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Abstract

Post-training quantization of neural networks consists in quantizing a model without
retraining, which is user-friendly, fast and data frugal. In this paper, we propose
LatticeQ, a novel post-training weight quantization method designed for deep
convolutional neural networks. Contrary to scalar rounding widely used in state-of-
the-art quantization methods, LatticeQ uses a quantizer based on lattices – discrete
algebraic structures. LatticeQ exploits the inner correlations between the model
parameters to the benefit of minimizing quantization error. This allows to achieve
state-of-the-art results in post-training quantization. In particular, we demonstrate
ImageNet classification results close to full precision on the popular Resnet-18/50,
with little to no accuracy drop for 4-bit models. Our code is available here.

1 Introduction

Quantization is an effective way to make neural networks viable for low power and/or low memory
applications. Most prominent breakthroughs [Esser et al., 2020, Jin et al., 2019] to quantize Deep
Convolutional Neural Networks rely on retraining the model from scratch. Those lead to best
performance but they are data-expensive and computationaly intensive. Thus, one may not have
access to sufficient resources to use them. To overcome these constraints, post-training quantization
methods [Krishnamoorthi, 2018] have been suggested that do not rely on retraining a network from
scratch. While it leads to inferior task performance, these methods do solve the aforementioned
deployment problems, that are critical in many real world applications.

In this paper, we introduce a post-training quantization technique for deep convolutional neural
networks, which achieves state-of-the-art classification performance on ImageNet down to 4-bit
weights on Resnet architectures. Our method relies on a novel quantizer which exploits linear
correlations between the parameters of convolution layers to minimize its error. This paper is
organized as follows: section 2 presents previous work on post-training quantization. Section 3
analyzes the parameter correlations within DCNNs and introduces the intuition behind our approach.
In section 4, we detail our approach and in section 5, we compare it to existing state-of-the art
methods under various post-training hypotheses. Finally, in section 6, we provide analysis of the
characteristics of our quantizer, including its quantization error, its distribution, and its memory
overhead.
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2 Related work

The performance of DCNN quantization schemes heavily depends on hypotheses: availability of
training data, computation time and hardware capacities. Post-training quantization meets stricter
specifications than quantization-aware training. Nagel et al. [2019] assumes that no data is available
at all for quantization. Banner et al. [2019] introduces bias correction and per-channel bit allocation.
Choukroun et al. [2019] specifically designes a quantizer to minimize the MSE loss of the quantization
operation. Other approaches that use a few samples of data for calibration have been proposed. Nagel
et al. [2020] uses data in order to learn whether to round the weights up or down. Wang et al. [2020]
proceeds by bit optimization, and Liu et al. [2021] exploits multipoint quantization to approximate
full precision weight vectors with a linear combination of low bit vectors. Li et al. [2021] notices that
blockwise optimization gave better results than usual layerwise optimization.

3 Preliminary observations

Figure 1 (left) shows the correlation matrix of the 9 distributions of filter parameters in a 3 × 3
convolution layer. Formally, we plot in row i and column j the points (wi, wj) for each filter
f = (w1, ..., w9) in a chosen layer (blue dots). On the long diagonal, we plot the histogram of wi. We
notice that filters tend to have linearly correlated coordinates. The same observation can be made in
other 3× 3 layers. From this observation, we justify the main assumption of our method: a quantizer
“shaped as a parallelogram" reduces quantization error more than a scalar uniform quantizer – hence
“shaped as a square" (see Figure 1, right).

Figure 1: Left: Correlation diagram of filters in layer 4.0 conv2 (Conv2d 3 × 3). Right: Uniform
quantization (up) and lattice quantization (down). Red dots are quantization points.

