
Multi-Agent Join

Vahid Ghadakchi
Oregon State University

ghadakcv@oregonstate.edu

Mian Xie
Oregon State University

xiemia@oregonstate.edu

Arash Termehchy
Oregon State University

termehca@oregonstate.edu

Michael Burton
Oregon State University

burtomic@oregonstate.edu

Abstract

It is crucial to provide real-time performance in many query workloads, such as
interactive and exploratory data analysis. In these settings, users need to view a
subset of query results or a progressive presentation of the entire results quickly.
Nevertheless, it is challenging to deliver such results over large dataset for common
relational binary operators, such as join. Join algorithms usually spend a long time
on scanning and attempting to join parts of relations that may not generate any
result. Current solutions to this problem usually require lengthy and repeating
preprocessings, which are costly in general settings and may not be possible to
do in some cases, such as interactive workloads or evolving datasets. Also, they
may support restricted types of joins. In this paper, we outline a novel approach for
achieving efficient progressive join processing in which the scan operator of the
join learns online and during query execution the portions of its underlying relation
that might satisfy the join condition and use them in the join. We further improve
this method by an algorithm in which both scan operators collaboratively learn
an efficient join execution strategy. We also show that this approach generalizes
traditional and non-learning methods of join.

1 Introduction

It is crucial to provide real-time performance for queries over large data in many settings, such as
interactive and exploratory data analysis or online query processing Carey and Kossmann (1997,
1998); Hellerstein et al. (1997); Haas and Hellerstein (1999); Li et al. (2016). The recent pandemic
showed an urgent need for analyzing the ginormous data quickly to model and forecast public health
concerns in real-time for Disease Control and Prevention (2021); dj patil (2020). For example, it
is vital that epidemiologists interactively test various queries about how a novel virus spreads over
numerous and continually evolving case reports efficiently to recommend effective public policies
as fast as possible. In these settings, it is desirable to provide subsets of query results quickly to
reduce the time that users spend on data exploration and interaction. For instance, in an interactive
environment, an epidemiologist may want to view subsets of answers to her query fast to design her
next query according to these answers quickly. In these settings, users might also want to view results
of their queries progressively without any long (initial) delays Haas and Hellerstein (1999); Li et al.
(2016); Jermaine et al. (2005). This enables users to view and investigate the results without long
waiting periods and as the results are being produced. This capability reduces users’ waiting time and
speeds up their data analysis tasks. For example, it is important to present the query results without
long delays to the epidemiologist, so she can investigate them quickly as they become available.
Using this method, users can stop the execution quickly and as soon as they have enough information.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



It is, however, challenging to find quickly subsets or the entire results of many binary relational
operators, such as join, over relations with many tuples. To execute these operators, the relational
data system has to check numerous if not all pairs of tuples from both input relations to find the
ones that satisfy the operator’s predicate. In many join queries, a substantial majority of these pairs
do not satisfy the join predicate. As the system often does not know the pairs of tuples that satisfy
the predicate, it may spend a long time to check numerous pairs without returning any or very few
results. Also, the information of input relations often stored on secondary storage and accessing
them takes lengthy I/O accesses. Hence, returning subsets or the entire join results might be very
time-consuming and involve long delays. Thus, users may have to wait for a long time to view query
results. This has become more challenging due to the rapid growth and frequent evolution of datasets.

To address this problem, researchers have proposed algorithms that progressively read tuples from
base relations and maintain them in main memory to improve I/O efficiency of the query execution,
e.g., Ripple Join Haas and Hellerstein (1999). These methods, however, quickly run out of main
memory over large relations before generating sufficiently many results Jermaine et al. (2005).
Some methods build auxiliary data structures, e.g., indexes, over both relations to locate tuples that
generate results quickly Li et al. (2016). Most users, however, cannot afford to wait for the time-
consuming preprocessing steps of building these data structures, which are often repeated whenever
the data evolves. The indexes needed for a query workload are usually determined by experts or
pre-trained models Chaudhuri and Narasayya (2007); Aken et al. (2021). Most normal users, such as
epidemiologists, do not have the expertise to guide index building effectively. There might not also be
sufficient training data to learn an accurate model of the query workload to guide these preprocessing
steps. Moreover, current guiding models usually assume that the distribution of query workload is
fixed over time Chaudhuri and Narasayya (2007); Aken et al. (2021). Users, however, increasingly
produce non-stationary workloads particularly in interactive settings McCamish et al. (2018). Also,
indexes often take substantial storage and update overheads. Users might not have enough resources
to build and maintain indexes for many queries.

