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Abstract

Lithography modeling is a crucial problem in chip design to ensure a chip design
mask is manufacturable. It requires rigorous simulations of optical and chemi-
cal models that are computationally expensive. Recent developments in machine
learning have provided alternative solutions in replacing the time-consuming
lithography simulations with deep neural networks. However, the considerable ac-
curacy drop still impedes its industrial adoption. Most importantly, the quality and
quantity of the training dataset directly affect the model performance. To tackle
this problem, we propose a litho-aware data augmentation (LADA) framework to
resolve the dilemma of limited data and improve the machine learning model per-
formance. First, we pretrain the neural networks for lithography modeling and a
gradient-friendly StyleGAN2 generator. We then perform adversarial active sam-
pling to generate informative and synthetic in-distribution mask designs. These
synthetic mask images will augment the original limited training dataset used to
finetune the lithography model for improved performance. Experimental results
demonstrate that LADA can successfully exploits the neural network capacity by
narrowing down the performance gap between the training and testing data in-
stances.

1 Introduction

The advancement of semiconductor industry has enabled rapid development of AI and deep learning
technologies, which in turn offers great opportunities for novel chip design methodology, enabling
faster design turn-around-time, better PPA (power, performance and area) and higher yield [13, 14,
21, 5, 10]. Particularly, recent researches have demonstrated efficacy using reinforcement learning
to place circuit components (macros and standard cells) on to chip canvas [13, 5], which is one of
the time consuming phases in chip design flow.

In this paper, we focus on the lithography modeling, a critical problem in chip design and man-
ufacturing flow, which has been a very active area for machine learning applications since 2010s
[6, 12, 17]. Lithography modeling computes the patterns (resist image) of a chip design (mask im-
age) on the silicon wafer without going through real manufacturing process. It allows designers to
find potential circuit manufacture failures and conduct necessary post design optimization prior to
manufacturing. Lithography modeling traditionally consists of two stages [11]. The optical model-
ing outputs the intensity (aerial image) of the light beams that are projected on the silicon wafer,
which is given by the weighted convolution between the mask image and a set of lithography ker-
nels. The resist modeling then applies thresholds on the intensity map and obtains the final resist
image on the wafer.
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Figure 1: Overall framework of LADA.

However, legacy approaches are time consuming to compute complex physical models, normally
taking couple of seconds to minutes. To reduce the design turn-around-time, recent researchers have
investigated the possibility of using deep neural network models as an alternative of physical models,
reducing the computing runtime by nearly 3 orders of magnitudes. Commonly used model architec-
tures are UNet-backboned image-to-image translation networks [16, 3, 24, 23], which can make fast
resist image predictions with moderate accuracy loss. State-of-art dual-band optics-inspired neu-
ral networks (DOINN) [22] further integrates lithography physics into the neural network design
and improves the prediction accuracy. However the quality gap between the machine predicted re-
sist image and the real physical simulated results still prohibits learning-based solutions in the chip
manufacturing flow. Resolving this challenge is not trivial because of the limited availability of high
quality data.

To address data limitation, we present a litho-aware data-augmentation framework (LADA) that
takes advantage of adversarial data generation [18, 1], active learning [15, 26], and modern gen-
erative adversarial network (GAN) design (Figure 1). Specifically we want to generate realistic
in-distribution data with increased data efficiency, such that the synthesized data are most infor-
mative for model improvement. LADA is designed with an end-to-end data framework where a pre-
trained GAN generator and a lithography modeling network are connected. The generator enforces
in-distribution data generation, and the generator latent are further optimized based on sampling
criteria from the model output to generate informative examples most likely to fail predictions.

2 Method

We present our litho-aware data augmentation (LADA) framework, where we use StyleGAN2 to
generate realistic in-distribution data and formulate adversarial active sampling as an optimization
problem to harness informative samples based on model output.

Figure 1 illustrates the pipeline architecture of LADA, where the generator G targets to generate
mask images that will fail the lithography modeling network F . For the best of LADA perfor-
mance, we select StyleGAN-2 [7] as our generator backbone and DOINN [22] to be the machine
learning-based lithography model. However, their limitations require litho-dedicated design to make
the whole framework feasible.

