
Virtual Machines Scheduling using Reinforcement
Learning in Cloud Data Centers

Anonymous Author(s)
Affiliation
Address
email

Abstract

Virtual machine (VM) scheduling is the core of Infrastructure as a Service (IaaS),1

where the common practice is to adapt heuristic methods. However, a single2

heuristic method is known to generalize poorly to different contexts. In this paper,3

we propose an DRL-based method to choose among a candidate pool of heuristic4

methods at each step. We also developed a simulating framework based on OpenAI5

Gym for benchmarking. Despite the high-dimensional state/action space and6

poor data availability, we show that our RL method can outperform all heuristic7

candidates when the objective is to minimize the overall fragment rate (FR). The8

amount of improvement scales with the size of the problem, indicating promising9

potentials for industry-scaled applications.10

1 Introduction11

The introduction and proliferation of cloud services has revolutionized how computing resources are12

consumed. Providers allow end-users easy access to secure, elastic and state-of-the-art resources,13

while applying efficient management techniques in order to optimize their return on investment. In14

particular, resource virtualization is used to maximize the utilization of the underlying hardware.15

Consequently, one of the most crucial components in the cloud stack is the Virtual Machine (VM) al-16

locator, which assigns VM requests to the physical hardware. Indeed, suboptimal placement decisions17

can result in fragmentation (and in turn, unnecessary over-provisioning of physical resources), perfor-18

mance impact and service delays, and even rejection of incoming requests and customer impacting19

allocation failures.20

The use of optimized placement mechanisms proved to be successful in a broad set of use cases,21

including production quality scenarios [1]. A typical solution exploits heuristics based on bin packing22

[2]. In fact, VM placement can be modeled as a bin packing problem, where VMs and PMs are23

objects and bins, respectively. For instance, the first-fit heuristic allows to place VMs over PMs in an24

efficient manner, but at the price of too aggressive packings causing VMs to ignore the fragment rate25

characteristics. Other solutions exploit optimization to guarantee a more fine-grained scheduling over26

the trade-off between placement actions and performance objectives, e.g., used power, reliability of27

the hardware, and mitigation of information leakage between VMs [3].28

To summarize, VM placement is an interplay of different objectives, constraints, and technological29

domains. Machine learning techniques can tame such a complexity, owing to their capability of30

finding “hidden” relationships among the available data and therefore generate placement actions31

that maybe difficult to be found using classical optimization tools or heuristics based on common32

sense. Machine learning can be used either to design new VM placement approaches or to enhance33

the capabilities of existing heuristics. Toward this end, in this paper, we propose a mechanism for34

VM placement based on deep reinforcement learning (DRL) [4]. Specifically, we consider a decision35

maker that, after training, is able to select the most suitable heuristic to compute the placement for36

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.



Scheduling Agent

Action

Reward

PMS

VM

Observation

CPU, MEM CPU, MEM
NUMA 0 NUMA 1CPU, MEM CPU, MEM

CPU, MEM, Deploy NUMA

NUMA 0 NUMA 1CPU, MEM CPU, MEM

State

… …

… …

Environment

HA0

HA1

HA2

PM Index
HA

Datacenter

NUMA 0 NUMA 1

Figure 1: The overall VM scheduling framework proposed.

each VM requested by end users. To apply RL to complex VM scheduling problems, however, we37

had to solve several key challenges.38

First, the cluster schedulers must scale to hundreds of PMs with thousands of VMs. In other words,39

the scheduling problem is significantly larger compared to typical RL applications such as game-play40

tasks, both in terms of the amount of information available to the scheduler (the state space), and41

the number of choices it must make (the action space). We therefore had to design a scalable RL42

formulation. Specifically, we design different heuristic algorithms as the set of actions for the RL43

agent. The heuristic algorithm selected by RL will determine the best PM to host the incoming VMs.44

Second, while model-free approaches in general, and RL techniques in particular, are very powerful,45

their main weakness is the amount of data required to train them properly. The amount of training46

data should be in proportion to the action space, where the latter is far larger in our case. This issue is47

very important since we cannot expect cloud stakeholders to have years of scheduling data readily48

available in order to train the VM scheduler. As an alternative, we build an instance-generator and49

a scheduling environment to generate training data on the fly. The instance-generator is used to50

generate any VMs client request data, while the scheduling environment simulates the effect of the51

scheduling decision on the pm states for the next time step.52

2 Design of VMS53

2.1 VMS Overview54

Figure 1 summarizes the proposed architecture of VMS. In VMS, the RL agent takes in the request55

information from VM client as well as all the current PM states as input. Based on this, the agent56

selects the best heuristic algorithm as its action for the current time step. The chosen heuristic57

algorithm generates the best PM index in the cluster, on which the incoming VM is scheduled.58