Sort- and hash-based join algorithms produce the entire results of a join query efficiently but they need
to reorganize the input relations in time-consuming steps before generating any result Garcia-Molina
et al. (2009). Researchers have also extended these algorithms for progressive query computation
Jermaine et al. (2005). There methods, however, support only a limited types of queries, e.g., joins
with equality conditions Garcia-Molina et al. (2009). Due to the popularity of statistical learning
and inference over large data, join predicates increasingly contain complex conditions, such as
user-defined functions or inequality conditions. They might also need a significant amount of main
memory to generate results efficiently, which might not be available, e.g., progressive sort-based
keeps considerable portions of both relations in main memory Jermaine et al. (2005).

Toward realizing the vision of delivering real-time insight over large data, we propose a novel
approach to binary join processing in which scan operators of the join collectively learn online and
during query execution to return results quickly. The query plan for joining two relations is typically
modeled as a tree with two scan operators as leaves and a join operator as its root. During query
execution, each scan reads and sends tuples to the join operator and is informed of the success of its
sent data in producing results by the join operator. Every scan operator has a strategy of reading tuples
and sending them to the join operator in the query. Based on this feedback, the scan operators quickly
learn the portions of data that are most likely to generate joint tuples and improves the efficiency
of its strategy. Hence, they read and send portions of the data that generate more results earlier in
query execution and avoid or postpone sending fragments of the data that might not contribute toward
producing joint tuples. This method produces subsets of join results quickly. Since the scan operators
learn the most promising portions of relations online and by performing the join, our method does
not involve long (initial) delays to produce results. This approach does not require any upfront data
preparation, offline training data, or precomputed data structures and their corresponding delays,
overheads, and tuning. It can be used for both stationary and non-stationary query workloads. Each
scan treats its join operator and its condition as a black box, therefore, it can learn efficient execution
strategies joins other than the ones with equality conditions. This method is naturally implemented
within the pipelining framework of query processing in current relational data systems.

Nevertheless, it is challenging to accurately learn efficient query processing strategies over large data
and produce query results quickly at the same time. Each scan operator should establish a trade-off
between producing fresh results based on its current information and strategy, i.e., exploitation, and
searching for more efficient strategies, i.e., exploration. Moreover, as each relation may contain

2



numerous tuples, each scan operator may have to explore many possible strategies to find the efficient
ones. This becomes more challenging by the usual restrictions on accessing data on the secondary
storage. For example, in the absence of any index, a scan operator has to examine tuples (blocks) on
disk sequentially. Current online learning algorithms, however, often assume that each learner has a
random access to all its alternatives. In this paper, we leverage tools from the area of online learning
and devise algorithms that address the aforementioned challenges efficiently.In particular, we show
that it will improve the time of producing subsets of join results, if both scan operators of join learn
and adapt their strategies online. One might extend our framework and methods to some other types
of binary relational operators, such as intersection. However, due to popularity of joins, in this paper,
we focus on and report empirical studies for join queries.

2 Framework
We present the framework that models processing of a join query method as online collaborative
learning of its operators. Our framework extends to other binary operators, such as intersection.
Nonetheless, we restrict our attention in this paper to binary joins and leave detailed explanation and
instantiating our framework for other types of queries as future work.

Agents and Actions. Relational data Systems usually model a query as a tree of logical operators
called logical query plan Garcia-Molina et al. (2009). In a join query, the leaf nodes are scan operators
that read information form the secondary storage in blocks (pages). The tuples are pipelined from
scans to the root operator, i.e., join, as the join operator calls its children’s API to get fresh tuples.
Each iteration (or round) of processing the query starts with the call from the join operator. In our
framework, each scan operator in the query plan is a learning agent. The actions of an agent as the set
of its available activities in each round. The set of actions of each scan operator is the set of blocks in
its base relation. As motivated in the preceding section, in this paper, we assume that both relations
to be joined are large and none of them are small enough to fit into available main memory.

