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Abstract

Cloud datacenters are exponentially growing both in numbers and size. This in-
crease results in a network activity surge that warrants better congestion avoid-
ance. The resulting challenge is two-fold: (i) designing algorithms that can be
custom-tuned to the complex traffic patterns of a given datacenter; but, at the
same time (ii) run on low-level hardware with the required low latency of effec-
tive Congestion Control (CC). In this work, we present a Reinforcement Learning
(RL) based CC solution that learns from certain traffic scenarios and successfully
generalizes to others. We then distill the RL neural network policy into binary
decision trees to achieve the desired µsec decision latency required for real-time
inference. We deploy the distilled policy on NVIDIA NICs in a real network and
demonstrate state-of-the-art performance, balancing all tested metrics simultane-
ously: bandwidth, latency, fairness, and drops.

1 Introduction

Modern datacenters support computationally intensive applications such as distributed data process-
ing, heterogeneous and edge computing, and storage. With advancements in hardware and software,
memory access management nowadays is often conducted directly by the network interface card
(NIC) with Remote Direct Memory Access (RDMA) (Beck and Kagan, 2011). Consequently, the
limiting factor in network performance becomes traffic congestion. Congestion occurs when traffic
arrives at a node (switch or NIC) at a faster rate than it can be processed. As each node is equipped
with a FIFO queue, the transmission latency grows proportionally to the congestion. Efficient CC is
thus crucial to sustaining high throughput and low latency in datacenters. CC algorithms set a limit
on the transmission rate or number of in-network bytes of each flow. By observing changes in the
network, such as latency signals, these algorithms are tasked with preventing congestion in a diverse
set of network topologies and traffic patterns.

Most literature on CC tackled the problem using hand-crafted heuristics. These methods tend to
perform well in specific tasks yet underperform in others that they were not optimized for. For
instance, DCQCN (Zhu et al., 2015) and SWIFT (Kumar et al., 2020) have been optimized for
steady-state scenarios; but, as shown in (Tessler et al., 2022), their reaction time is slow for sudden
bursts of short flows. Recently, Tessler et al. (2022) introduced a data-driven approach to learning a
CC policy. They presented a reward function (measuring the latency and throughput) and devised an
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algorithm that maximizes the cumulative reward throughout multiple steps. Their method resulted
in a robust neural-net based policy capable of tackling a range of tasks in a simulated network.
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Figure 1: The entire flow: from reinforcement learning in simulation to live datacenter congestion control.

Similarly to previous ML-based CC approaches, the policy in (Tessler et al., 2022) is too computa-
tionally intense for real-world deployment directly on a NIC. In this work, we overcome the above
issues that prevented ML-based CC approaches from reaching production pipelines. We design a
lightweight version of Tessler et al. (2022)’s RL algorithm complying with present hardware limi-
tations. We deploy it in an operational datacenter and achieve state-of-the-art (SOTA) performance.
We also analyze our algorithm’s behavior in a human-interpretable fashion and show how it matches
known concepts in classic CC theory.

In summary, our main contributions are:

1. We show how to transform complex policies to low-compute low-latency architecture, gain-
ing x500 latency reduction with a negligible effect on the quality of the policy. Specifically,
we distill deep networks with 450 µsec latency to decision trees with 0.9 µsec latency.

2. We deploy our method on NVIDIA production NICs, ConnectX-6Dx, in an operational
cluster of 64 hosts, and run extensive evaluations reaching SOTA results.

The RL-CC framework is visualized in Fig. 1.

2 Related Work

CC algorithms have been demonstrated to reduce packet drops, thus improving overall network
performance (Bui et al., 2021; Zhu et al., 2015; Mittal et al., 2015; Shpiner et al., 2017; Kumar
et al., 2020). These methods govern the transmission rate of each flow, balancing multiple, possibly
conflicting, objectives. They aim to react quickly to changes and maximize the overall network
utilization and fairness between flows, while minimizing packet latency and packet drops. The
conflict between these objectives was explained by Kumar et al. (2020): when N flows share a
congested path, and each transmits at the optimal rate (line rate/N ), the average queue length is
O(

√
N). Hence, a low latency solution that is fair when N is large can only be achieved by reducing

bandwidth, resulting in a bandwidth-latency tradeoff. Current SOTA CC relies on indications such
as round-trip time (RTT) and switch queue-length to evaluate the network’s status and adjust the
transmission rate appropriately. Those deployed in practice use rule-based heuristics to react to such
indications. A common drawback of conventional CC algorithms is the need for manual tuning of
their multiple parameters by domain experts. And yet, the results are often unsatisfactory at properly
balancing the tradeoffs.