Overall, the goal of VMS is to reduce the fragment rate while satisfying all hard constraints required.59

Note that to simulate the challenges of online deployment, we do not have control over the order that60

VMs arrive in, i.e., all VMs are scheduled at a first-come, first-served basis.61

Problem Formulation We consider a data center running an IaaS made up of N PMs, where each62

PM has 2 NUMAs with a bundle of CPU and memory resources. At time t, the scheduler receives a63

client request for a certain type of resources, where the request can involve either a single NUMA or64

double NUMAs. The primary goal of the scheduler is to select the most suitable PM to handle the65

VM requests and minimize the fragment rate (FR) as defined below:66

#blocks_used =

N∑
i=0

1∑
j=0

⌊NCi,j/mem_sizei⌋, FR = 1− mem_sizei ·#blocks_used∑N
i=0 Fi,cpu

. (1)

Here, NCi,j is the amount of free CPU memory on NUMA j of PM i, mem_sizei is the size of67

each memory block on PM i which varies across different VM types, and Fi,cpu is the amount of68

free CPU memory on PM i. Intuitively, even if a VM only occupies a portion of a memory block,69

the remaining portion on that memory block cannot be assigned to another VM. In summary, this70

equation quantifies the percentage of free CPU memory that cannot be used across all PMs.71

2



2.2 Deep Reinforcement Learning in VMS72

We propose to use deep RL for VM scheduling. Unlike previous attempts that rely on pre-defined73

rules with heuristic algorithms, our approach learns a scheduling policy from observations. In other74

words, we model the dynamic virtual machine scheduling problem under the Markov decision process75

(MDP) framework, where DRL learns an optimal scheduling policy through interacting with the76

environment. For each VM client request, the agent takes the current PM state as well as the current77

VM client request as input, and computes the best action, i.e., to select the most appropriate heuristic78

algorithm at the current state. The heuristic algorithm in turn calculates the target PM index, to where79

the incoming VM is deployed on. The selected PM along with the current PM states are fed into the80

scheduling environment to simulate the next state as well as the reward. The agent uses the reward to81

update its weights via gradient ascent. The full MDP formulation is in Section A. Next, we discuss82

how we tailor the design of each component for the task of VMS.83

Action Design Our action set includes two designed heuristic algorithms suitable for different84

context, namely a first-fit heuristic algorithm and a fragment-fit heuristic algorithm. We also add85

a third action of initializing a new PM. Notably, we mask out all PMs that are infeasible and the86

selected heuristic algorithm is only allowed to choose among the rest. After that, another first-fit87

algorithm decides the final NUMA placement inside this PM.88

State Design We design the input to the agent at each step to include: 1) PMS features - five89

in total: the first one is a binary flag which indicates whether the PM contains any VMs, and we90

prefer to schedule VM request to PMs that do, as it avoids consuming new PMs. The other four are91

the remaining CPU and memory for each of the two NUMAs. 2) VM features - also five in total:92

NUMA ID and the remaining CPU/memory on each NUMA. We choose this design to allow for fast93

comparison between a VM request and all PMs in order to efficiently mask out infeasible PMs. Also,94

note that if a single NUMA is requested, we use zeros as placeholders for the other NUMA. Lastly,95

min-max normalization is applied to all numerical features.96

Reward Design To quantify the change in FR of one PM before and after an incoming VM is97

added, we define the following:98

R = Sbefore − Safter, (2)
99 S =

{
0

∑1
j=0 NCj = 0,

[
∑1

j=0(NCj%mem_sizei)]/
∑1

j=0 NCj

∑1
j=0 NCj > 0.