Reward. The reward of an action in each round of the query execution is the total number of joint
tuples produced during that round. The join operator shares this reward with its child scan operators
immediately after attempting to join their recently sent blocks. As we assume that the relations are
stored on the secondary storage, each agent has to perform some I/O access(es) to read block(s) from
the secondary storage. Since the dominating cost of performing joins is the time to perform I/O
access, ideally, each scan operator may receive some reward in each round so that its effort of reading
a block from disk produces some answers and does not go to waste. This increases the I/O efficiency
of query execution. The history of a scan operator O at round t denoted as HO(t), is the sequence of
pairs (ai, ri), 0 ≤ i ≤ t− 1, where ai and ri are the action and the reward of the operator O at round
i of the join.

Strategies. The strategy or policy of an operator O at round t is a mapping from HO(t) to the set of
its available actions. A strategy is essentially the execution algorithm of its (logical) operator. An
operator might follow a fixed strategy that do not change in the course of query execution. Current
query operators often follow fixed strategies. For example, the scan operator for the outer relation
in the (block-based) nested loop join plan follows a fixed strategy of sending the next block of the
relation stored on the disk whenever requested by its parent join operator. The scan operator for the
inner relation follows a similar fixed strategy. An operator may use an adaptive strategy and choose
actions in each round based on the actions’ rewards and performance in their previous rounds using
the history up to the current round. In particular, if the underlying relations contain sufficiently many
blocks, i.e., a join has sufficiently many rounds, a scan operator may achieve a higher long-term
reward by modifying its strategy during the query processing. For example, scan operators for the
outer and inner relations in the nested loop join may use their history to estimate and send the blocks
that are more likely to produce new joint tuples instead of the ones that may not lead to any results.
Using the history of the join, a scan operator may learn that block b1 in its base relation joins with
significantly more tuples of the other relation than block b2, i.e., b1 is more rewarding than b2. Thus,
if it reads and sends tuples from b1 to the join operator more often than b2, it may cause the query to
produce more joint tuples by performing the same number of I/O accesses. As the query execution
progresses, the operators may learn and improve their estimate and the effectiveness of their strategies
using the performance of their actions in preceding rounds. Our framework generalizes current
approaches to query processing as operators that follow fixed strategies. Hence, it supports using
both traditional and adaptive strategies for query operators.

Learning Strategies. Since the rewards of actions are not known at the start of the query processing,
an operator has to learn these rewards while executing the query. Thus, the operator may initially

3



explore a subset of available actions to find the reasonably rewarding actions quickly. Subsequently,
the operator may exploit this knowledge and use the most rewarding actions according to its investi-
gations so far to increase the short-term overall reward or explore actions that have not been tried
to find actions of higher rewards with the goal of improving the total reward in the long-run. For
example, consider the join of relations R and S where the scan over S uses a fixed strategy of sending
a randomly chosen block in each round. The scan over R modifies its strategy in each round based
on the information in the preceding rounds to read and send blocks that generate most joint tuples
to the join operator. The scan over R may initially send a few randomly chosen blocks to its parent
join operator to both produce some joint tuples and estimate the average joint tuples generated from
each block in the subset, i.e., its reward. In the subsequent rounds, the scan operator on R may send
the blocks with highest rewards so far, i.e., exploit, or pick other blocks that have not been tried
before with the hope of finding ones with higher estimated reward than current ones, i.e., explore. An
important challenge in online learning is to find a balance between exploration and exploitation.

Overall Objective Function. A query processing algorithm should return the results of a query
as fast as possible, therefore, each operator should maximize its total reward using fewest possible
rounds. As the datasets are often very large, it is desirable to deliver the results progressively where
users see and investigate earlier tuples quickly while the system executes the query and delivers the
rest of the results Carey and Kossmann (1997); Haas and Hellerstein (1999); Hellerstein et al. (1997).
The user may stop the query execution as soon as she receives a sufficient amount of information,
e.g., sufficiently many tuples, or let it run until completion. This is particularly useful in interactive or
exploratory workloads where users need to know at least an estimate of the results very fast. Moreover,
many analyses over large data may be satisfied by a sufficiently large subset of query results Carey
and Kossmann (1997); Haas and Hellerstein (1999); Hellerstein et al. (1997). To quantify the overall
objective of query processing, One may select a metric, such as discounted (weighted/geometric)
average of delays, that is biased toward faster generation of early results. It measures the users’
waiting time for receiving both a sample of and the full query result. More precisely, the discounted
weighted average of delays is defined as

∑l
i=1 γ

iti where 0 < γ < 1, ti is the time to generate the
ith result, and l is set to the number of desired results. The faster a query operator learns an efficient
strategy during execution, the larger the value of objective function is.

