
Sensitivity-Aware Finetuning for Accuracy Recovery
on Deep Learning Hardware

Lakshmi Nair
Lightmatter

100 Summer Street
Boston, MA 02110

lakshmi@lightmatter.co

Darius Bunandar
Lightmatter

100 Summer Street
Boston, MA 02110

darius@lightmatter.co

Abstract

Existing methods to recover model accuracy on analog-digital hardware in the pres-
ence of quantization and analog noise include noise-injection training. However,
it can be slow in practice, incurring high computational costs, even when starting
from pretrained models. We introduce the Sensitivity-Aware Finetuning (SAFT)
approach that identifies noise sensitive layers in a model, and uses the information
to freeze specific layers for noise-injection training. Our results show that SAFT
achieves comparable accuracy to noise-injection training and is 2× to 8× faster.

1 Introduction

Recent advances in analog-digital hardware is motivated by improving energy and speed efficiency
for deep learning applications. However, such devices are often susceptible to effects of analog noise
and reduced precision (quantization) which impacts the final model accuracy. One of the commonly
used approaches for tackling this issue includes noise-injection training. Here, the model is subjected
to the perturbations caused by quantization and/or analog noise, by injecting some representative
noise into the model’s layers during training, to recover accuracy [1, 2, 3, 4]. Prior work has shown
that loss of precision due to quantization can also be treated as “noise” and that models can be made
resilient to this loss by retraining with noise injection, where the injected noise is proportional to the
precision loss [4, 3]. However, noise-injection training can incur significant training time, even when
starting from pretrained models. The speed of training can be potentially improved by training only a
subset of the layers that are highly sensitive to noise, while freezing (i.e., disable weight updates) the
rest. As shown in Figure 1a for ResNet50, some weights change substantially during noise-injection
training, while others hardly change and could potentially be frozen (conceptually similar to transfer
learning [5]). While prior work has looked at similar methods for speeding up training, they either
focus on BERT-like models [6, 7], or rely on domain knowledge to identify noise sensitive layers [8].

Motivated by these observations, we seek to answer the question: “Starting from a pretrained model,
can we identify which layers are the most sensitive to noise, and retrain just those?”. Prior work in
quantization has used KL-divergence to identify layers that are sensitive to quantization [9, 10, 11].
We present an alternate metric for measuring layer sensitivity to noise, by computing the standard
deviation of the output differences between the noisy/quantized model and the noise-free/unquantized
model at each layer. We then introduce the Sensitivity-Aware Finetuning (SAFT) approach based on
noise-injection training, that selects specific layers for training based on the layer sensitivity analysis.

2 Sensitivity-Aware Finetuning

The motivation behind SAFT is the observation that after noise-injection training, the parameters of a
model change significantly only for specific layers, e.g., Figure 1a shows this for ResNet50. Keeping

Preprint. Under review.



(a) Weights of ResNet50, before and
after noise-injection training from
a pretrained model. For some lay-
ers, the weights do not change much
post-training.

(b) SAFT begins by passing the inputs of each layer in the noise-free
model through the corresponding layers of the noisy model. The outputs
for both models at each layer is used to compute a standard deviation
over their differences. Only layers with standard deviations above a
certain threshold are trained using noise-injection training while the
remaining are frozen.

Figure 1: Sensitivity-Aware Finetuning (SAFT): motivation (left) and description (right)

such layers noise-free in the model results in larger accuracy improvements. This possibly indicates
that the layers whose parameters change the most have higher noise sensitivity. Hence, we seek to
retrain only the most noise sensitive layers to validate this hypothesis.

Our approach takes a pretrained model M , its noisy version N , and a sample batch of inputs X from
the training data. Note that N refers to the model used during standard noise-injection training [1],
where we inject noise into the weights during the forward pass to perturb the outputs. The input data
is first passed through M and the inputs and outputs at every layer are stored. Then, the inputs at
every layer of the original model M are passed through the corresponding layers of N (See Appendix
Algorithm 1). The layer outputs for N are also saved, and the standard deviation1 of the differences
between the outputs of M and N are computed per-layer. The process flow is shown in 1b.

Once the standard deviations are computed, SAFT involves: a) Identifying the top k layers with the
highest standard deviations; b) Selectively training only the top k layers of N while freezing the
parameters of the remaining layers. We note that k is an additional hyperparameter. The value of k
can be determined based on visualizing the standard deviation values in a plot, or it can be treated as
the other hyperparameters and set using tools such as Tune [13]. Another consideration here is the
batch size used for computing the statistics. The batch size should be sufficiently large to obtain a
reasonable estimate of the noise sensitivity2. When large batches cannot be processed, data samples
can be processed individually and stacked. The statistics can then be accumulated over the stack. For
training, we use the procedure in [1], and apply the backward gradient updates to noise-free weights.

