
An MLIR-based Compiler for Interoperability
between Machine Learning and Science Frameworks

Anonymous Author(s)
Affiliation
Address
email

Abstract

The adoption of artificial intelligence and machine learning (AI/ML) in science1

domains is increasing at a rapid pace. This includes integration of AI/ML in2

several science simulations for biology, chemistry, material science and cosomology.3

However, modern ML and traditional scientific high-performance computing (HPC)4

tend to use completely different software ecosystems. In this work, we show5

that a compiler-based approach can bridge the gap between ML frameworks and6

scientific software with less developer effort and better efficiency. We use the Multi-7

level Intermediate Representation (MLIR) ecosystem to compile a pre-trained8

convolutional neural network (CNN) in PyTorch to freestanding C++ source code9

in the performance portable Kokkos programming model. Our compiler-generated10

Kokkos and C++ source code can be directly integrated into any Kokkos-based11

science application with no dependencies on Python or cross-language interfaces.12

In addition, this provides an easy path to support accelerators from AMD, Intel,13

and NVIDIA as Kokkos provides backends to them.14

1 Introduction15

Physics-informed AI/ML is becoming another tool in the tool box in the hard sciences like classical16

mechanics, magnetohydrodynamics, density functional theory, molecular dynamics, chemistry and17

electronic circuits. Several of these applications focus on numerical simulation of some physical18

phenomena. Such simulations are computationally demanding especially for high fidelity needs.19

Machine learning (ML) techniques like deep neural networks (DNNs) can help with some of these20

challenges. For example, DNNs were used as a surrogate for the computational bottleneck of density21

functional theory (DFT), allowing the electronic structure of a molecule to be determined efficiently22

from just its atomic configuration [3]. In a multiscale simulation, the first-principle calculation is23

replaced by the ML surrogate within a larger scale simulations for phenomena at the mesoscale or24

macroscale.25

Unfortunately, most scientific applications are written in C++ while the state-of-the-art ML frame-26

works like PyTorch and TensorFlow provide their first-class interfaces in Python. Interoperating27

between C++ and Python usually requires significant boilerplate and developer effort. In this work,28

we show that a compiler can completely bypass the gap between C++ and Python, while yielding29

additional benefits in portability, efficiency and safety. Instead of calling low level functions in an30

ML framework from a C++ application (e.g., the mesoscale or macroscale simulation), we allow the31

developer to write ML-related functions in native Python, and then automatically compile that Python32

to Kokkos-based C++ source code, which can be integrated directly into scientific applications as if it33

had been written by hand. Kokkos [7] is a shared-memory parallel programming model for C++ that34

is designed for high performance across a variety of CPU and GPU architectures. To implement the35

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.



compilation pipeline, we use the MLIR (Multi-Level Intermediate Representation) library within the36

LLVM project [4].37

Python’s popular ML frameworks like PyTorch [5] and TensorFlow [1] are two early users of MLIR.38

An existing extension for PyTorch called torch-mlir provides the functionality to generate an MLIR39

function from a model. We used a pre-trained image classification CNN model from PyTorch,40

ResNet18, as the target for testing our compiler. We were successful in creating a fully automated41

pipeline that generates working Kokkos C++ source code from the PyTorch model. This code can42

successfully perform ResNet18 inference on real images when integrated into a standalone C++43

program. This transformation also allows transforming Python sources to multiple hardware targets44

such as CPUs and GPUs. Kokkos uses template meta-programming to support serial, OpenMP45

threads, CUDA, HIP and SYCL backends. We demonstrate transformations to serial, OpenMP and46

CUDA backends of Kokkos.47

2 Methods48

The goal of this work was to investigate whether a compiler-based approach could resolve the issues49

with Python-C++ interoperability especially for use cases such as in multiscale simulations. This50

allows us to focus primarily on inference. For example, a microscale simulation surrogate can be51

trained offline. However, the trained model has to be deployed within a mesoscale or microscale52

simulation framework.53

To prove that such a compiler-based approach is actually feasible, we set out to construct a working54

compilation pipeline that can automatically expose some non-trivial machine learning functionality55

to a C++ application. A goal from the beginning was to leverage the MLIR library from the LLVM56

project [4].57

The core of MLIR is an abstract language specification that is similar to the LLVM IR, but builds upon58

it with higher-level constructs organized into various dialects. For example, a matrix-matrix multipli-59

cation can be expressed with a single “instruction” from the linear algebra dialect, linalg.matmul.60

