
Drug Discovery Machine Learning Systems For
Accelerating Idea Hypothesis To Production Decisions

Carsten Stahlhut Jesper Ferkinghoff-Borg Kang Li Kilian W. Conde-Frieboes
Vanessa I. Jurtz Christian Vind Kristoffer Balling Søren B. Padkjær

Novo Nordisk A/S ∗

ctqs@novonordisk.com

Abstract

Drug discovery is a highly iterative process calling for continual learning, where
explorative steps foster the base information for the more directed molecule opti-
mization utilized in exploit steps. Machine learning driven techniques have proven
a promising direction to assist in this guidance. Yet, minimal attention has been
given to the challenges and needs in securing the ability to learn across drug dis-
covery projects while still being able to iterate quickly through ideation phase to
testing and deployment steps. In this contribution we discuss our experiences and
considerations of integrating an MLOps setup in the drug discovery process. We
focus specifically on capturing the idea generation process through experimental
tracking while still being able to minimize development time from experimentation
to actual deployment.

1 Introduction

Developing new medicine is an inherently challenging and expensive process that typically requires
between 10-20 years in development and approval time before reaching the market [1, 2]. This
prolonged time is among other things a consequence of a complicated search for a suite of desired
functional properties in an extremely large chemical space. Even if the search is restricted to natural
amino acids only, the chemical space is in the order of 1040 for peptides of a moderate size of 30
amino-acids.

To accommodate a structural search in such a large space, with only a tiny subspace satisfying the
desired functional properties, we utilize several machine learning techniques, including representation
learning and predictive models of the molecules’ function to active learning models controlling the
actual search strategy.

However, relying on several machine learning (ML) model steps in itself have a direct consequence
of the operation of the system and require well defined interfaces from data acquisition process
deployment and monitoring of the ML system behaviour when running in production. Several
excellent ML driven drug discovery examples have demonstrated how to use ML models to predict
optimized functions such as [2, 3]. However, minimal attention has been given to the full eco-system
around reproducible ML system development entailing tracking, deployment as well as ensuring that
the system is operated as expected. While setting up a PoC example of a ML system is typically
easy using various boiler-plate code from the web, it is much harder to set up an integrated model
without the surrounding infrastructure. In fact recent computational reproducibility analysis provided
by [4] indicates that out of 9625 evaluated Jupyter notebook workflows the authors were only able to
reproduce the results in 245 of the cases with an associated biomedical publication despite provided
Github code. These numbers speak their own words about the challenges in providing reproducible
data science work.

∗Novo Nordisk A/S, R&ED, AI & Digital Research, Novo Nordisk Park 1, DK-2760 Måløv.

Preprint. Under review.



In this paper we formulate our ML system from a lab perspective both in the sense of how to treat
experiments in the lab as well as how to scale up the experiments to accelerate scientific hypotheses,
supported by our in-silico laboratory testing. Driving high-throughput experiments in a physical
laboratory require well-defined protocols in order to ensure high quality data at scale. The equipment
needs to operate as expected, and if not this can be detected through different alerts. In a MLOps
context we view an in-silico experiment to be in direct correspondence to an in-vitro or an in-vivo
experiment with respect to clarifying the material and operational requirements needed to ensure full
reproducibility.

2 Drug discovery in an MLOps context

To ensure the acceptance and support from the core business with respect to the commitment and
investment needed for implementing good MLOps principles such as [5, 6], we have found it very
useful to emphasize the similarities between the objectives, challenges and stages pertaining to model
development with those pertaining to in-vitro assay development. It is in the model ideation stage we
outline our hypothesis and associated constraints in order to e.g. navigate in an enormous chemical
space in the context of molecule optimization. At this critical stage we are introducing inductive
biases as a consequence of the constraints being tested in experimentation which form the basis for
the further development and eventual fine-tuning prior to the final deployment. While at the first stage
the inductive biases might seem too hard and fluffy to record, they define the later boundaries of the
search space and thus the applicability of the selected search strategy at hand. More importantly, it is
at this stage we foster our later ability to secure the data required to enable transfer learning between
projects. These considerations are no different than those related assay development to measure one
specific property at hand. Thus, we see an ML model as a dedicated instance of an assay, with the
main difference that the model here is an in-silico assay rather than a physical one. Furthermore,
we make the analogy that a model definition essentially corresponds to a protocol definition of how
to run a specific assay. Similarly, the ML system and its operation (MLOps) in this context are
comparable to the core infrastructure that ensures that the assay runs accordingly to the protocol
(model) definition.