3 Experiments

We evaluate SAFT on eight different models. In all cases, similar to prior work in [14] we only apply
noise to the matrix-multiplication layers (such as Convolutions, Linear etc.), and leave other layers
such as batchnorm or activation layers as noise-free. We also evaluate the use of KL-divergence
as an alternate metric to standard deviation in our experiments. Similar to prior work, we evaluate
SAFT with simulated hardware noise using both multiplicative and additive noise, wherein noise is
injected into the weights [1, 2, 15]. We sample the noise N from both a Gaussian distribution with
zero mean as in prior work [2], N ∼ N (0, σ), and from a Uniform distribution N ∼ U [−r1, r1]. Our
baseline noise-injection is implemented similar to the approach in [1]. The parameters of the noise
distributions for the different models are shown in Appendix Table 5. The specific noise parameters
were chosen so as to result in a drop in the performance of all the models, which can then be recovered
through training. Note that we set a fixed seed for all our training runs to ensure fair comparison.

For SAFT, we compute the standard deviation values on a single batch of training data. We freeze
total − k layers in a model during training, retraining only k. We determined k empirically by
visualizing the standard deviation plots and checking the number of layers that have a relatively high

1Noise mean is typically zero based on hardware models [12, 1, 3]
2We find that using the batch sizes typically used for training, works well in most cases

2



Table 1: Results comparing SAFT with baseline noise-injection training with Gaussian noise shows
similar performances. Here “Untrained” denotes performance before training, when noise is injected.
Note that SAFT achieves accuracy close to noise-injection training while being 2× to 8× faster.

Multiplicative Gaussian Additive Gaussian SAFT
FP32 Untrained Noise-inj SAFT Untrained Noise-inj SAFT Speed ↑

ResNet18 69.8 68.7 69.1 69.0 66.0 67.4 67.8 2×
ResNet34 73.3 72.1 72.9 72.9 69.0 70.0 70.0 4×
ResNet50 76.1 74.9 75.8 75.6 70.7 73.1 73.1 8×
ResNeXt50 77.6 72.2 74.4 74.0 71.1 73.9 74.2 8×
MobileNet v3 74.0 70.8 71.7 71.6 70.9 72.7 72.6 5×
Faster RCNN 59.0 56.5 58.9 58.7 52.2 54.4 54.8 3×
Mask RCNN 56.0 52.0 55.3 55.6 48.5 53.6 54.9 3×
Bert Base 74.7 73.1 74.4 74.6 72.4 74.4 74.2 2×

Table 2: Results for finetuning with Gaussian injected noise using KL-divergence to freeze layers.

Untrained (Multiplicative / Additive) Multiplicative (KL-d) Additive (KL-d)
ResNet34 72.1 / 69.0 71.9 68.2
ResNet50 74.9 / 70.7 74.2 69.4
Bert base 73.1 / 72.4 74.2 74.1

noise standard deviation. We seek to standardize this procedure in our future work. Table 4 in the
Appendix shows the batch size, and k values (#Frozen = #Total − k) used in our experiments.
Some models require more layers to be trained than others owing to higher noise in more layers.

Our experiments evaluate: Given the exact same training parameters, does SAFT perform similar to
baseline noise-injection training? Note that our research question compares our approach to noise-
injection training, rather than to obtain a predefined target performance, which noise-injection training
has already been shown to achieve with sufficient epochs [1, 4, 14]. In our training experiments, we
only train for a few epochs (1-5 epochs) to see if the performances of the two approaches match,
whereas achieving close to the baseline noise-free FP32 performance takes many more epochs [14].

4 Results

Noise standard deviation plots for four models are shown in Figure 2. Stars ⋆ indicate the layers
that are trained, while the remaining are frozen. Similar to prior findings, the first and last set of
layers in vision models exhibit high sensitivity [16, 17, 1]. We also see a “sawtooth” pattern in the
vision models like ResNet, corresponding to the repeating blocks in the network, consistent with
observations in prior work [12]. For MobileNet v3, quite a few of the convolution layers have a higher
noise standard deviation compared to ResNet50. For Faster RCNN, we see that several layers in the
“head” of the model, responsible for predicting the bounding box locations, are particularly sensitive.
For Bert base, the sensitivity is quite spread out across the model with several layers exhibiting high
noise sensitivity. Specifically, 10 of the trained 20 layers are self-attention layers, with the remaining

Table 3: Results comparing SAFT with baseline noise-injection training for Uniform noise shows
similar performances. Here “Untrained” denotes performance before training, when noise is injected.