Compared to a lower-level scalar IR like LLVM, MLIR retains high-level information about code61

behavior, enabling powerful compiler optimizations (e.g. fusion of linear algebra operations) that62

would otherwise be very difficult to perform safely on scalar LLVM code. In addition to the dialect63

specifications, MLIR includes built-in compiler transformations to replace instructions to equivalent64

but lower-level code (“lowering”). For example, a linalg.matmul instruction might be replaced65

with a triply-nested for loop which computes the result matrix one element at a time with scalar66

arithmetic.67

MLIR is just an intermediate representation with associated transformations and tooling. Creating an68

MLIR module from Python code (or code in any other programming language) is the responsibility of69

an external frontend. The two most popular machine learning frameworks, PyTorch and TensorFlow,70

currently provide such frontends. For the purposes of this project, PyTorch’s frontend (torch-mlir)71

was used as the first step in the compiler pipeline. This was convenient because torch-mlir provides a72

full example where the pre-trained ResNet18 image classification model is converted from PyTorch73

to freestanding MLIR, progressively lowered through a pipeline of built-in MLIR transformations,74

and finally just-in-time (JIT) compiled to native serial code using LLVM. Here, “freestanding” means75

that the MLIR code has no external dependencies - it no longer involves Python and it includes all76

constant data needed by the model such as the CNN weight matrices. Our objective was now to77

replicate this example but with parallel Kokkos C++ code as the final target instead of LLVM. We78

would also like to target at least two different types of parallelism in the generated code (OpenMP79

and CUDA).80

To get from MLIR to Kokkos, we used MLIR’s existing C++ emitter as a starting point. This emitter81

accepts a low-level subset of dialects and produces serial C++ source code. One of the dialects is82

EmitC, whose instructions directly map to C/C++ constructs like variable declarations and #include.83

We found that a higher-level set of dialects was a closer fit to the Kokkos model, however. The84

fundamental constructs in Kokkos are parallel kernels belonging to one of three patterns (for, reduce85

and scan), and multi-dimensional arrays (Kokkos::View) [7]. These constructs and the View are86

templated on how they have to be run (serial, OpenMP, CUDA), and where memory is (host, device,87

shared memory). MLIR has dialects and instructions that are equivalent to these constructs. The88

scf.parallel instruction executes some body of code for each element in a multi-dimensional iter-89

2



Table 1: Examples of common MLIR instructions and their equivalents in Kokkos.

MLIR Kokkos

memref.store %100 %A[%1] A(i) = 100;
%0 = memref.alloc() : memref<200xf32> View<float[200]> v("v", 200);
scf.parallel(%arg1) = %1 to %2... parallel_for(RangePolicy<>...
%a = math.sqrt %b float a = Kokkos::sqrt(b);
%a = arith.subf %b, %c float a = b – c;

Table 2: A list of the most significant built-in MLIR and torch-mlir lowering transformations we
apply between the PyTorch frontend and the Kokkos emitter.

Transformation Name Effect

tm-tensor-bufferize Implement abstract PyTorch tensors as multidimen-
sional arrays in memory.

linalg-bufferize Implement 2D matrices and 1D vectors as arrays in
memory.

tm-tensor-to-loops Replace tensor arithmetic with loops and scalar arith-
metic.

convert-linalg-to-parallel-loops Replace linear algebra operations with parallel loops
and scalar arithmetic.

lower-affine Replace affine expressions (e.g. padded and strided
address calculations) with integer arithmetic.

ation space, just like a Kokkos::parallel_for. scf.parallel can optionally perform reduction90

to an output variable as well, becoming equivalent to Kokkos::parallel_reduce. The memref91

dialect provides several operations for operating on strongly typed multidimensional memory buffers,92

just like Kokkos::Views. Table 1 shows the equivalence between some MLIR instructions and93

Kokkos that we use in the Kokkos emitter. As in LLVM, names preceded by % in MLIR denote94