3 Single Scan Learning
In this section, we investigate learning for only one of the scan operator in the join of R and S,
namely R-scan. We first assume that S-scan has a fixed strategy of reading a randomly chosen block
from S and sending it to the join operator, i.e., random strategy. It is shown that in the absence of
any order, e.g., sorted relation, sequential scan, i.e., heap-scan, simulate random sampling effectively
Haas and Hellerstein (1999). Thus, we assume that S-scan implements the random strategy using
the sequential scan over S. On the other hand, R-scan aims at learning the rewards of blocks in R
accurately and quickly and joining blocks of R with S in a decreasing order of their rewards. This
way, the join operator progressively produces results efficiently and significantly reduces the users’
total waiting time to view query results as explained in Section 2. As R-scan does not know the
reward of blocks of R prior to join executing, its learning should take place during join processing.

Our algorithm constitutes of a series of super-rounds. In each super-round, the algorithm learns and
selects the most rewarding block from all blocks in R that have not yet been selected and uses the
selected block to generate join results. It also produces results while learning the most rewarding
block. The algorithm continues to the next super-round until it generates a given number of tuples or
the complete results based on users’ input.

3.1 Learning Most Rewarding Block
To estimate the most rewarding block in R, we use a many-armed MAB algorithm called M -Run,
that effectively estimate actions with relatively high reward over infinitely many actions by exploring
a sufficiently large random subset of them Berry et al. (1997). We first introduce an exploration
technique over R called N -Failure. We define each round as the join of a block of R and a block S.
Using N -Failure, initially, R-scan and S-scan (sequentially) read a new block form their relations
and send these blocks to the join operator to join. In each subsequent round, S-scan reads a fresh
block from S. R-scan, on the other hand, does not read any block and keeps sending its current
block in main memory to the join operator if this block has produced at least one joint tuple during
the last N rounds. Otherwise, it reads the next block of R using sequential scan and sends it to the
join operator. The reward of each block of R is the number of joint tuples it produces during its

4



N -Failure exploration. For each block of R with non-zero reward, R-scan maintains its address to
reward mapping in a reward table stored in the main memory.

R-scan performs N -Failure for every block of R until it either scans M blocks of R or finds a block
of R that produces at least one join tuple in each of last M rounds. At this point, R-scan and S-scan
fully exploit the most rewarding block in R by performing a full join of this block and entire S. That
is, R-scan picks the block with the highest reward from the reward table, reads it from disk using
random access, and sends it to the join operator. S-scan resets its sequential scan form the beginning
of S, reads S block by block and sends each block to the join operator. As the most rewarding block
of R may have already been joined with a sequence of blocks in S during its N -Failure turn, R-scan
keeps track of this range of block numbers for each block in the reward table. If the reward signal is
sparse, e.g., the join is very selective, in some super-rounds, the rewards of all examined blocks may
be zero. In this case, R-scan picks its last scanned block that is already in main memory, i.e., M th
block, for the full join. It stores the information of this block in reward table to track all blocks that
have been fully exploited.

3.2 Subsequent Super-Rounds
After each super-round, R-scan excludes the most rewarding block from its list of available actions.
In each subsequent super-rounds, R-scan resumes its sequential scan from the last position that it
was stopped. It reads and sends the next unread block of R to the join operator, explores its reward
using N -failure technique, and adds its reward and address to the reward table in main-memory if
its reward is non-zero. S-scan will continue its sequential scan of S in each step of this N -failure
exploration. M -run accesses blocks sequentially and evaluates each accessed block reward using
N -failure exploration technique only once. Because R-scan has the reward information of a new
set of M blocks, after reading only one new block, it has enough information to estimate a new
most rewarding block by selecting the block with most reward in the reward table. Thus, in each
super-round after the first one, R-scan estimates the new most rewarding block by reading only one
new block from R. It then accesses the selected block using its address in the reward table.