4 Methods

Many state-of-the-art quantization methods rely on scalar uniform quantizers, which require only a
few additional parameters, namely, step size, bitwidth, and/or threshold. Other approaches use vector
quantization, which may either be scalar or multidimensional, leading to more flexible quantization
sets Han et al. [2016], Stock et al. [2020]. However, these methods are often limited by the need
of codebooks. LatticeQ takes the best of both approaches. It adds a limited number of parameters
to encode quantization bases, and offers a broader variety of possible quantization sets than scalar
uniform quantizers. In this section, we explain how LatticeQ works. See Appendix D for a numerical
example.
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4.1 Quantization

In order to quantize the weights, LatticeQ uses lattices, which are algebraic structures that discretize
the notion of vector space. Each lattice has a basis, meaning that each point of the lattice can be
written as an integer linear combination of the vectors of this basis. This integer linear combination
is the encoding of LatticeQ. A lattice has infinite cardinality. In order to use this structure as our
quantizer, we need a finite number of quantization points. We truncate our lattice in the following
fashion:

Let Λ be a lattice, and B = (bi)1≤i≤n ∈ Rn a basis of Λ. Given b the bitwidth, our quantization set
is Q = {q ∈ Rn, q =

∑n
i=1 fibi, ∀i ∈ {1, ..., n}, −2b−1 ≤ fi ≤ 2b−1 − 1}.

The quantization process for a 3× 3 layer is the following: we flatten the weights and group them by
blocks of 3. Then, using the quantization basis, we search for the nearest quantization point to this
block. The vector found is the quantization point for this block. In the scalar model, the quantization
operation relies on a simple round function, but quantizing on any lattice requires a more complex
algorithm. The problem of finding the closest lattice point to a real vector is known as Closest Vector
Problem (CVP):

“Given x ∈ Rn and Λ a lattice of Rn, find λ ∈ Λ such that: d(x, λ) = min{d(x, l), l ∈ Λ}.”

In order to solve the closest vector problem, we use the nearest plane algorithm Babai
[1986]. It is fairly easy to implement, computationally light, and still provides good approximations
in low dimension. We detail its implementation in Appendix B.

4.2 Dequantization

From an implementation standpoint, in memory, each quantized block is represented
by its coordinates in the quantization basis. Let us suppose B = (b1,b2,b3) =
((b1,1, b1,2, b1,3), (b2,1, b2,2, b2,3), (b3,1, b3,2, b3,3)) is our quantization basis (with each bi,j a
scalar, possibly quantized with a uniform min/max quantizer), and a 3× 3 quantized filter F q:

F q =

(
f1 f2 f3
f4 f5 f6
f7 f8 f9

)
(1)

It consists in 3 quantized blocks: (f1, f2, f3), (f4, f5, f6) and (f7, f8, f9). The convolution
represented by F q is the concatenation of three 1× 3 vectors:

F̂ = Dequant(F q) =

(
(f1b1 + f2b2 + f3b3)
(f4b1 + f5b2 + f6b3)
(f7b1 + f8b2 + f9b3)

)
(2)

Note that if we choose B as a uniform scaling of an orthonormal basis (B = λ× In), the quantization
set is exactly the one of classic scalar quantization (we refer to this simplified version as “Cubic
LatticeQ"). In practice, we can use Dequant to compute the convolution in the quantized network.
However, for per-layer quantization, we propose an optimized way of dealing with the inference in a
LatticeQ-quantized network with quantized activations in Appendix A.

4.3 Basis search

Once the problem of quantizing on a lattice is adressed, there remains to find the most relevant lattice.
For the data free approach, we opt for a simple random search with restarts, where restarts simply
consist in running the algorithm several times in a row and keeping the best result of all the runs. We
look for a lattice that reduces the mean cube error loss (MCE) between the full precision weights of
the layer (or channel), and their quantized version. The pseudocode of this algorithm is detailed in
Appendix C.
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5 Experiments

We evaluate our method on the ImageNet [Russakovsky et al., 2015] classification task. All experi-
ments are made using PyTorch [Paszke et al., 2019], and the pretrained models used all come from the
torchvision.models library. Based on experiments, we set bases dimension to 3 for 3 × 3 convolution
layers, 2 for 1 × 1 layers and linear layers, and 1 for the first layer (since we did not notice any
advantage in increasing the dimension for this particular layer). We report bitwidths settings and
top-1 accuracy for each tested model, and we also provide the results from Banner et al. [2019],
Choukroun et al. [2019] for comparison.