SSA (static single assignment) values. In the MLIR, type annotations are omitted here but are always95

present in real code. Table 2 describes the effects of some of the built-in transformations we use to96

generate MLIR in the desired dialects.97

Like the built-in C++ emitter, our Kokkos emitter performs an in-order walk of the MLIR syntax98

tree and emits the C++ code for one instruction at a time. The SSA form of MLIR makes this99

straightforward – we simply store the result of each instruction in a new C++ variable, and later rely100

on the C++ compiler’s optimization to keep variables alive for only the duration they are needed. The101

one exception is that for scalar constants (arith::constant), each reference to the SSA variable is102

replaced by its value as a literal. This improves performance when using the CUDA backend because103

the compiler does not propagate host constants into device code (see Table 3 for the speedup of this104

optimization). Assigning one Kokkos::View to another does an inexpensive shallow copy operation105

with reference counting, so memory management and safety do not cause any issues. Globally scoped106

Views (such as the constants for the model) are allocated and filled during a module initialization107

function and deallocated during a finalization function. These Views cannot simply alias constant108

arrays within the library since they may end up in GPU memory. Views in GPU memory cannot be109

allocated until after Kokkos has been initialized at runtime.110

The main pipeline is complete once the Kokkos C++ code has been written to a file. For the111

purposes of testing, a Kokkos backend class was created in Python. This backend works as a drop-in112

replacement for the JIT RefBackend of torch-mlir. Given an MLIR module from the PyTorch frontend113

and a location where Kokkos is installed, our backend automatically goes through the steps needed to114

actually run the generated code:115

• Execute the transformation pipeline described above116

• Emit Kokkos C++ to a file in a known location117

• Compile the Kokkos C++ into a shared library with the addition of a CTypes-friendly118

wrapper (tensors are in the form of raw host pointers and sizes, and function names are not119

mangled)120

3



Figure 1: Full compiler pipeline from PyTorch to natively compiled Kokkos C++, and the automati-
cally generated Python wrapper module.

• Generate a Python wrapper module using the CTypes API, which accepts tensors as NumPy121

arrays122

• Import the module (this loads the shared library, which in turn initializes Kokkos)123

This extended pipeline is useful for testing because the resulting wrapper module provides an identical124

interface to the example PyTorch to LLVM JIT backend. In the case of the ResNet18 example, using125

our code is as simple as:126

import kokkosModule127

probabilities = kokkosModule.forward(image)128

where “image” is a preprocessed NumPy array representing the pixel values of the input, and129

“probabilities” is the resulting vector of probabilities that the image belongs to each class. This vector130

can be directly compared with the one returned by the interpreted PyTorch model, or the LLVM JIT131

version of the model. Figure 1 outlines the overall pipeline, and also shows the full annotated source132

code of the Python wrapper module for ResNet18. We show the example transformed to serial C++133

backend and OpenMP and CUDA backends of Kokkos.134

3 Results and Future Work135

The primary result of this work is the confirmation that a compiler-based approach can be used to136

bridge the language gap between ML frameworks in Python and scientific applications in C++. To the137

best of our knowledge, this project is the first example of a compiler that maps high-level operations138

like convolutions to a portable programming model like Kokkos. Although our Kokkos emitter is139

only a prototype, it is general enough to work with any MLIR program that has been transformed140

into the subset of dialects our emitter expects (scf, arith, memref, etc.). To be production-ready,141

the compiler should be packaged into a single executable, rather than as multiple components split142

across different parts of the MLIR repository. In the future, other frontends beyond PyTorch and143

torch-mlir can be supported. TensorFlow [1] and JAX [2] can both be compiled to high-performance144

native code through the IREE compiler [6], which is also based on MLIR. As in this project, we145

could compile Python programs to Kokkos C++ source code by using the right sequence of lowering146

transformations and our Kokkos emitter. Alternatively, the full capabilities of IREE could be used to147

produce native binaries and a separate MLIR pass could generate interfaces for seamless integration148

with scientific applications.149

Another area needing improvement is the efficiency of the generated code. Although linear algebra and150

tensor operations can be expressed as multidimensional parallel for loops, such naïve implementations151

4



Table 3: The time per inference on four different implementations of ResNet18.