4 Collaborative Scans
In m to n joins of R and S, some blocks of S may have substantial reward. Hence, it may reduce the
response time of the join if R-scan and S-scan both use learning strategies. In this setting, each scan
operator should both learn the reward of its blocks and provide randomly sampled blocks for the other
scan so they both learn the rewards of their own blocks. This may double the number of I/O accesses
or data processing effort by each scan during learning and slow down join processing significantly.

One approach to address this problem is to interleave and combine learning and sampling such that
the set of explored blocks of one scan is also a random set of blocks from its base relation. That is,
each scan may view each block as both an action of itself and also a sample from the environment for
the other scan in the join. Each explored action in M -Run is in fact a random sample of available
actions. Thus, if every scan operator uses M -Run learning method, in each exploration, it sends to
the join operator both one action of its available actions, i.e., blocks, and a random sample of blocks
of its underlying relation. Hence, each scan can both learn the reward of its own actions and at the
same time enable the other scan to measure the rewards of its current actions by observing a random
sample from its environment.

More precisely, in each super-round, one scan performs an N -Failure exploration and the other one
performs a sequential scan. They will switch strategies for the subsequent super-round. Each scan
that performs N -Failure collects rewards and other relevant information of its explored blocks as
explained in Section 3. After reaching to its M th explore block, each scan decides its most rewarding
block and fully joins with with the other relation. In the subsequent super-rounds, the scan operators
follow the algorithm described in Section 3. The join stops after getting the desired number of tuples.

Because each scan switches turns between M -Run and random strategies, it may sequentially
read some blocks during its random strategy and may not resume its next N -Failure exploration
immediately after the block that it explored in its last N -Failure exploration. Hence, it may skip
doing N -Failure for some blocks. To ensure that each scan explores every block, it has to go back to
the position after its last N -Failure. Nonetheless, the implementations of sequential scan in current
relational data system implementations usually starts from the beginning of the relation. We have
observed this in particular in PostgreSQL, which we have used to implement our algorithms. Thus, to
resume the sequential scan from the last block for which the scan has done N -Failure, it has to restart

5



the scan from the beginning and read and skip potentially many block, especially towards the middle
and end of the algorithm. To save I/O access time, in our current implementation, our scans do not
go back on disk and continue their sequential scan when they switch turns. Therefore, our current
implementation of the case where both scan operators learn may not produce the full join results.

5 Initial Empirical Results
We evaluate our proposed methods and the comparable methods explained in Section 1 that do
not require lengthy preprocessing to create auxiliary data structure, e.g., index, and are not limited
to certain types of joins, e.g., only equijoin Jermaine et al. (2005); Li et al. (2016). We compare
our methods to Ripple Join Haas and Hellerstein (1999) and block-based nested loop join (BNL)
Garcia-Molina et al. (2009) that satisfy the aforementioned properties. Ripple-Join quickly runs out
of main memory in almost all settings before generating answers as explained in Section 1.

We use TPC-H benchmark, www.tpc.org/tpc, to generate the queries and databases for our experiments.
We use the scale = 1 to generate a TPC-H database of size 1 GB. We did not use larger values
as it takes a very long time, e.g., more than a day, for the BNL to process some queries over
larger versions of TPC-H database. We have used the following M-N joins from TPCH workload:
Q9:partsupp ▷◁partkey lineitem and Q11: orders ▷◁o_orderdate=l_shipdate lineitem

One of the parameters that impacts the join processing time is the distribution of the join attribute
values; more specifically their skewness. We evaluate the query run-time over different versions of
TPC-H database with different degrees of skewness in the join attributes. Our experiments use Zipf
distributions with z values ranging between [0, 0.5, 1, 1.5, 2] wherein z = 0 will result in uniform
distribution and for z ≥ 0.5, the distribution becomes more skewed as the value of z grows. Moreover,
the results of our experiments using z = 0.5 are very similar to the ones with z = 0. Hence, we do
not report the results of experiments with z = 0.5 in the this section. We run each query 5 times and
report the average time across these 5 times. Each reported response time of BNL is the average of
the response times of two different sets of runs with each relation as the outer one.

We have implemented our proposed methods and BNL inside PostgreSQL 11.5 database management
system. We have performed our empirical study on a Linux server with Intel(R) Xeon(R) 2.30GHz
cores and 500GB of memory. We have used query Q12 : orders ▷◁orderkey lineitem to train the
hyper-pramters of the algorithms, e.g,. N .