5.1 Zero-shot LatticeQ

In this section, we suppose that no data sample is available at all for quantization.

Table 1: LatticeQ with bias correction on ImageNet. We use per-channel quantization and bias
correction. We compare our results with results that we generated from the source code of Banner
et al. [2019], using per-channel quantization and bias correction. We also compare with paper results
from OMSE [Choukroun et al., 2019].

Top-1 accuracy
Network Method W4A32 W3A32 W2A32

Resnet-18
(69.8)

LatticeQ (Ours) 69.0 66.7 41.7
Banner et al. 67.5 43.2 1.2
OMSE+opt 67.1

Resnet-50
(76.0)

LatticeQ (Ours) 75.6 73.6 47.3
Banner et al. 74.8 67.4 0.4
OMSE+opt 74.7

VGG16-bn
(73.4)

LatticeQ (Ours) 72.9 70.9 40.7
Banner et al. 71.6 65.9 0.1

Densenet-121
(74.4)

LatticeQ (Ours) 73.3 68.9 10.4
Banner et al. 69.8 54.2 0.5
OMSE+opt 71.7

Mobilenet-v2
(71.9)

LatticeQ (Ours) 68.2 48.9 0.3
Banner et al. 62.8 13.9 0.1

The results in Table 1 show the substantial improvement brought by LatticeQ over state-of-the-art
approaches. Our method outperforms Banner et al. [2019] with similar experimental hypotheses, and
also the OMSE+opt method, in almost all settings for all presented models. We find that LatticeQ
manages to stay within 1% of full precision model accuracy on Resnets for 4-bit weights, and within
3% for 3-bit weights, whereas Banner et al. [2019] collapses. As expected, compact models like
Densenet [Huang et al., 2018] and Mobilenet-V2 [Sandler et al., 2018] are less resilient to quantization
than Resnets [He et al., 2016a].

5.2 LatticeQ with a few data samples

It has lately become mainstream to use a few samples of calibration data to finetune quantized
weights [Nagel et al., 2020, Wang et al., 2020, Li et al., 2021], and it has substantially improved the
performance of post-training quantization on a variety of networks. We also wanted to demonstrate
the potential of our method under slightly different hypotheses. Therefore, using the insight from Li
et al. [2021], we designed a simple optimization mechanism. For some network sub-block function
Bi with full precision network input xi, quantized network input xq

i and L some loss, the optimization
problem is given by

argmin
Bq

i

L(Bi(xi), B
q
i (x

q
i )) (3)
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First, we initialize per-layer quantization bases with Algorithm 2. We select a sample of 512
calibration images, and split them into 4 batches of 128. Using this sample, we perform 2000 training
epochs for each block and learn its weights and bases with Adam [Kingma and Ba, 2017] optimizer.
We use the MSE loss and STE [Bengio et al., 2013] for gradient propagation through the round
function. The learning rate is set to 1.10−6 for 4-bit and 2.10−6 for 3-bit. Quantization is performed
per layer as it is common practice in level 2 state of the art. For this setting, we compare our results
with paper results from Adaround [Nagel et al., 2020], Bitsplit [Wang et al., 2020] and results from
the source code of Brecq [Li et al., 2021] in Table 2. It is important to note that Li et al. [2021]
experimented with preresnet [He et al., 2016b] architecture, which is not the same as He et al. [2016a].
Also, for the sake of fairness, we only consider per-layer quantization results. Table 2 shows that
LatticeQ also has potential when it comes to retraining. We find that LatticeQ maintains the accuracy
drop at 1.2% for 3-bit on standard Resnet-18, and even slightly improves on Brecq [Li et al., 2021],
by reusing the same blockwise optimization method.