2.1 MLOps architecture

As part of the early drug discovery phase our main focus is to capture and standardize the information
in the model development phase such as how objectives are changing as part of the project progression,
from e.g. its primary focus on receptor binding to properties related to stability, formulation, process
optimization etc. We are naturally interested in optimizing the full development cycles and thus the
most fundamental step is to record this data such that it is transparent how decisions were made in
projects and how data can be utilized for transfer learning. This also provides guidance on quantitative
measures of the performance of the ML system. To ease and support a standardized setup, designed to
circumvent the well-known problem of maintaining boiler-plate code [5, 7], we propose that ML/data
scientists comply to the use of dedicated templates, as indicated in Figure 1. Through the templates we
facilitate the adoption of our scientists to different ML system abstractions, including ETL (extract,
transfer, load process), model class, MLProject configuration file and package specification file.
These abstractions significantly reduce the large code refactoring steps that are typically needed as
part of packaging a development-stage model to deployment.

A number of open source templates and packages exist to help standardize the structure, e.g.
cookiecutter [9] can be quite suitable for setting up well-defined templates. However, the tem-
plates in itself serve a potential risk of introducing more boiler-plate code and increasing maintenance
efforts as the templates evolve over time with new functionality or bug fixes introduced and thus
require to be maintained in itself. In order to propagate these changes and keep existing ML systems
up to date if already based on a previous template version, we need a consistent schema for this. To
fight back the maintenance overhead, open-source tools such as cruft can be utilized [10], which
exactly try to automate this procedure.

2.2 Experimentation - enabling scientists in a controlled environment

We find that the transparency of the performance of a machine learning model system to be one of the
fundamental steps towards building trust in the models. It is in this initial step that we augment our

2



Figure 1: Architecture of model template outlining which component the users are expected to
customize to fit for the purpose (orange) with pre-defined schema to benefit of the model system
interfaces with experiment tracking tools such as MLFlow [8], building of model containers with
associated registry and data storage layer in internal data lake to obey the data security policies.

machine learning system with well-defined data pipelines and machine learning pipelines to ensure
reproducible results. Having full lineage from early experimentation of the model architecture and
parameter configuration to later consolidation is a prerequisite for identifying potential problems or
improvements to the models, as highlighted by [5]. In the development phase of a ML system we seek
to foster flexibility to the ML/data scientist such that new state-of-the-art models, packages, alternative
data transformation steps etc. can be tested easily. However, we also seek reproducible experiments
and this challenges the robustness of the setup as well as the turn-around time for how quickly a
stable environment can be provided to the scientist. As indicated in Figure 1, our scientists are at
this early stage often prototyping in a Jupyter notebook like format. Here, we enable the container
and provide preconfigured notebooks and scripts for performing model training and serialization. At
each experiment run we enable model parameter logging, data versioning, code versioning and model
packaging. Since the training examples constitute an integrated part of several models, including
Support Vector Machines (SVM) and Gaussian Processes (GP), we also serialize our models back to
our enterprise data lake to ensure a proper data access policy entailing the automatic capture of e.g.
sensitive data.

2.3 Fair benchmarking

One of the fundamental requirements for model development and reasoning of the models is to secure
fair benchmarks with consistent treatment of train, development and test data. Whilst this should
be obvious, we often find that individual data scientists are tempted to do their own splitting into
train, development, and test data to be able to shoe horn a quick analysis decision. This neglects the
importance of full reproducible experiments as well as the much more important goal of being able to
deliver the data to the foundation for continual learning across projects. To prevent ad-hoc model
validation, a number of backtesting functionalities is provided to the scientists through the framework
as demonstrated in Figure 2. Here, molecules variants are recorded and grouped in their associated
design rounds to ensure fair model comparison. While this setup facilitates fair benchmarking for
our predictive models it is not well-suited for active learning models, as challenger models will be
forced to use the training trajectories from the current production model. Thus, for active learning
algorithms benchmarking we relapse to simulations with benchmarks directed towards the minimum
number of designs needed to reach e.g. some x-fold improvement.

3



Figure 2: New ML models are consistently backtested. In each round the ETL controls that only train
and development data is loaded from round R1 molecules and with R2 as test data. Performance is
tracked in MLflow, A.

2.4 ML system deployment and monitoring

To support continuous integration and deployment (CI/CD) of our ML systems we have enabled daily
scheduled jobs designed to both ensure that current model environments can be build from locked
package versions as well as from scratch with newest package releases. Similarly, our scheduled
jobs contain retraining and performance verification through standardized variant design backtesting
as illustrated in Figure 2. We utilize the backtesting strategy on a daily basis to detect and learn if
new challenger models are stepping up, e.g. due to newly added data. If the ML system passes the
validation criteria it is deployed with a model API end point. Models can be registered and deployed
through our MLFlow server and by utilizing the MLFlow build-in deployment functionalities. In
practice, we typically utilize the Domino Enterprise MLOps platform [11] to deploy our models
here, which empowers the ML system administrator with easy control of access control level as well
as scaling up/down compute resources. While accessing a model via an API entry point might be
suitable for data scientists, it is typically not enough for targeting non-data scientists as they generally
require some sort of a GUI to utilize the ML system as an integrated part of their decision process.
Depending on the maturity of the application and number of dedicated users we typically embed our
model APIs into a streamlit application. Such application allows us to quickly iterate with our
users on how they would like to work with the models when designing new compounds.