Prior work considered ML-based CC (Jiang et al., 2020); however, those algorithms often require
large memory and computational complexity (Jiang et al., 2020). Generally, for CC algorithms
to successfully operate, their decision time must be O(RTT). For modern datacenters utilizing
RDMA, this amounts to a few µsec. Neural networks, on the other hand, require orders of magnitude
larger inference time, relatively heavy compute power, and significant memory. These limitations
partly explain why there is yet no learning-based RDMA CC in production. Recently, Tessler et al.
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(2022) introduced an RL-based RDMA CC algorithm called Analytic Deterministic Policy Gradient
(ADPG). In several network simulation benchmarks, ADPG outperformed SOTA rule-based CC al-
gorithms, DCQCN, and SWIFT. Its success is attributed to its RTT-based reward that at its optimum
depicts an optimal flow equilibrium. In line with our summary above, Tessler et al. (2022) state
that for potential deployment, they would require dedicated hardware to accommodate the compu-
tational burden of deep-learning inference. Learning-based methods in general and RL in particular
have many applications in networking. Nevertheless, the computational and memory requirements
of NN training and inference are too demanding for implementation on NICs such as ConnectX-
6Dx. In this work, we build upon (Tessler et al., 2022) and devise a lightweight variant based on
decision trees that solves the computational challenge flagged by Tessler et al. (2022).

3 Problem Setup

We consider two environment settings – simulation and live. For simulation, we utilize a realistic
OMNeT++ emulator (Varga, 2002) that models a shallow single-switch network with a varying num-
ber of flows. We experiment with different combinations of total flows, ranging between 2− 8192,
distributed across multiple hosts. Each host is equipped with an NVIDIA NIC. With the simulator,
we train the RL agent on a small set of benchmarks and then evaluate them on additional ones,
with precise in-network measurements at pinpoint accuracy. While the simulations are rich, they
do not precisely mimic real-world behavior. For instance, the simulations do not emulate complex
network topologies and their effect on congestion and RTT. Thus, we also perform experiments on
two operational clusters.

We consider the following benchmarks: Many to one: All hosts transmit data to a single receiver
host. All to all: All hosts transmits data to all others. Long Short: A single long flow transmits
unlimited data, while multiple short flows randomly appear and transmit for a short window of
time. We evaluate our experiments with different metrics for the steady-state experiments and for
the recovery experiments. Steady-state: (i) net data throughput, (ii) unfairness calculated as the
coefficient of variation of the sent bandwidth, (iii) average packet latency, and (iv) average packet
loss per flow. Recovery: (i) long flow bandwidth, (ii) average packet loss per flow (iii) average
normalized completion time, (iv) normalized completion time 99% percentile.

We compare the performance of RL-CC to the Swift heuristic (Kumar et al., 2020), as it also relies on
the target parameter. Additionally, we compare our implementation to the hardware-based DCQCN.

4 Lightweight RL-CC

Congestion control is a sequential decision-making problem. The decision maker (agent) in our case
is an instance of the CC algorithm running within the NIC and controlling the rate of a single trans-
mission flow. The agent acts upon recent information available to it: current and past transmission
rate, RTT, and last actions taken. The agent’s biggest challenge is that it is completely unaware of
the existence of other concurrent agents and their state. It needs to act strictly based on its local state
where all global network sensing is based solely on RTT packets the agent receives. To overcome
these challenges, Tessler et al. (2022) utilize a novel analytic reward function. At it maximum, the
reward function achieves a fair and bandwidth-efficient equilibrium among all flows.

Modern NVIDIA NICs support programmable CC engines and network state measurements such
as RTT or switch telemetry. Leveraging this mechanism, we implement an RL agent that observes
relevant statistics and acts by modulating its own transmission rate.

4.1 Model Distillation with Boosting Trees

Boosting-Trees is a supervised learning method that often achieve SOTA results on certain tasks
and are comparable to deep learning on others (Caruana and Niculescu-Mizil, 2006; Roe et al.,
2005; Anghel et al., 2018; Zhang et al., 2017). Boosting-Trees are robust (Einziger et al., 2019),
deterministic, and once trained, can be easily converted to a sequence of if-else instructions suit-
able for hardware implementation. For this reason, we find them suitable for our hardware CC
implementation. NN-based policies often require millions or even billions of interactions (Ba-
dia et al., 2020) to reach an optimal policy. These interactions are conducted with sub-optimal
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Small LSTM MLP Boosting-Trees
FLOPS 2600 200 -

Decision Latency [µsec] 450 17 0.9

Table 1: FLOPS and inference latency as calculated on ConnectX-6Dx. a) Small LSTM:
state→fC→LSTM→fC→action. b) MLP: window of states→fc→action. c) Boosting-Trees: implemented as
an if-else sequence.

Number of Flows 8 64 512 1024 2048
Metric GP Latency GP Latency GP Latency GP Latency GP Latency

RL-CC (MLP) 0.96 8.85 0.92 12.19 0.90 17.82 0.90 21.70 0.90 27.62
RL-CC (Tree) 0.97 8.85 0.92 12.03 0.90 17.98 0.90 21.73 0.90 27.35

Table 2: Policy Distillation: Comparing MLP based policy vs distilled policy on many-to-one scenarios while
varying the number of flows. GP denotes Goodput [normalized] (net traffic without packet loss), and Latency
is measured in µsec.

policies during the learning stage, and mostly do not reflect optimal behavior. It is only af-
ter convergence to an optimal policy that such interactions are suitable to be used in a super-
vised learning setup. Thus, after training our RL policy with a NN, we can distill it to su-
pervised learning model, Boosting Trees in our case, using a representative set of interactions.