Multiplicative Uniform Additive Uniform SAFT
FP32 Untrained Noise-inj SAFT Untrained Noise-inj SAFT Speed ↑

ResNet18 69.8 68.2 69.3 69.0 64.8 66.9 66.2 2×
ResNet34 73.3 71.8 72.7 72.6 67.1 68.5 68.0 4×
ResNet50 76.1 74.5 75.1 75.3 67.9 70.5 70.1 8×
ResNeXt50 77.6 71.3 73.0 73.1 73.0 75.7 75.3 8×
MobileNet v3 74.0 71.4 72.1 72.2 72.9 73.9 73.8 5×
Faster RCNN 59.0 57.1 58.2 58.2 56.2 57.0 57.2 3×
Mask RCNN 56.0 53.4 54.5 54.8 49.5 51.5 51.6 3×
Bert Base 74.7 68.9 72.0 72.4 62.2 72.1 72.7 2×

3



Figure 2: Plots of the per-layer standard deviations for four models: ResNet50, MobileNet v3 large,
Bert base, and Faster RCNN. The purple stars ⋆ denote the layers that were selected for training while
the rest were frozen. First and last layers of vision models have high standard deviations.

10 being intermediate and output dense layers. For models like Bert, identifying the most sensitive
layers can be tricky and a larger proportion of layers have to be trained compared to other models.

The corresponding training speed improvements are shown in Tables 1 and 3, where up to 8× speed
improvements in training can be observed. In the case of a few models such as ResNet18 and RCNN,
speed up of about 2× and 3× is observed. The actual amount of speedup depends on the processing
time of each layer, which in turn depends on the size of the layer (i.e., # of parameters). Hence, a
direct correlation between size of the model (i.e., # of layers) and the speedup is difficult to establish.

The final performance of SAFT in terms of the model metrics is shown in Tables 1 and 3 for Gaussian
and Uniform noise respectively. We see that SAFT (with k frozen layers) closely matches3 the perfor-
mance of the full noise-injection training approach for all noise models, leading to improvements in
terms of the metrics. An interesting finding here is that specific layers that do not form a continuous
sequence, can be independently trained. Typically in transfer learning a continuous sequence of the
last few layers, such as the last few convolutional and fully-connected layers, are often retrained [5].

Lastly, we finetune a few models with Gaussian noise injection, using KL-divergence for selecting
the layers to freeze as opposed to using standard deviation (See Table 2). Interestingly, using KL-
divergence did not improve performance on vision models, although it did perform well on Bert
base. It is possible that since most layers in Bert base have high noise sensitivity (See Figure 2), KL-
divergence chose and trained some of the noisiest layers, whereas the noisiest layers are much more
specific and localized in the case of the vision models. These differences need further investigation.

5 Conclusions and Future Work

We introduced Sensitivity-Aware Finetuning (SAFT) for fast finetuning of pretrained models to deal
with noise. SAFT computes layer sensitivity using standard deviations to freeze some layers. SAFT
performs comparably to noise-injection training in terms of accuracy, while being faster at training.
In the future, we will investigate additional metrics for SAFT, including combinations of metrics like
standard deviation and KL-divergence. We will investigate techniques for easily identifying the k
hyperparameter used in SAFT and investigate the reasons as to why standard deviation works better
than KL-divergence in some cases and vice-versa. We believe the layer sensitivity analysis can also
be used for performing Partial Quantization and Quantization-Aware Training [14] in future work.

3Our results were confirmed with the Wilcoxon Signed Rank test (α = 0.05)

4



References

[1] V. Joshi, M. Le Gallo, S. Haefeli, I. Boybat, S. R. Nandakumar, C. Piveteau, M. Dazzi,
B. Rajendran, A. Sebastian, and E. Eleftheriou, “Accurate deep neural network inference using
computational phase-change memory,” Nature communications, vol. 11, no. 1, pp. 1–13, 2020.

[2] C. Zhou, P. Kadambi, M. Mattina, and P. N. Whatmough, “Noisy machines: Understanding
noisy neural networks and enhancing robustness to analog hardware errors using distillation,”
arXiv preprint arXiv:2001.04974, 2020.

[3] A. Basumallik, D. Bunandar, N. Dronen, N. Harris, L. Levkova, C. McCarter, L. Nair, D. Walter,
and D. Widemann, “Adaptive block floating-point for analog deep learning hardware,” arXiv
preprint arXiv:2205.06287, 2022.

[4] C. Baskin, N. Liss, E. Schwartz, E. Zheltonozhskii, R. Giryes, A. M. Bronstein, and A. Mendel-
son, “Uniq: Uniform noise injection for non-uniform quantization of neural networks,” ACM
Transactions on Computer Systems (TOCS), vol. 37, no. 1-4, pp. 1–15, 2021.

[5] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He, “A comprehensive
survey on transfer learning,” Proceedings of the IEEE, vol. 109, no. 1, pp. 43–76, 2020.