Figure 1 and Figure 2 show the response times of BNL, single scan learning runs (denoted as sl_left
and sl_right), and collaborative scans (denoted as cl) over Q9 and Q11, respectively. The response
times of the collaborative scans runs are generally between single scan learning on either relations.
In each setting, one of the relations may contain the most rewarding blocks, therefore, one of the
single scan learning runs delivers the most efficient results. Nonetheless, it is not clear which one
of scan operators should use a learning strategy to deliver the most efficient results without actually
running the query. The collaborative scans approach provides a middle-ground between the two
possible configurations for single scan and is generally more efficient than the slowest configurations.
All these learning algorithms are at least as efficient as BNL where the data is uniform and more
efficient than BNL in almost all other settings. The differences between the learning algorithms and
BNL become generally more significant as the skewness parameter z increases. We again observe
the same exception in Q9 at z = 2 and as we discussed in the preceding section. It is very hard to
learn rewarding blocks on this query as the rewarding blocks are very rare due to highly skewed
join attributes on both relations. Our empirical results using weighted discounted average provide a
similar outcome for different methods over our workload.

References

Dana Van Aken, Dongsheng Yang, Sebastien Brillard, Ari Fiorino, Bohan Zhang, Christian Billian,
and Andrew Pavlo. 2021. An Inquiry into Machine Learning-based Automatic Configuration
Tuning Services on Real-World Database Management Systems. Proc. VLDB Endow. 14, 7 (2021),
1241–1253.

Donald A. Berry, Robert W. Chen, Alan Zame, David C. Heath, and Larry A. Shepp. 1997. Bandit
problems with infinitely many arms. The Annals of Statistics 25, 5 (1997), 2103 – 2116. https:
//doi.org/10.1214/aos/1069362389

6

https://doi.org/10.1214/aos/1069362389
https://doi.org/10.1214/aos/1069362389


102 103
10−1

100

101

K = [20− 5000]

R
es

po
ns

e
Ti

m
e

(s
ec

on
ds

)

avg_bnl
sl_left
sl_right

cl

(a) z = 0

102 103

100

101

102

K = [20− 5000]

R
es

po
ns

e
Ti

m
e

(s
ec

on
ds

)

avg_bnl
sl_left
sl_right

cl

(b) z = 1

102 103
100

101

102

103

K = [20− 5000]

R
es

po
ns

e
Ti

m
e

(s
ec

on
ds

)

avg_bnl
sl_left
sl_right

cl

(c) z = 1.5

102 103

102

103

104

K = [20− 5000]

R
es

po
ns

e
Ti

m
e

(s
ec

on
ds

)

avg_bnl
sl_left
sl_right

cl

(d) z = 2

Figure 1: Response times of generating join samples using Collaborative Scans (cl), Single Scan
Learning (sl_left and sl_rigth), and BNL over Q9.

101 102 103 104 105

10−2

10−1

100

101

K = [20− 50000]

R
es

po
ns

e
Ti

m
e

(s
ec

on
ds

)

avg_bnl
sl_left
sl_right

cl

(a) z = 0

101 102 103 104 105

10−2

10−1

100

101

K = [20− 50000]

R
es

po
ns

e
Ti

m
e

(s
ec

on
ds

)

avg_bnl
sl_left
sl_right

cl

(b) z = 1

101 102 103 104 105
10−2

10−1

100

101

K = [20− 50000]

R
es

po
ns

e
Ti

m
e

(s
ec

on
ds

)

avg_bnl
sl_left
sl_right

cl

(c) z = 1.5

101 102 103 104 105
10−1

100

101

102

103

K = [20− 50000]

R
es

po
ns

e
Ti

m
e

(s
ec

on
ds

)

avg_bnl
sl_left
sl_right

cl

(d) z = 2

Figure 2: Response times of generating join samples using Collaborative Scans (cl), Single Scan
Learning (sl_right and sl_left), and BNL over Q11.

Michael J. Carey and Donald Kossmann. 1997. On Saying "Enough Already!" in SQL. In SIGMOD
1997, Proceedings ACM SIGMOD International Conference on Management of Data, May 13-15,
1997, Joan Peckham (Ed.). ACM Press, Tucson, Arizona, USA, 219–230. https://doi.org/
10.1145/253260.253302

Michael J. Carey and Donald Kossmann. 1998. Reducing the Braking Distance of an SQL Query
Engine. In VLDB’98, Proceedings of 24rd International Conference on Very Large Data Bases,
August 24-27, 1998, Ashish Gupta, Oded Shmueli, and Jennifer Widom (Eds.). Morgan Kaufmann,
New York City, New York, USA, 158–169.