ResNet18 Implementation Inference Time (s)

Interpreted PyTorch 0.357
LLVM JIT (RefBackend) 14.9
Kokkos (OpenMP, 8 Threads) 14.2
Kokkos (Cuda) 0.918
Kokkos (Cuda) w/ Constant Prop. 0.722

do not make effective use of caches or GPU scratchpad memory. Hand-optimized tensor kernels152

that use explicit tiling could be a major improvement (e.g. the cuDNN library). Rather than lower153

every tensor and linear algebra operation to a parallel loop, an extra transformation could be inserted154

to detect the operations for which optimized kernels are available and replace them with calls to155

those kernels instead. The ResNet18 example would benefit especially from 2D convolutions being156

optimized in this way.157

Table 3 shows the times to execute 3 different implementations of ResNet18 inference: interpreted158

PyTorch, the LLVM JIT backend, and our Kokkos backend compiled for CPU and GPU. The PyTorch159

and LLVM JIT versions were run on a single Intel Skylake CPU core (Xeon W-2155), while the160

Kokkos versions enabled either the OpenMP backend (8 threads on the same CPU) or the Cuda161

backend (Quadro P2000 GPU). Although the Kokkos version is slower than the interpreted PyTorch162

version, our module compiled for Cuda (especially with scalar constant propagation) is faster than163

the serial LLVM JIT code. ResNet18 provides a benchmark to develop optimizations in the future164

beyond our initial proof-of-concept compiler.165

4 Conclusion166

Physics-informed AI/ML is becoming an important tool for computational science across many167

domains, from molecular dynamics to electronic circuit design. ML is being used to learn the168

behavior of physical systems so accurately that some first-principle numerical computations can be169

replaced by model inference at a much lower computational cost [3]. However, scientific computing170

work favors a C++ software ecosystem, while modern machine learning is best done in Python. There171

are several ways to interface between the two languages but all of them require the tedious process of172

explicitly defining the interface of each function to be called from the other language.173

We demonstrate that a compiler using MLIR can automate this process. Domain scientists can174

exchange data seamlessly between simulation code in C++ and machine learning models from Python.175

Our compiler can take a general PyTorch model and generate parallel, portable C++ source code176

that uses the Kokkos programming model, making it trivial to integrate into existing Kokkos-based177

applications that can run on different CPUs and GPUs.178

References179

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.180

Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew181

Harp, Geoffrey Irving, Michael Isard, Rafal Jozefowicz, Yangqing Jia, Lukasz Kaiser, Manjunath182

Kudlur, Josh Levenberg, Dan Mané, Mike Schuster, Rajat Monga, Sherry Moore, Derek Murray,183

Chris Olah, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent184

Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,185

Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow, Large-scale machine learning on186

heterogeneous systems, 11 2015.187

[2] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal188

Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao189

Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:190

//github.com/google/jax.191

[3] J. A. Ellis, L. Fiedler, G. A. Popoola, N. A. Modine, J. A. Stephens, A. P. Thompson, A. Cangi,192

and S. Rajamanickam. Accelerating finite-temperature kohn-sham density functional theory with193

5

http://github.com/google/jax
http://github.com/google/jax
http://github.com/google/jax


deep neural networks. Phys. Rev. B, 104:035120, Jul 2021. doi: 10.1103/PhysRevB.104.035120.194

URL https://link.aps.org/doi/10.1103/PhysRevB.104.035120.195

[4] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pienaar,196

River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Oleksandr Zinenko. MLIR: Scaling197

compiler infrastructure for domain specific computation. In 2021 IEEE/ACM International198

Symposium on Code Generation and Optimization (CGO), pages 2–14, 2021. doi: 10.1109/199

CGO51591.2021.9370308.200

[5] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,201

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas202

Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,203

Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-204

performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,205

E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages206

8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/207

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.208

pdf.209

[6] The IREE Authors. IREE. https://github.com/iree-org/iree, 9 2019.210

[7] Christian R. Trott, Damien Lebrun-Grandié, Daniel Arndt, Jan Ciesko, Vinh Dang, Nathan211

Ellingwood, Rahulkumar Gayatri, Evan Harvey, Daisy S. Hollman, Dan Ibanez, Nevin Liber,212

Jonathan Madsen, Jeff Miles, David Poliakoff, Amy Powell, Sivasankaran Rajamanickam, Mikael213

Simberg, Dan Sunderland, Bruno Turcksin, and Jeremiah Wilke. Kokkos 3: Programming model214

extensions for the exascale era. IEEE Transactions on Parallel and Distributed Systems, 33(4):215

805–817, 2022. doi: 10.1109/TPDS.2021.3097283.216

6

https://link.aps.org/doi/10.1103/PhysRevB.104.035120
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

	Introduction
	Methods
	Results and Future Work
	Conclusion