Table 2: LatticeQ with data samples

Top-1 accuracy
Network Method W4A32 W3A32

Resnet-18
(69.8)

LatticeQ (Ours) 69.3 68.6
Adaround 68.6

Bitsplit 69.1 66.8

Preresnet-18
(71.0)

LatticeQ (Ours) 70.5 69.3
Brecq 70.3 69.0

6 Analysis

6.1 Lattice quantization compared with scalar quantization

Figure 2: Resnet18 per-layer quantization error
comparison between LatticeQ and Cubic Lat-
ticeQ (scalar quantization). Vertical axis is MCE.

Table 3: Comparison between baseline per-
channel LatticeQ and baseline per-channel Cubic
LatticeQ (scalar quantization).

Network Method FP32 W4A8

Resnet-18 LatticeQ 69.8 67.2
Cubic LatticeQ 69.8 57.6

Figure 3: Up: 2-bit Cubic LatticeQ quantization
points (red) and 1×3 filter blocks (blue). Down:
Same with 2-bit baseline LatticeQ quantization
points.
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We experimentally demonstrate the advantages, both in terms of quantization error (Figure 2) and
task loss (Table 3), in using a deformable lattice for quantization rather than a cubic lattice (which is
equivalent to uniform scalar quantization). This confirms our hypothesis that the inner correlations of
the parameters of a neural network can be exploited for the purpose of quantization. On Figure 3,
each full precision filter block is represented by a blue dot in the 3D space, and each quantization
point of our method is represented by a red dot in the 3D space. The comparison between both
distributions clearly shows that LatticeQ increases the concentration of quantization points in the
most critical areas of the filters’ multidimensional distribution, as intended.

6.2 Memory overhead

Table 4: Baseline LatticeQ memory cost given in bit/weight, taking into account the extra memory
required for the bases.

Type Network W4A8 memory storage Avg. bit/weight

Per layer

Resnet-18 6.100 MB 4.00
Resnet-50 13.78 MB 4.00

Densenet-121 4.465 MB 4.00
Mobilenet-v2 2.376 MB 4.00

Per channel

Resnet-18 6.158 MB 4.02
Resnet-50 14.01 MB 4.04

Densenet-121 4.555 MB 4.04
Mobilenet-v2 2.547 MB 4.17

We compute the memory overhead resulting from our method, both in per-channel and per-layer
quantization settings. See Table 4 for a few examples among the networks we experimented with in
this paper. We report the bit-equivalent memory cost of 4-bit compressed models. The compression
ratio penalty due to quantization bases is negligible in the per-layer setting, and less than 1% in the
per-channel setting for all architectures but Mobilenet (because of group convolutions). Compressions
that can be achieved by descending to lower bitwidths therefore largely offset the memory overhead
of LatticeQ.

7 Conclusion

In this paper, we introduced LatticeQ, a novel post-training quantization method which exploits the
flexibility of lattice quantizers for the purpose of DCNN quantization. LatticeQ is particularly useful
to deploy models trained in floating point precision on lightweight architectures without requiring
a single training sample (which could happen for confidentiality, safety reasons, or for the sake of
simplicity). We showed that our quantizer significantly outperforms state-of-the-art methods based
on the scalar quantizer for 3 and 4-bit quantization on several well-known architectures. Furthermore,
we believe that lattice quantization has potential beyond post-training and that LatticeQ could inspire
other works outside of the realm of scalar quantization.
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A Optimized inference for LatticeQ networks

In this section, we suppose that we have a 3× 3 convolution layer Λ quantized using our per-layer
method, with in input channels and out output channels. We want to compute a forward pass through
this layer. Let (Cin

i )1≤i≤in the set of input channels and (Cout
j )1≤j≤out the set of output channels.

We want to compute Cout
j for each j. Let W q the tensor of quantized weights. Let the quantization

basis B = (b1,b2,b3,b4,b5,b6,b7,b8,b9). Note that in this notation, our basis has dimension
9, which is not the choice we made in the paper. This is not a big deal, since we can choose to fill
coordinates with zeros: b1 = (b1,1, b1,2, b1,3, 0, 0, 0, 0, 0, 0), b4 = (0, 0, 0, b1,1, b1,2, b1,3, 0, 0, 0),
b7 = (0, 0, 0, 0, 0, 0, b1,1, b1,2, b1,3). In this manner, our 3D bases can be expanded in 9D bases.