We leverage StyleGAN2 generator to synthesize realistic in-distribution data. StyleGAN2 is a state-
of-the-art generative model trained in adversarial setting, where a novel generator architecture leads
to disentangled high-level attributes and stochastic variations in an unsupervised manner. The gen-
erated styles variables from random latent code control granular style variations of the generated
image, such as the background lightning or sex of human faces. The random noise variables affect
low-level details of the images, allowing small perturbations barely noticeable to the human eye, in-
jecting stochastic details such as finer details background details or finer curls of hair. This attribute
is consistent with our demands on mask image generation because the lithography process is highly
sensitive and minor perturbations on the mask image will result in significant change on the output.

As shown in Figure 2, the DOINN backbone consists of three processing paths: global perception
(GP), local perception (LP) and image reconstruction (IR). GP and LP work together to capture
high quality embedding that will be feed into IR to generate resist images. Inspired by Fourier
Optics, the GP path leverage Fourier Neural Operator [9] to obtain low-frequency global information
feature maps, while the LP path consists of a series of convolutional layers for high frequency local
information. The obtained bottleneck feature maps are fed to a series of deconvolution layers for
image reconstruction, similar to a U-Net [16] structure. To make the LADA framework feasible, we
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Figure 2: Multi-task DOINN with loss prediction module.

leverage the loss prediction module [25] that can be integrated into the original DOINN following
GP and LP.

Loss Prediction Module: The loss prediction module (LPM) predict the loss value ˆlxU
without

ground truth labels for any given unlabeled xU in the input domain. It takes feature maps as the
inputs that are extracted between mid-level blocks of the target DOINN model. Each feature map is
reduced to a fixed embedding size through the LPM module, which consists sequentially of global
average pooling (GAP), FC layers, and ReLU activation layers. The embeddings from different lay-
ers are concatenated and finally passed through another FC layer to predict the scalar loss value.

The goal of adversarial active sampling lies in two key aspects: (1) Generate realistic in-distribution
synthetic data; and (2) Improve data efficiency and training overhead with generating most infor-
mative data inputs. Prior work on active learning focus on reducing the labeling cost by selecting
from pool-based settings, where our work synthesize images from a pre-trained GAN generator in
membership query synthesis fashion. The optimization problem that describe novel and informative
sample generation is as follows:

argmax
z,noise∈N(0,1)

C(G(z, noise; ΘG), F (·; ΘF,t)), (1)

where z, noise are the latent code and noise variables, G is the StyleGAN2 generator with pre-
trained weights ΘG, and F is the DOINN model with weights ΘF,t during some iteration t. C is a
criteria function to evaluate how informative the synthesize image would be towards at improving
the model F if the model is to be retrained with the image added at the next iteration t+ 1.

We explore two different solutions to the relaxed original problem, where the sampling process is
conducted on separated input domains of the StyleGAN2 generator style latent code z and noise.
Sampling in the style latent code z domain is equivalent to:

argmax
z

Cz(G(z; ΘG), F (·; ΘF,t))

+
λ1

|z|
log(p(z;N(0, 1)),

(2)

where the constraint that z ∈ N(0, 1) is relaxed instead to maximize the log-likelihood and noise is
fixed to 0. Similarly, we can random sample z from N(0, 1) which is kept fixed and optimize noise
variable:

argmax
noise

Cnoise(G(noise; ΘG), F (·; ΘF,t))

+
λ2

|N |
log(p(noise;N(0, 1)).

(3)

We leverage the multi-task DOINN LPM predicted loss as the sampling criteria:

C = FLPM (G(z, noise)), (4)

which motivates synthesized data to have larger loss between DOINN model F prediction and labels
without having to access the lithography simulator. This method is domain agnostic as the network
learns a single loss scalar and should generalize to synthesized image regardless of granular style
changes or small noise perturbations. The output of the generator G is directly chained as the input
of the DOINN LPM model FLPM .

We also experiment with alternative sampling criterion from methods in pool-based active learning
and adversarial attack.
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Model Uncertainty: The Dice Loss [8] between prediction logits {pi, qi} of the DOINN model F
captures the model uncertainty:

C = LDice(P,Q)− 1 = − 2
∑

piqi∑
p2i +

∑
q2i

. (5)

Model Perturbation: Inspired by adversarial attack [19], the cross-entropy loss between model F
outputs samples maximal model perturbations:

Cnoise = LCE(F (G(z, noise)), F̃ (G(z, 0))). (6)

3 Experiments

Lithography modeling lacks sufficient open-source datasets to train deep machine learning models.
In this section, we briefly explain how we constructed the initial training dataset, and pretrain models
for StyleGAN2 and DOINN.