(3)

We omit the subscript i indicating PM i for simplicity. The reward of an action is the change in S of100

the target PM. Note that here we only consider the memory size of VM type 4 as listed in Table 2.101

3 Data Training Requirements102

While DRL can be very powerful, its main drawback is the amount of training data required [5].103

In light of this, we design an instance-generator (IG) and a high-fidelity scheduling simulator (SS).104

Instance-generator is designed to generate dummy VM client requests. The parameters include105

the VM type, the percentage of each VM type, and the migration status (able or disable) following106

predefined probability. The VM request information is saved as a JSON file and can be readily used107

by SS. Scheduling Simulator can reflect the real situations of cloud computing. The simulator108

follows the OpenAI Gym environments [6] including specific file hierarchy and function abstractions.109

We welcome researchers to use our framework to easily train their models and compare against110

different heuristic methods.111

4 Experiments112

To showcase the effectiveness of the proposed approach, we build an instance-generator to generate113

the synthetic data. We consider a data center composed of 279 PMs and 2089 VMs, where the VMs114

are shuffled randomly to simulate the order of client request arrivals. Seven classes of VMS were115

considered as shown in Table 2 in the Appendix. We compare VMS against two heuristic baselines.116

3



1 2 3 4 5 6 7 8 9 10
Trials

0.269

0.270

0.271

0.272

0.273

0.274

0.275

0.276

FR

0.2713713

0.27053713

0.27253713

0.270537130.27053713

0.27253713

0.27053713

0.27453713

0.27053713

0.27253713

0.2745714 0.2745714 0.2745714 0.2745714 0.2745714 0.2745714 0.2745714 0.2745714 0.2745714 0.2745714

0.270537130.270537130.270537130.270537130.270537130.270537130.270537130.270537130.270537130.27053713

RL
First-fit
Fragment-fit

(a) Small(500vms, 60pms)

1 2 3 4 5 6 7 8 9 10
Trials

0.268

0.269

0.270

0.271

0.272

0.273

0.274

FR

0.2717241379310345

0.26951724137

0.27172413793

0.272827586

0.269517240.269517240.26951724

0.2717241 0.2717241

0.26951724

0.272827580.272827580.272827580.272827580.272827580.272827580.272827580.272827580.272827580.27282758

0.267498640.267498640.267498640.267498640.267498640.267498640.267498640.267498640.267498640.26749864

RL
First-fit
Fragment-fit

(b) Middle(1000vms, 120pms)

1 2 3 4 5 6 7 8 9 10
Trials

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

FR

0.139167862
0.14394

0.1391678622

0.1255060720.1276901
0.13375796

0.143949

0.1255060720.12769 0.12769

0.311 0.311 0.311 0.311 0.311 0.311 0.311 0.311 0.311 0.311

0.1414 0.1414 0.1414 0.1414 0.1414 0.1414 0.1414 0.1414 0.1414 0.1414

RL
First-fit
Fragment-fit

(c) Big(2089vms, 279pms)

Figure 2: FR of Methods under Three Different Dataset.

Table 1: VM scheduling Results

Methods Scheduled Failed PMs Used Fragment-rate

First-fit 2089 0 265 0.311
Fragment-fit 2080 9 279 0.1414
RL 2089 0 279 0.1276

First-fit method [7]: Traverse all the PMs and place the VM on the first PM that can meet the cpu117

and memory requirement of the client request.118

Fragment-fit method: Sort all PMs that can meet the requirements of the current VM according to119

the amount of the fragmentation rate reduction before and after this VM is added, and return the PM120

with the largest fragmentation rate reduction.121

4.0.1 Results:122

We evaluate the three methods under three different dataset. The results are shown in Figure 2. We123

can see that the more big dataset, the FR from RL reduces. Note that in the middle datasett, though124

the FR of Fragment-fit method is better, it has 23 fails. The RL has no fails which means that all125

the 1000 can be scheduled. To be more specific, the big dataset experiments results are shown in126

Table 1. Compared to first-fit, the proposed RL can reduce FR by 58.9% with only 4.9% more PMs.127

Compared to fragment-fit, RL uses the same number of PMs but lowered FR by 9.6%. Additionally,128

RL have no failed VM requests, while fragment-fit has 9. This is because fragment-fit is a greedy129

algorithm that selects the PM with the largest FR reduction at the current step. As a result, all PMs130

will quickly be at least partially occupied, leaving no space for a large (64c, 88c) VM request that131

might come later. On the other hand, RL learns to sacrifice the current reward for better long-term132

reward.133

5 Conclusion134

We propose a framework for the VMS task and show that RL-based methods can achieve competitive135

results against widely-adapted heuristic algorithms, albeit the disproportionately large action space136

and the scarcity of data available. Extensive results reveal that letting the RL agent choose among137

multiple heuristic algorithms can lead to better results than any single heuristics, especially as the138

size of the problem grows.139

References140

[1] Raja Wasim Ahmad, Abdullah Gani, Siti Hafizah Ab Hamid, Muhammad Shiraz, Abdullah141

