. As the search is constrained for
trajectories, the enhancements must not negatively impact its throughput. Figure 3b evaluates their
impact. Using the meta-controller improves the search throughput significantly as it allows the rewrite
engine to skip checking the validity of partitioning actions on the inactive axis as the meta-controller
ensures the search is acting only on a single axis. The small reduction in throughput because of the
state and action grouping enhancement is mitigated by the fact that they aid in discovering complex
solutions sooner and are more robust, as shown in Figure 3a.

Next, we investigate how the meta-controller utilizes its budget and allocate a large budget (4000
trajectories) to it. Figure 4 shows the trajectories needed to achieve each expert-level partitioning
strategy. First, the meta-controller divides the maximum budget evenly between all the goals, which
has the side-effect that the search spends too many cycles on one goal; the search discovered BP’s
strategy in 50 trajectories, and it continued exploring until it exhausted its budget. Similarly, the
MT goal was achieved in the 250 trajectories. After that, however, it had to wait for the first goal
to exhaust its budget before continuing. The shaded bar shows the opportunity to improve the
search ability to finish quicker if it utilizes its budget smarter. We leave this as a discussion point on
removing the need for budget allocation or providing a smarter budget estimate for each axis. Another
opportunity for future work is the ability to discover these high-level goals automatically from data.
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Figure 4: The trajectories needed to discover ex-
pert partitioning strategies automatically. Validated
by analyzing the collectives reported in Table 1.

Table 1: The number of SPMD collectives of the
discovered partitioning strategies that correspond
to manual expert partitioning.

Strategy AllGather AllReduce ReduceScatter

BP 0 387 0
BP+MT 0 483 0
BP+MT+ZeRO3 578 97 386
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4 Evaluation

Case-studies. We evaluated our multi-axis search on three different model architectures:

• A 24-layer transformer model similar to GPT-3 [2] with input batch size of 16, dhead =
96, nhead = 24, dmodel = 1024. Training this model has an estimated 280GB memory
requirement making it infeasible to fit on any single device.

• A Graph Network Simulator (GNS) [26] model used in molecular structure prediction [7],
configured with 24 layers of message passing, 1024 MLP hidden sizes as well as 512 latent
sizes, with up to 10 molecule graphs per input batch (dynamically batched using jraph [6]).

• A UNet of the reverse process in a diffusion model [9], with a 32 batch size. It uses 9
residual blocks for the down-sampling convolutions and up-sampling one, with two residual
blocks in-between and an attention layer at 16× 8× 4 resolution with nheads = 16.

Hardware. The transformer experiments were conducted on 32 TPU v3 cores laid out in an 8x4 2D
mesh. The UNet and GNS models are smaller and conducted on 8 TPU v3 cores in a 2x4 2D mesh.
The hardware runtime was averaged over ten measurements following one warmup step.

Meta-controller settings. A key design decision for the meta-controller is its ability to translate user
requirements to meaningful search targets. At a high level, users want programs to fit into device
memory and run as fast as possible. Here, we experiment with how different manually specified
goals help achieve partitioning objectives. Eventually, we expect the meta-controller to handle the
sequencing of objectives automatically. We tested four predefined goals:

• RT_MEM_ALL: Improve runtime on each axis then reduce the memory on each axis.
• RT1_RT2_MEM1: Improve runtime on each axis and then aim to reduce the memory on

the batch axis. This goal is based on the same rationale behind a ZeRO3-like partitioning.
• RT1_RT2_MEM2: Similar to the previous but reduces memory usage on the model axis.
• RT_MP_ALL: Improve runtime on each axis while applying a progressively heavier memory

penalty if the model does not fit in memory.
• No controller: No meta-controller, the search runs with a cost function that estimates runtime

and a memory penalty term. The penalty term applies a linear cost based on exceeding the
available memory to discourage partitions that do not fit.

As a simplification, we allowed the search a budget of 4000 trajectories with our compiler (but no
actual hardware compilation), and the search results were compiled and tested on hardware.