Surajit Chaudhuri and Vivek R. Narasayya. 2007. Self-Tuning Database Systems: A Decade of
Progress. In Proceedings of the 33rd International Conference on Very Large Data Bases, Septem-
ber 23-27, 2007, Christoph Koch, Johannes Gehrke, Minos N. Garofalakis, Divesh Srivastava, Karl
Aberer, Anand Deshpande, Daniela Florescu, Chee Yong Chan, Venkatesh Ganti, Carl-Christian
Kanne, Wolfgang Klas, and Erich J. Neuhold (Eds.). ACM, University of Vienna, Austria, 3–14.

dj patil. 2020. 6 lessons learned to get ready for the
next wave of COVID. https://medium.com/@dpatil/
6-lessons-learned-to-get-ready-for-the-next-wave-of-covid-ee595766d4cb

Centers for Disease Control and Prevention. 2021. CDC Stands Up New Disease Forecasting Center.
https://www.cdc.gov/media/releases/2021/p0818-disease-forecasting-center.
html

Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. 2009. Database systems - the
complete book (2. ed.). Pearson Education, New Jersey, USA.

Peter J. Haas and Joseph M. Hellerstein. 1999. Ripple Joins for Online Aggregation. In SIGMOD 1999,
Proceedings ACM SIGMOD International Conference on Management of Data, June 1-3, 1999,
Alex Delis, Christos Faloutsos, and Shahram Ghandeharizadeh (Eds.). ACM Press, Philadelphia,
Pennsylvania, USA, 287–298. https://doi.org/10.1145/304182.304208

7

https://doi.org/10.1145/253260.253302
https://doi.org/10.1145/253260.253302
https://medium.com/@dpatil/6-lessons-learned-to-get-ready-for-the-next-wave-of-covid-ee595766d4cb
https://medium.com/@dpatil/6-lessons-learned-to-get-ready-for-the-next-wave-of-covid-ee595766d4cb
https://www.cdc.gov/media/releases/2021/p0818-disease-forecasting-center.html
https://www.cdc.gov/media/releases/2021/p0818-disease-forecasting-center.html
https://doi.org/10.1145/304182.304208


Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang. 1997. Online Aggregation. In SIGMOD
1997, Proceedings ACM SIGMOD International Conference on Management of Data, May 13-15,
1997, Joan Peckham (Ed.). ACM Press, Tucson, Arizona, USA, 171–182. https://doi.org/
10.1145/253260.253291

Chris Jermaine, Alin Dobra, Subramanian Arumugam, Shantanu Joshi, and Abhijit Pol. 2005. A
Disk-Based Join With Probabilistic Guarantees. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, June 14-16, 2005, Fatma Özcan (Ed.). ACM, Baltimore,
Maryland, USA, 563–574. https://doi.org/10.1145/1066157.1066222

Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. 2016. Wander Join: Online Aggregation via Random
Walks. In Proceedings of the 2016 International Conference on Management of Data, SIGMOD
Conference 2016, June 26 - July 01, 2016, Fatma Özcan, Georgia Koutrika, and Sam Madden (Eds.).
ACM, San Francisco, CA, USA, 615–629. https://doi.org/10.1145/2882903.2915235

Ben McCamish, Vahid Ghadakchi, Arash Termehchy, Behrouz Touri, and Liang Huang. 2018. The
Data Interaction Game. In Proceedings of the 2018 International Conference on Management
of Data (Houston, TX, USA) (SIGMOD ’18). ACM, New York, NY, USA, 83–98. https:
//doi.org/10.1145/3183713.3196899

8

https://doi.org/10.1145/253260.253291
https://doi.org/10.1145/253260.253291
https://doi.org/10.1145/1066157.1066222
https://doi.org/10.1145/2882903.2915235
https://doi.org/10.1145/3183713.3196899
https://doi.org/10.1145/3183713.3196899

	Introduction
	Framework
	Single Scan Learning
	Learning Most Rewarding Block
	Subsequent Super-Rounds

	Collaborative Scans
	Initial Empirical Results