Yousafzai, and Feng Xia. A survey on virtual machine migration and server consolidation142

frameworks for cloud data centers. Journal of network and computer applications, 52:11–25,143

2015.144

4



[2] Rina Panigrahy, Kunal Talwar, Lincoln Uyeda, and Udi Wieder. Heuristics for vector bin145

packing. research. microsoft. com, 2011.146

[3] Luca Caviglione and Mauro Gaggero. Multiobjective placement for secure and dependable147

smart industrial environments. IEEE Transactions on Industrial Informatics, 17(2):1298–1306,148

2020.149

[4] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal150

policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.151

[5] Vincent Mai, Kaustubh Mani, and Liam Paull. Sample efficient deep reinforcement learning via152

uncertainty estimation. In International Conference on Learning Representations, 2022.153

[6] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,154

and Wojciech Zaremba. Openai gym, 2016.155

[7] Mohammed Rashid Chowdhury, Mohammad Raihan Mahmud, and Rashedur M. Rahman.156

Implementation and performance analysis of various vm placement strategies in cloudsim.157

Journal of Cloud Computing, 4:1–21, 2015.158

[8] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan159

Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint160

arXiv:1312.5602, 2013.161

[9] Eric Liang, Richard Liaw, Philipp Moritz, Robert Nishihara, Roy Fox, Ken Goldberg, Joseph E.162

Gonzalez, Michael I. Jordan, and Ion Stoica. Rllib: Abstractions for distributed reinforcement163

learning, 2017.164

[10] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal165

policy optimization algorithms. CoRR, abs/1707.06347, 2017.166

A MDP and DRL for Scheduling167

We model the dynamic virtual machine scheduling problem under the markov decision process168

(MDP) framework. For each VM client request, the RL agent schedules its PM destination. The PM169

states in the next step are determined by the current PM states and the VM request. Such a sequential170

decision-making problem can be formulated as a Markov Decision Process (MDP), modeled as171

⟨S, A, T, R⟩, where S is a finite set of states, which includes the remaining CPU and memory of all172

PMS, VM request. A is a finite set of heuristic algorithms actions. T is the state transition function173

defined as T : S × A → S. The PMS remaining information at next time step is determined by174

PMS remaining information and the VM request. R is the reward function defined as S × A → R,175

which qualifies the performance of a scheduling action. Based on the MDP-based VM scheduling176

problem formulation, we will find an optimal scheduling policy π(s)∗ : S → A, which maximizes177

the accumulative reward R.178

In this paper, we consider an RL-based approach to generating VM scheduling algorithms. Unlike179

previous approaches that use pre-defined rules in heuristic algorithms, our approach will learn a180

scheduling policy from observations. DRL learns an optimal scheduling policy through interacting181

with the environment. At each time step t, the scheduling agent selects an action At = a, given the182

current state St = s, based on its policy πθ.183

a ∼ πθ(a|s) = P(At|St = s; θ) (4)

In DRL, the scheduling policy is approximated by a neural network parameterized by θ [8]. When the184

scheduling agent takes the action a, a state transition St+1 = s′ occurs based the system dynamics fθ185

(Equation 5), and the scheduling agent receives a reward Rt+1 = r.186

s′ ∼ fθ(s, a) = P(St+1|St = s,At = a) (5)
187

θ∗ = argmax
θ

Eπθ
[r] (6)

5



Table 2: VM Types

Type 1 2 3 4 5 6 7

VM Classes large(2) xlarge(4) 2xlarge(8) 4xlarge(16) 8xlarge(32) 16xlarge(64) 22xlarge(88)

Due to the Markov property, both reward and state transition depend only on the previous state. DRL188

then finds a policy πθ that maximizes the expected reward (Equation 6).189

B Model Details190

We implement our RL model using RLlib [9]. We use a batch size of 4000 and a learning rate of191

0.0005 for training. The neural network consists of two stacked fully-connected layers with 256192

hidden units each and ReLU activation functions. The network is trained using PPO [10] with193

γ = 0.99. Critic and GAE are used with kl coefficient being 0.2.194

6


	Introduction
	Design of VMS
	VMS Overview
	Deep Reinforcement Learning in VMS

	Data Training Requirements
	Experiments
	Results:

	Conclusion
	MDP and DRL for Scheduling
	Model Details