In the remainder of this section, we evaluate the different meta-controller strategies and compare
them to the known expert partitioning baselines. Figure 5b shows the runtime-memory plot once
the model has been compiled and run on hardware. There is an obvious trade-off between the
model’s runtime and peak memory, with the leftmost and bottom-most being the best points of that
trade-off. These points drive the user requirement in designing the goals for the meta-controller.
For example, a user who needs a ZeRO3-like partitioning strategy that provides memory reduction
while maintaining a high training throughput RT1_RT2_MEM1 is an ideal strategy. However, a user
constrained for memory would opt for a strategy focused on memory reduction. For example, in our
initial experiments, we ran the same model with a 2x2 TPU topology (which has 16 devices). All
strategies failed to fit on-device memory (even ZeRO3 could only get the model down to 17GB >
16GB available on TPU v3); all strategies except for the RT_MEM_ALL that was able to bring it
down to 11GB by focusing on aggressive memory sharding, and still achieved an average of 1-second
runtime (compared to the initial model estimate of 8 seconds).

To further validate the search performance, we evaluated it on other models of very different archi-
tecture: UNet and GNS. UNet does not have a known best expert partitioning strategy. Therefore,
we used naive batch parallelism with ZeRO3 as a baseline. For GNS, we use edge-sharding [8] as a
baseline. Edge-sharding shards the edges into sub-graphs on each axis, such that the computation
is run concurrently. In particular, the original single-axis Automap has been used successfully to
partition GNS-style models [36] via edge sharding.

We can see in Figure 5c that GNS strategies focused on aggressively reducing the memory or
runtime have a significant advantage over edge-sharding. This illustrates the existence of non-trivial
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partitioning strategies that could partition the graph into smaller sub-graphs to run concurrently, and
each device only needs to store a smaller subset of the parameter and optimizer states. Similarly, in
Figure 5d, UNet exhibits an interesting point where there is a better policy than all other strategies.
This evaluation demonstrates that there are models, which are not being actively researched in the
scaling literature, that have the potential to train twice as fast with half the resources, even when
compared to strategies that are thought to be very effective (batch parallelism and ZeRO3).

Action sequence length. The depth of the decision tree is shortened by using the PartIR compiler
stack and its powerful sharding propagation technique and grouping of arguments. To discover the
BP+MT+ZeRO3 transformer sharding, the agent had to perform 13 actions; in contrast, to discover
our unique UNet solution, the search had to perform 30 ≈ 40 actions. Deciding the ideal depth of the
tree leads to faster convergence as the search does not have to go deeper than it should and allows us
to find unique solutions for models that require a higher-than-average sequence of sharding decisions.
This decision can be learned or integrated through the powerful compiler analyzer toolchain.

(a) The reference estimated initial non-partitioned
models performance.
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(c) A GNS model.
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Figure 5: A runtime and memory performance for the models after partitioning using different
partitioning strategies. The lower values are better. Shaded points are from different search seeds,
with the median search result in a bolder color.

5 Discussion and outlook

This work explores the idea of incorporating several optimization objectives (goals) to discover
composite partitioning strategies and proposes to improve MCTS efficiency through compiler analysis.
There are several simplifications made in this work that are worth revisiting. Budget estimation
for each goal is non-trivial, but further compiler analysis to approximate the cardinality of the
independent partitioning actions can be used to bound both episode lengths and budget. Moreover,
balancing local and global optimization goals is challenging and may require re-entrant search [21].
Finally, searching over heterogeneous SPMD meshes or temporal/pipeline strategies has not been
explored yet but opens additional opportunities for meta-controller improvements. We also point out
that leveraging compiler analysis in search is not free, and cost increases with model scale. In future
work, we plan to analyze the trade-offs between searching and analyzing in more depth.
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Kimberly Stachenfeld, Petar Veličković, and Alvaro Sanchez-Gonzalez. Jraph: A library for
graph neural networks in jax., 2020. URL http://github.com/deepmind/jraph.

[7] Jonathan Godwin, Michael Schaarschmidt, Alexander L Gaunt, Alvaro Sanchez-Gonzalez, Yulia
Rubanova, Petar Veličković, James Kirkpatrick, and Peter Battaglia. Simple GNN regularisation
for 3d molecular property prediction and beyond. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=1wVvweK3oIb.

[8] Yilin He, Chaojie Wang, Hao Zhang, Bo Chen, and Mingyuan Zhou. Edge partition mod-
ulated graph convolutional networks, 2022. URL https://openreview.net/forum?id=
ET1UAOYeU42.

[9] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in Neural Information Processing Systems, 33:6840–6851, 2020.

[10] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia
Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent
Sifre. Training compute-optimal large language models, 2022. URL https://arxiv.org/
abs/2203.15556.