Testing Dataset: We test our models on ICCAD 2013 CAD Contest [2] which consists of 10 M1
(Metal Layer 1) designs on 32nm design node at 2k resolution.

Initial Training Dataset: We follow prior work [20] in generating a shape-based generator to syn-
thesize initial training dataset. The shape-based generator synthesized rectlinear design patterns fol-
lowing design rules similar to test data patterns. The generated images are optimized for Optical
Proximity Correction (OPC) with industrial level tools, such that the mask images are manufac-
turable. The synthesized mask images after OPC are simulated with a lithograph simulator [4] to
obtain the resist image label.1 We construct an initial training dataset of 2000 M1 designs for model
pretraining.

Model Pretraining The StyleGAN2 and DOINN models are pretrained on the initial training dataset
of 2000 M1 designs. In training StyleGAN22 we follow the proposed default parameters.The model
is trained with downscaled image resolution of 256 to decrease training time and generated images
are bilinear upsampled to 2k resolution.

Evaluation Metrics We evaluate models using the Jacard index of the foreground class (fIoU):

fIoU =
P1 ∩G1

P1 ∪G1
, (7)

where P1, G1 denotes the prediction and ground truth for the foreground class. We use fIoU since
the high proportion of background pixels typically inflates the overall mIoU score.

We conduct experimental studies to evaluate the proposed active learning approach on improving
lithograph modeling. We extensively compare against different adversarial sampling criterion func-
tions inspired from prior work on pool-based active learning.

We follow the proposed method in where we set total iteration to T = 16 and the labeling budget for
each iteration B = 2k. Table 1 compares the testing results for iterative adversarial active learning.
Gap measures the generalization gap between model performance with train results on pretrain. The
style pred performs the best, with a fIoU testing error of 1.78%, reducing the generalization error
by 37.9% compared with random of 2.86%, and narrows the generalization gap to less than 0.24%.

4 Conclusion and Future Work

In this work, we present LADA, a litho-aware data augmentation framework based on adversarial
active sampling techniques, which targets at reducing the gap between the empirical and the gen-
eralization error of the machine learning-based lithography simulator. We aim at resolving both the
data limitation in data synthesis while increasing the data efficiency and reducing training over-
head through adversarial active sampling. Our work in resolving data limitation and improving data
quality in a query-based activation learning setting, could serve to further boost neural network gen-
eralization for learning physical-based systems. Future work include further increasing the DOINN
backbone model capacity and improving its generalization bound.

1OPC takes hours to complete for a single design, while lithography simulation takes seconds.
2https://github.com/NVlabs/stylegan2-ada-pytorch
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Table 1: Testing results for iterative adversarial active sampling. The shape use shape-based pattern
generator, random randomly samples for style and noise from StyleGAN2, style dice use dice loss
for uncertainty in where we only sample for style for granular changes in the generation, noise CE
is adversarial sampling on noise domain for maximal model output perturbation, style pred and
noise pred are adversarial sampling for the loss prediction module’s predicted loss on style and
noise respectively. pretrain presents both train and test results of the pretrained model on 2k data.
Other results are models finetuned on all generated 32k data after 16 iterations.

Item fIoU% error% Gap%

pretrain (train) 98.4583 1.5417 -
pretrain (test) 94.3589 5.6411 4.0994

shape 96.3467 3.6533 2.1116
random 97.1370 2.8630 1.3213

style dice 97.3223 2.6777 1.1360
noise CE 97.3222 2.6778 1.1361
style pred 98.2216 1.7784 0.2367
noise pred 98.1474 1.8526 0.3109

Table 2: Mask legalization makes standard adversarial attack meaningless. Legalization restores
noised injected mask image to the original image, yielding meaningless adversarial example gener-
ation. Adv masks are illegal and do not have PhysicalSim results.

Design Mask Image DOINN PhysicalSim

Original

Adv N/A

Adv-Legal

Figure 3: Visualization and comparison for test performance. The fIoU are listed at the bottom of
each predictive output.
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