Figure 2: Model Distillation: Teaching tree-based stu-
dent policy g to mimic the fixed NN-based policy f by

minimizing L(y, g(x)) =
√

1
N

∑N
n=1(yi − g(xi))2.

Our goal is to teach a lightweight RL-CC tree-
based policy that imitates a NN-based policy
over a representative distribution of inputs. Pre-
vious work has shown that model distillation
with trees can work well on various tasks (Che
et al., 2017; Liu and Wang, 2018; Li et al.,
2020; Song et al., 2021; Biggs et al., 2020). The
biggest challenge in distilling the policy is the
LSTM layer, which specializes in incorporating
past information. We thus removed the LSTM
layer and instead provide as input a window of
previous states. The distillation process is il-
lustrated in Fig. 2. Its goal is to minimize the
loss between the outputs of the two models on
data gathered during the NN RL policy infer-
ence stage. We restricted the number of boost-
ing iterations and maximal tree depth per tree
to satisfy the limits of ConnectX-6Dx. The re-
sulting number of operations does not exceed
150.

In Table 1, we compare the decision time la-
tency between the original NN and distilled
tree-based policies. As seen, we obtained x500
speed-up, from 450µsec down to 0.9µsec. In
Table 2, we compare the performance differences between the MLP-based teacher model and our
tree-based distilled student model. Our results show that using the distillation method, the student is
capable of perfectly imitating the performance of the more complex teacher model.

5 Evaluation

By distilling the NN RL policy to an efficient decision tree, we now satisfy the decision-time con-
straint of 2µsec. We use the programmable CC interface of ConnectX-6Dx and deploy our tree-
based policy on two live networking clusters. Our setup involves ConnectX-6Dx NICs connected
through a Spectrum-2 switch over a lossy network with a link rate of 100 Gbps. We experimented on
two operational clusters, detailed below. The tests were performed with the lightweight (tree-based)
RL-CC version.
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Figure 3: Large 64-host cluster. (Left) goodput vs. latency. (Right) goodput vs. packet loss. Marker size is
proportional to the number of flows in the scenario. Packet loss is the total number of dropped packets divided
by number of flows.

We compared the CC algorithms’ ability to maintain a steady state and react to network changes.
In the small cluster we performed many-to-one, all-to-all, and long-short tests. In the large cluster
we performed many-to-one and all-to-all tests. We tested various configurations of number of flows
per host and averaged across them. Beginning with steady-state scenarios, we compare RL-CC with
DCQCN and Swift. In all cases, RL-CC sustains a high goodput bandwidth and low unfairness,
similar to DCQCN and Swift. At the same time, RL-CC achieves a substantially lower packet
latency and packet loss throughout most scenarios and performs competitively otherwise. Next, we
evaluated RL-CC’s ability to react to network changes and compare DCQCN, Swift, and RL-CC in
the long-short test. RL-CC maintains the highest long bandwidth and competitive completion time
throughout all the tests, outperforming Swift on both metrics. Additionally, while both Swift and
RL-CC did not lose packets, DCQCN incurred packet loss in 100 flows. Moreover, DCQCN displays
poor recovery performance with low long bandwidths in all scenarios. These results illustrate RL-
CC’s ability to rapidly adjust the transmission rate to changes in the network. Lastly, Fig. 3 depicts
the tradeoff between goodput bandwidth and packet latency / packet loss. RL-CC presents the best
overall tradeoff. In many-to-one, RL-CC achieves significantly lower latency and minimal packet
loss at the expense of slightly lowering its goodput bandwidth. In all-to-all, RL-CC sustains high
bandwidths while keeping similar packet latencies as DCQCN and Swift, with minimal packet loss.
RL-CC is the only algorithm with consistent performance at different scales.

6 Conclusion and Future Directions

When considering real-time deployment in hardware, the agent, initially represented using a NN,
required 450µsec to perform inference. Due to the rate of change within the datacenter, this resulted
in an inability to control congestion. We introduced a method for distilling the agent to decision
trees, reducing the inference time down to 0.9µsec, a x500 improvement without performance loss.
We then deployed RL-CC on a real multi-switch cluster, consisting of 64 hosts, running in real time
on ConnectX-6Dx NICs. RL-CC demonstrated consistent high goodput and fairness while retaining
low packet latency and minimal packet loss at different scales. Moreover, we showed the ability of
RL-CC to generalize, out of the box, to new and unseen scenarios. An additional potential candidate
to benefit from AI algorithms is the switch. There, not only congestion control is possible, but also
power optimization, efficient routing, and more.
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