8

http://github.com/google/jax
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2204.02311
http://github.com/deepmind/jraph
https://openreview.net/forum?id=1wVvweK3oIb
https://openreview.net/forum?id=ET1UAOYeU42
https://openreview.net/forum?id=ET1UAOYeU42
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556


[11] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Xu Chen,
HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng Chen. Gpipe: Efficient
training of giant neural networks using pipeline parallelism. In Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett,
editors, Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 103–112, 2019. URL https://proceedings.neurips.cc/paper/2019/
hash/093f65e080a295f8076b1c5722a46aa2-Abstract.html.

[12] Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and Alex Aiken.
Taso: Optimizing deep learning computation with automatic generation of graph substi-
tutions. In Proceedings of the 27th ACM Symposium on Operating Systems Principles,
SOSP ’19, page 47–62, New York, NY, USA, 2019. Association for Computing Machin-
ery. ISBN 9781450368735. doi: 10.1145/3341301.3359630. URL https://doi.org/10.
1145/3341301.3359630.

[13] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond data and model parallelism for deep neural
networks. In Ameet Talwalkar, Virginia Smith, and Matei Zaharia, editors, Proceedings of
Machine Learning and Systems 2019, MLSys 2019, Stanford, CA, USA, March 31 - April 2,
2019. mlsys.org, 2019. URL https://proceedings.mlsys.org/book/265.pdf.

[14] Norman P. Jouppi, Cliff Young, Nishant Patil, David A. Patterson, Gaurav Agrawal, Raminder
Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc Cantin,
Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb,
Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hagmann, Richard C.
Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek
Jaworski, Alexander Kaplan, Harshit Khaitan, Andy Koch, Naveen Kumar, Steve Lacy, James
Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin,
Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana Penukonda,
Andy Phelps, Jonathan Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov,
Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson,
Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox,
and Doe Hyun Yoon. In-datacenter performance analysis of a tensor processing unit. CoRR,
abs/1704.04760, 2017. URL http://arxiv.org/abs/1704.04760.

[15] Norman P. Jouppi, Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho, Thomas B. Jablin,
George Kurian, James Laudon, Sheng Li, Peter Ma, Xiaoyu Ma, Thomas Norrie, Nishant Patil,
Sushma Prasad, Cliff Young, Zongwei Zhou, and David Patterson. Ten lessons from three
generations shaped google’s tpuv4i : Industrial product. In 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA), pages 1–14, 2021. doi: 10.1109/
ISCA52012.2021.00010.

[16] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. CoRR, abs/2001.08361, 2020. URL https://arxiv.org/abs/2001.08361.

[17] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pienaar,
River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Oleksandr Zinenko. Mlir: Scaling
compiler infrastructure for domain specific computation. In 2021 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), pages 2–14, 2021. doi: 10.1109/
CGO51591.2021.9370308.

[18] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping
Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models
with conditional computation and automatic sharding. CoRR, abs/2006.16668, 2020. URL
https://arxiv.org/abs/2006.16668.

[19] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R. Devanur,
Gregory R. Ganger, Phillip B. Gibbons, and Matei Zaharia. Pipedream: generalized pipeline
parallelism for DNN training. In Tim Brecht and Carey Williamson, editors, Proceedings
of the 27th ACM Symposium on Operating Systems Principles, SOSP 2019, Huntsville, ON,

9

https://proceedings.neurips.cc/paper/2019/hash/093f65e080a295f8076b1c5722a46aa2-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/093f65e080a295f8076b1c5722a46aa2-Abstract.html
https://doi.org/10.1145/3341301.3359630
https://doi.org/10.1145/3341301.3359630
https://proceedings.mlsys.org/book/265.pdf
http://arxiv.org/abs/1704.04760
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2006.16668


Canada, October 27-30, 2019, pages 1–15. ACM, 2019. doi: 10.1145/3341301.3359646. URL
https://doi.org/10.1145/3341301.3359646.

[20] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary,
Vijay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro,
Amar Phanishayee, and Matei Zaharia. Efficient large-scale language model training on GPU
clusters. CoRR, abs/2104.04473, 2021. URL https://arxiv.org/abs/2104.04473.

[21] Phitchaya Mangpo Phothilimthana, Amit Sabne, Nikhil Sarda, Karthik Srinivasa Murthy, Yanqi
Zhou, Christof Angermueller, Mike Burrows, Sudip Roy, Ketan Mandke, Rezsa Farahani,
Yu Emma Wang, Berkin Ilbeyi, Blake Hechtman, Bjarke Roune, Shen Wang, Yuanzhong
Xu, and Samuel J. Kaufman. A flexible approach to autotuning multi-pass machine learning
compilers. In 2021 30th International Conference on Parallel Architectures and Compilation
Techniques (PACT), pages 1–16, 2021. doi: 10.1109/PACT52795.2021.00008.