Through user statistics from our model APIs / applications we are utilizing tools such as Graphite
[12] and Domino Enterprise MLOps platform built-in user statistics to keep track of which func-
tionalities the users are accessing. Additionally, resource statistics are provided. For some of our
production models, deployed on our internally hosted Domino Enterprise MLOps platform, we are
utilizing the model monitoring capabilities to keep track of whether the deployed ML systems are
being used as intended and whether potential problems are arising, such as the presence of data
drifting. While detected data drifts can be configured to trigger a retraining of the ML-system, we
have not enabled this yet as in most of our setups this is picked up from our scheduled jobs which
entail the automatic retraining of a suite of challenger models as indicated above.

3 Conclusion

Utilizing ML systems as an integrated part of the drug discovery process can provide improved drug
candidates quicker to the patients. We advocate for adhering to the best MLOps principles as early as
possible in the design process. This should be done already at the idea generation phase. At this stage
basic assumptions and decisions are made with respect to both data utilization and model design,
which will impact the overall performance of the ML system. Through the usage of cruft [10],
we provide ML templates that are easy to maintain and to apply in new projects. One of the largest
challenges in incorporating standardized MLOps setups across research projects and work processes
is to change the habits of the scientists, despite their wishes to have a better model framework for
collaboration. Here, we argue that a prerequisite for such a data scientist based collaboration is to
have a framework that ensures full transparency and reproducibility of the data scientific experiments.
To mitigate old habits investment in teaching and on-boarding new colleagues is needed. Furthermore,
we argue that it is the experiment tracking performance metrics together with the different ML model
architecture parameters that build the foundation for enabling transfer learning across all the various
drug discovery pipelines. We see this as an absolutely mandatory step to realize the full potential of
modern machine learning and AI in the Pharma industry.

4



Acknowledgments and Disclosure of Funding

We thank Simone Fulle, Monica Jane, Paolo Marcatili, and Sune Askjær for fruitful discussion and
maturation of the framework to ensure applicability of multi-modality use cases.

References
[1] phrma.org. Modernizing drug discovery, development, 3 2016.

[2] Alex Zhavoronkov, Yan A Ivanenkov, Alex Aliper, Mark S Veselov, Vladimir A Aladinskiy,
Anastasiya V Aladinskaya, Victor A Terentiev, Daniil A Polykovskiy, Maksim D Kuznetsov,
Arip Asadulaev, et al. Deep learning enables rapid identification of potent ddr1 kinase inhibitors.
Nature biotechnology, 37(9):1038–1040, 2019.

[3] Jonathan M. Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-Ruiz, Nina M.
Donghia, Craig R. MacNair, Shawn French, Lindsey A. Carfrae, Zohar Bloom-Ackermann,
Victoria M. Tran, Anush Chiappino-Pepe, Ahmed H. Badran, Ian W. Andrews, Emma J. Chory,
George M. Church, Eric D. Brown, Tommi S. Jaakkola, Regina Barzilay, and James J. Collins.
A deep learning approach to antibiotic discovery. Cell, 180(4):688–702.e13, 2020.

[4] Sheeba Samuel and Daniel Mietchen. Computational reproducibility of jupyter notebooks from
biomedical publications. arXiv preprint arXiv:2209.04308, 2022.

[5] David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner,
Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and Dan Dennison. Hidden technical
debt in machine learning systems. Advances in neural information processing systems, 28,
2015.

[6] Khalid Salama, Jarek Kazmierczak, and Donna Schut. Practitioners guide to mlops: A frame-
work for continuous delivery and automation of machine learning. Google Could White paper,
2021.

[7] Martin Fowler. Refactoring: improving the design of existing code. Addison-Wesley Profes-
sional, 2018.

[8] Matei Zaharia, Andrew Chen, Aaron Davidson, Ali Ghodsi, Sue Ann Hong, Andy Konwinski,
Siddharth Murching, Tomas Nykodym, Paul Ogilvie, Mani Parkhe, et al. Accelerating the
machine learning lifecycle with mlflow. IEEE Data Eng. Bull., 41(4):39–45, 2018.

[9] Audrey Feldroy. Cookiecutter, 6 2022.

[10] Timothy Crosley. Cruft, 8 2022.

[11] Domino Data Lab. Domino’s Enterprise MLOps Platform, 2022.

[12] Chris Davis. Graphite, 2022.

5



A Appendix

Figure 3: Higher resolution of experiment tracking example given in Figure 2 for back-testing of
variant design rounds.

6


	Introduction
	Drug discovery in an MLOps context
	MLOps architecture
	Experimentation - enabling scientists in a controlled environment
	Fair benchmarking
	ML system deployment and monitoring

	Conclusion
	Appendix