Usually, in a full precision network, Cout
j is computed as :

Cout
j =

in∑
i=1

Conv(Wi,j ;C
in
i ) (4)

In our case, we change the order of operations :

Cout
j =

9∑
k=1

in∑
i=1

W q
i,j,kConv(bk;C

in
i ) (5)

Since Conv(bk;C
in
i ) does not depend on the output channel, we can start by computing

Conv(b1;C
in
i ) for each i (in convolutions). b1 can be uniformly quantized using a simple min/max

quantizer, therefore we can use low-bit operators to compute these convolutions. Then, we only
need to multiply the result by W q

i,j,1 (which is an integer) for each j, and store the result in the
corresponding output channel. Then, we reiterate the process with b2, b3, etc.

With this method, the complexity of the forward pass through Λ is 9× in low-bit convolutions and
9× in× out scalar multiplications and additions.

B Babai algorithm

Babai’s nearest plane algorithm is at the core of our quantization mechanism. It relies on a process
called “Gram-Schmidt orthogonalization”, which is very standard.

Algorithm 1 Nearest plane algorithm

1: function BABAI(Basis B, Vector t)
2: B∗ = GramSchmidt(B)
3: b← t
4: for j ∈ {n, ..., 1} do
5: uj ←

<b,b∗j>

<b∗j ,b
∗
j>

6: b← b− ⌊uj⌉bj
7: end for
8: return (⌊uj⌉)1≤j≤n or x =

∑n
j=1⌊uj⌉bj = t− b

9: end function

C Random search

The following algorithm 2 is the one we use to search a relevant quanization basis.
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Algorithm 2 FindBasis

1: function FINDBASIS(Weight tensor W , Basis dimension dim, Bitwidth bits, Temperatures T )
2: B ← Idim
3: for 0 ≤ s ≤ |T | do
4: B′ ← B′ + Sample(G(0, σ = T (s), |B|))
5: if MCE(W,W q

ΛB′ ) < MCE(W,W q
ΛB

) then
6: B ← B′
7: end if
8: end for
9: return B

10: end function

D Numerical example

In this appendix, we show the LatticeQ quantization and dequantization of an example convolution
kernel.

Let us suppose that we have the following quantization basis :

B = (b1, b2, b3) = ((1, 1, 2), (2, 3, 1), (1, 3, 1)) (6)

And the following convolution kernel to quantize:

F =

(
0.2 0.8 2.1
1.7 −0.9 3.0
3.0 2.1 −1.3

)
(7)

F is split into 1×3 vectors: (0.2, 0.8, 2.1), (1.7,−0.9, 3.0) and (3.0, 2.1,−1.3). Each of these
vectors goes through Babai’s nearest plane algorithm, which yields :{

Quant((0.2, 0.8, 2.1)) = (1,−1, 1)
Quant((1.7,−0.9, 3.0)) = (2, 1,−2)
Quant((3.0, 2.1,−1.3)) = (−1, 3,−2)

(8)

Therefore:

F q = Quant(F ) =

(
1 −1 1
2 1 −2
−1 3 −2

)
(9)

And the result of dequantization is:

F̂ = Dequant(F q) =

(
(b1 − b2 + b3)
(2b1 + b2 − 2b3)
(−b1 + 3b2 − 2b3)

)
=

(
0 1 2
2 −1 3
3 2 −1

)
(10)

E Note on limitations

The main interest of LatticeQ lies in the exploitation of inner correlations between the parameters
of neural networks. Correlations have been clearly identified in the convolution kernels of the
popular architectures we worked with. Nothing prevents a priori from using LatticeQ on RNNs
or Transformers, since LatticeQ is nothing but a generalization of a scalar quantization technique.
Further study should evaluate whether LatticeQ (or a similar idea) presents, or not, a particular
interest at quantizing a wider variety of models.
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