[22] Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, H. Francis
Song, John Aslanides, Sarah Henderson, Roman Ring, Susannah Young, Eliza Rutherford, Tom
Hennigan, Jacob Menick, Albin Cassirer, Richard Powell, George van den Driessche, Lisa Anne
Hendricks, Maribeth Rauh, Po-Sen Huang, Amelia Glaese, Johannes Welbl, Sumanth Dathathri,
Saffron Huang, Jonathan Uesato, John Mellor, Irina Higgins, Antonia Creswell, Nat McAleese,
Amy Wu, Erich Elsen, Siddhant M. Jayakumar, Elena Buchatskaya, David Budden, Esme
Sutherland, Karen Simonyan, Michela Paganini, Laurent Sifre, Lena Martens, Xiang Lorraine
Li, Adhiguna Kuncoro, Aida Nematzadeh, Elena Gribovskaya, Domenic Donato, Angeliki
Lazaridou, Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsimpoukelli, Nikolai Grigorev, Doug
Fritz, Thibault Sottiaux, Mantas Pajarskas, Toby Pohlen, Zhitao Gong, Daniel Toyama, Cyprien
de Masson d’Autume, Yujia Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin, Aidan
Clark, Diego de Las Casas, Aurelia Guy, Chris Jones, James Bradbury, Matthew Johnson,
Blake A. Hechtman, Laura Weidinger, Iason Gabriel, William S. Isaac, Edward Lockhart,
Simon Osindero, Laura Rimell, Chris Dyer, Oriol Vinyals, Kareem Ayoub, Jeff Stanway,
Lorrayne Bennett, Demis Hassabis, Koray Kavukcuoglu, and Geoffrey Irving. Scaling language
models: Methods, analysis & insights from training gopher. CoRR, abs/2112.11446, 2021. URL
https://arxiv.org/abs/2112.11446.

[23] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory opti-
mization towards training A trillion parameter models. CoRR, abs/1910.02054, 2019. URL
http://arxiv.org/abs/1910.02054.

[24] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System
optimizations enable training deep learning models with over 100 billion parameters. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery
&amp; Data Mining, KDD ’20, page 3505–3506, New York, NY, USA, 2020. Association
for Computing Machinery. ISBN 9781450379984. doi: 10.1145/3394486.3406703. URL
https://doi.org/10.1145/3394486.3406703.

[25] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang,
Minjia Zhang, Dong Li, and Yuxiong He. Zero-offload: Democratizing billion-scale model
training. CoRR, abs/2101.06840, 2021. URL https://arxiv.org/abs/2101.06840.

[26] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and
Peter Battaglia. Learning to simulate complex physics with graph networks. In International
Conference on Machine Learning, pages 8459–8468. PMLR, 2020.

[27] Michael Schaarschmidt, Dominik Grewe, Dimitrios Vytiniotis, Adam Paszke, Georg Stefan
Schmid, Tamara Norman, James Molloy, Jonathan Godwin, Norman Alexander Rink, Vinod
Nair, et al. Automap: Towards ergonomic automated parallelism for ml models. arXiv preprint
arXiv:2112.02958, 2021.

[28] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model
parallelism. CoRR, abs/1909.08053, 2019. URL http://arxiv.org/abs/1909.08053.

10

https://doi.org/10.1145/3341301.3359646
https://arxiv.org/abs/2104.04473
https://arxiv.org/abs/2112.11446
http://arxiv.org/abs/1910.02054
https://doi.org/10.1145/3394486.3406703
https://arxiv.org/abs/2101.06840
http://arxiv.org/abs/1909.08053


[29] Colin Unger, Zhihao Jia, Wei Wu, Sina Lin, Mandeep Baines, Carlos Efrain Quintero Narvaez,
Vinay Ramakrishnaiah, Nirmal Prajapati, Pat McCormick, Jamaludin Mohd-Yusof, Xi Luo,
Dheevatsa Mudigere, Jongsoo Park, Misha Smelyanskiy, and Alex Aiken. Unity: Accelerating
DNN training through joint optimization of algebraic transformations and parallelization. In
16th USENIX Symposium on Operating Systems Design and Implementation (OSDI 22), pages
267–284, Carlsbad, CA, July 2022. USENIX Association. ISBN 978-1-939133-28-1. URL
https://www.usenix.org/conference/osdi22/presentation/unger.