[6] D. Vucetic, M. Tayaranian, M. Ziaeefard, J. J. Clark, B. H. Meyer, and W. J. Gross, “Efficient
fine-tuning of bert models on the edge,” arXiv preprint arXiv:2205.01541, 2022.

[7] E. B. Zaken, S. Ravfogel, and Y. Goldberg, “Bitfit: Simple parameter-efficient fine-tuning for
transformer-based masked language-models,” arXiv preprint arXiv:2106.10199, 2021.

[8] T. Piao, I. Cho, and U. Kang, “Sensimix: Sensitivity-aware 8-bit index & 1-bit value mixed
precision quantization for bert compression,” PloS one, vol. 17, no. 4, p. e0265621, 2022.

[9] S. Migacz, “8-bit inference with tensorrt,” https://on-demand.gputechconf.com/gtc/2017/
presentation/s7310-8-bit-inference-with-tensorrt.pdf, May 2017.

[10] L. Kummer, K. Sidak, T. Reichmann, and W. Gansterer, “Adaptive precision training (adapt): A
dynamic fixed point quantized training approach for dnns,” arXiv preprint arXiv:2107.13490,
2021.

[11] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer, “A survey of quan-
tization methods for efficient neural network inference,” arXiv preprint arXiv:2103.13630,
2021.

[12] S. Garg, J. Lou, A. Jain, and M. Nahmias, “Dynamic precision analog computing for neural
networks,” arXiv preprint arXiv:2102.06365, 2021.

[13] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and I. Stoica, “Tune: A research
platform for distributed model selection and training,” arXiv preprint arXiv:1807.05118, 2018.

[14] H. Wu, P. Judd, X. Zhang, M. Isaev, and P. Micikevicius, “Integer quantization for deep learning
inference: Principles and empirical evaluation,” arXiv preprint arXiv:2004.09602, 2020.

[15] L.-H. Tsai, S.-C. Chang, Y.-T. Chen, J.-Y. Pan, W. Wei, and D.-C. Juan, “Robust processing-
in-memory neural networks via noise-aware normalization,” arXiv preprint arXiv:2007.03230,
2020.

[16] J. L. McKinstry, S. K. Esser, R. Appuswamy, D. Bablani, J. V. Arthur, I. B. Yildiz, and D. S.
Modha, “Discovering low-precision networks close to full-precision networks for efficient
embedded inference,” arXiv preprint arXiv:1809.04191, 2018.

[17] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet classification using
binary convolutional neural networks,” in European conference on computer vision. Springer,
2016, pp. 525–542.

A Appendix

5

https://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-with-tensorrt.pdf
https://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-with-tensorrt.pdf


Table 4: # of total layers vs. frozen layers, and the speed increase for SAFT over baseline noise-
injection training (*Lower k values could potentially be obtained through a more rigorous search).

Batch size k # Total # Frozen
ResNet18 256 10 21 11
ResNet34 256 10 37 27
ResNet50 256 10 54 44
ResNeXt50 256 10 54 44
MobileNet v3 256 15 64 49
Faster RCNN 20 8 68 60
Mask RCNN 20 8 74 66
Bert base 80 20 73 53

Table 5: Noise distribution parameters for the different models. The specific noise parameters were
chosen so as to result in a drop in the performance of all the models, which can then be recovered
through training.

Gaussian Noise σ Uniform noise r1
Mult Add Mult Add Epochs (training)

ResNet18 0.05 0.005 0.1 0.01 3
ResNet34 0.05 0.005 0.3 0.01 3
ResNet50 0.05 0.005 0.3 0.01 3
ResNeXt50 0.08 0.005 0.15 0.008 3
MobileNet v3 large 0.02 0.005 0.03 0.008 5
Mask RCNN 0.01 0.005 0.01 0.008 1
Faster RCNN 0.05 0.005 0.05 0.005 1
Bert base 0.02 0.002 0.3 0.01 1

6



Algorithm 1: Computing layer sensitivity
Input: Original model M , noisy model N
Output: Layer output standard deviations S
Data: Sample batch of inputs X
Function save_data(M , X):

// Save input-output of each layer
Imodel = {}
Omodel = {}
for i, l in enumerate(M.layers) do

if i = 0 then
Y = l(X)
Imodel[l] = X
Omodel[l] = Y

else
Imodel[l] = Y
Y = l(Y )
Omodel[l] = Y

end
end
return Imodel, Omodel

Function compute_stats(M , N , X):
Iclean, Oclean = save_data(M , X)
S = {}
for l in N.layers do

// Pass inputs of M through N
Ynoisy = l(Iclean[l])

Ŷ = Ynoisy −Oclean[l]

S[l] = std(Ŷ )
end
// Sort in decreasing std values
return sort(S, ↓)

7


	Introduction
	Sensitivity-Aware Finetuning
	Experiments
	Results
	Conclusions and Future Work
	Appendix