[30] Dimitrios Vytiniotis. Declarative abstractions for tensor program partitioning. In Proceed-
ings of the 22nd International Symposium on Principles and Practice of Declarative Pro-
gramming, PPDP ’20, New York, NY, USA, 2020. Association for Computing Machinery.
ISBN 9781450388214. doi: 10.1145/3414080.3414105. URL https://doi.org/10.1145/
3414080.3414105.

[31] Siyu Wang, Yi Rong, Shiqing Fan, Zhen Zheng, Lansong Diao, Guoping Long, Jun Yang,
Xiaoyong Liu, and Wei Lin. Auto-map: A DQN framework for exploring distributed execution
plans for DNN workloads. CoRR, abs/2007.04069, 2020. URL https://arxiv.org/abs/
2007.04069.

[32] Xinfeng Xie, Prakash Prabhu, Ulysse Beaugnon, Phitchaya Mangpo Phothilimthana, Sudip
Roy, Azalia Mirhoseini, Eugene Brevdo, James Laudon, and Yanqi Zhou. A transfer-
able approach for partitioning machine learning models on multi-chip-modules. In Di-
ana Marculescu, Yuejie Chi, and Carole-Jean Wu, editors, Proceedings of Machine Learn-
ing and Systems 2022, MLSys 2022, Santa Clara, CA, USA, August 29 - September 1,
2022. mlsys.org, 2022. URL https://proceedings.mlsys.org/paper/2022/hash/
7f1de29e6da19d22b51c68001e7e0e54-Abstract.html.

[33] Yuanzhong Xu, HyoukJoong Lee, Dehao Chen, Hongjun Choi, Blake Hechtman, and Shibo
Wang. Automatic cross-replica sharding of weight update in data-parallel training, 2020. URL
https://arxiv.org/abs/2004.13336.

[34] Yuanzhong Xu, HyoukJoong Lee, Dehao Chen, Blake A. Hechtman, Yanping Huang, Rahul
Joshi, Maxim Krikun, Dmitry Lepikhin, Andy Ly, Marcello Maggioni, Ruoming Pang, Noam
Shazeer, Shibo Wang, Tao Wang, Yonghui Wu, and Zhifeng Chen. GSPMD: general and
scalable parallelization for ML computation graphs. CoRR, abs/2105.04663, 2021. URL
https://arxiv.org/abs/2105.04663.

[35] Bowen Yang, Jian Zhang, Jonathan Li, Christopher Ré, Christopher R. Aberger, and Christo-
pher De Sa. Pipemare: Asynchronous pipeline parallel DNN training. CoRR, abs/1910.05124,
2019. URL http://arxiv.org/abs/1910.05124.

[36] Sheheryar Zaidi, Michael Schaarschmidt, James Martens, Hyunjik Kim, Yee Whye Teh, Alvaro
Sanchez-Gonzalez, Peter Battaglia, Razvan Pascanu, and Jonathan Godwin. Pre-training via
denoising for molecular property prediction, 2022. URL https://arxiv.org/abs/2206.
00133.

[37] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yanping Huang, Yida
Wang, Yuanzhong Xu, Danyang Zhuo, Joseph E. Gonzalez, and Ion Stoica. Alpa: Automating
inter- and intra-operator parallelism for distributed deep learning. CoRR, abs/2201.12023, 2022.
URL https://arxiv.org/abs/2201.12023.

11

https://www.usenix.org/conference/osdi22/presentation/unger
https://doi.org/10.1145/3414080.3414105
https://doi.org/10.1145/3414080.3414105
https://arxiv.org/abs/2007.04069
https://arxiv.org/abs/2007.04069
https://proceedings.mlsys.org/paper/2022/hash/7f1de29e6da19d22b51c68001e7e0e54-Abstract.html
https://proceedings.mlsys.org/paper/2022/hash/7f1de29e6da19d22b51c68001e7e0e54-Abstract.html
https://arxiv.org/abs/2004.13336
https://arxiv.org/abs/2105.04663
http://arxiv.org/abs/1910.05124
https://arxiv.org/abs/2206.00133
https://arxiv.org/abs/2206.00133
https://arxiv.org/abs/2201.12023

	Introduction
	Background
	Logical Meshes and Composite Strategies
	PartIR rewriting for SPMD partitioning

	Multi-axis search
	Monte Carlo Tree Search for SPMD compilation
	Domain specific enhancements over Automap
	Meta-controller
	MCTS enhancements evaluation


	Evaluation
	Discussion and outlook

