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Abstract

X-ray screening is crucial in ensuring the safety and security of publicly crowded1

areas. Since x-ray operators can be overwhelmed by the sheer amount of items they2

have to inspect, new computer vision-aided systems aim to reduce the operator’s3

workload. In this work, we focus on one of the problems with developing such4

systems: naive application of already existing state-of-the-art methods for visual5

datasets does not necessarily yield satisfactory results. We use neural architecture6

search(NAS) and compare it to the current state-of-the-art approaches for SIXray7

(a famous and colossal X-ray dataset). We develop a heuristic technique to speed8

up the otherwise time-consuming process and make its use for industrial datasets9

feasible. We also devise an ensemble approach capable of utilising multiple10

discovered architectures simultaneously. Based on our results, AutoML shows11

excellent potential for such use cases, and thanks to our advancements, we manage12

to beat the state-of-the-art while keeping the NAS overhead to a minimum.13

1 Introduction14

Concealed weapon detection through different screening procedures is a crucial part of security.15

(17; 35). As the need for such systems has significantly increased (32) many systems have emerged16

focusing on different techniques (31; 2). Attempts to address this problem date back more than two17

decades ago, connoting its complexity and arduousness (5). Most state-of-art algorithms in this18

domain focus on identifying if there is a threat or not (24; 27) which is a sub-optimal approach since19

different threats require different security protocols. Usually, millimetre wave detectors and metal20

detectors, etc.(30) are used to carry out concealed weapon detection. There are, however, specific use21

cases where computer vision algorithms are also employed to analyse the raw signals coming from22

these various media. One medium of interest in this work is the one which comes from X-Ray scans.23

These generated images significantly differ from the visual RGB images generated from CCTV or24

other digital cameras. Hence, they require specific preprocessing before they can be used as input25

to conventional computer vision algorithms (21). Moreover, the application of already established26

computer vision algorithms often yields sub-optimal results, which has led researchers to recognise27

the need for domain-specific architectures and procedures (23; 22).28

Developing new architectures is a complex process, requiring additional tuning to make them fit29

a specific problem involving many computational and human resources. Researchers have been30

trying to develop techniques invariant to changes in data, distributions, and other external settings31

(10; 13). The idea of such approaches is to harness the tremendous computational power available32

nowadays and put it to work instead of a team of people with different domain expertise needing to33

tackle the problem manually. Automated machine learning (AutoML) allows all of this to be possible,34

and recently, the progress in the field has led to some remarkable breakthroughs like (29; 16; 37)35

. One of the significant caveats of AutoML, however, is the extreme computational requirements36
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(a)
SIXray benign sample

(b) SIXray sample
with multiple overlap-
ping threats

(c) Heirarchical refinement process from (23). al sig-
nifies the activation a at layer l, g is the CHR denoise
function. The + denotes concatenation and ã denotes
the filtered activation after g is applied.

Figure 1: SIXray (23) samples (1a, 1b) and CHR methodology (1c)

(16; 29) A novel method to deal with the high computational demand of these algorithms is the use of37

optimisation heuristics in the form of proxy scores which promise a significant reduction in resource38

requirements (19; 1). In this paper, we explore the potential application of AutoML approaches39

for concealed weapon detection using two x-ray datasets which feature different types of treats and40

scenarios. The contributions of the paper are as follows:41

1. Novel application of AutoML state-of-the-art methods to concealed weapon detection.42

2. Multi-objective optimisation of multiple heuristic proxy scores simultaneously and a 200x43

speed up of a multi-objective AutoML algorithm.44

3. A novel ensemble approach that utilises the predictions of multiple models discovered by a45

multi-objective NAS to make a final prediction.46

2 Related work47

There are numerous ways to detect concealed weapons detection such as millimetre wave technology48

(8; 14) , radar (36) and most often X-ray machines (23; 3; 25) . Recently, computer vision algorithms49

have been tasked to automate the vast majority of the x-ray inspections and aid the machine operators50

as much as possible by automatically flagging potential threats or enhancing the images to make a51

threat more visible (23; 3). This has led to an influx of x-ray datasets featuring concealed threats52

in recent years (22; 23; 12). These datasets are designed to foster the upcoming automation of53

security systems, which would allow for security personnel to more efficiently and effectively prevent54

potential disasters (20) . One such dataset is SIXray (23). It contains multiple threats that can appear55

simultaneously and exhibit unique properties representing real-world data with over a million images.56

One of the most prominent of these properties is the occlusion (sample in Figure 1b) (34).57

Some methods attempt to use novel attention mechanisms designed to negate these properties’ adverse58

effects on the performance of models. Such techniques are the hierarchical refinement in (23) (Figure59

1c) and Selective Dense Attention Network in (34). Alternatively, some additional preprocessing60

steps are presented in (22). Although we do not employ any of these techniques in our work, they are61

compatible with our findings and can be utilised to improve our results even further.62

In these scenarios, the standard is to use convolutional neural networks(CNNs), and often, already63

well-performing architectures with visual images are naively applied to these x-ray problems (3; 9) .64

A caveat with this transfer learning approach is that, as mentioned in (20) insights and techniques65

used with visual datasets may be suboptimal when used with other media types such as X-rays.66

Creating entirely new models and techniques specifically for the domain is highly time-consuming,67

and detaching it from the advancements in the visual domain would hinder the joint progress of the68

fields. A workaround is to use transferable automated machine learning(AutoML) methods (29).69

In particular, neural architecture search(NAS) is not bound to the specific data or the architectural70

paradigms and tricks used with visual datasets (7).71

A common problem with a large portion of the state-of-the-art NAS algorithms is that they are only72

viable for small dimensional datasets (such as MNIST and CIFAR 10) (29; 16; 28). This is first73

because they require a tremendous amount of computational resources. Also, in some of them, the74

2



data loading and processing techniques are intertwined with the approach, so they cannot effortlessly75

scale to high-dimensional x-ray data in a "plug-and-play" fashion (10; 29; 15; 34). As the interest76

in the field has grown, more and more research has attempted to fill this research gap and provide77

alternative solutions to deal with the problem, such as (6; 37; 4).78

In particular, RAMOSS (7) authors have designed their approach modularly, allowing easy integration79

with datasets such as SIXRay. They claim the approach provides the best balance between computa-80

tional time and performance and supports multi-objective optimisation, which we intend to use in our81

work. However, most of these algorithms’ computational time is spent on training each constructed82

architecture for a certain amount of epochs to evaluate its performance on a held-out validation set83

and compare it to the rest of the produced architectures, which is sub-optimal (1). Thankfully, some84

recent works have provided shortcuts that integrate performance approximation proxy scores. Even85

though they do not display a perfect correlation with the trained performance, they are believed to be86

a reliable approximation (1). Such scores are the NASWOT score (19) and the SYNFLOW score87

(33) . The latter was originally designed to be a score used for pruning architectures. However, a88

recent study (1) showcased that it might be an effective performance proxy score when used with89

NAS approaches.90

3 Methodology91

In this paper, we leverage the RAMOSS algorithm (7) with the newly surfaced proxy scores to92

establish the feasibility of using NAS approaches in concealed weapon detection and test how well93

such approaches scale to real-world use cases. Towards this goal, we benchmark a constrained search94

for architectures of RAMOSS to some of the most popular architectures in the domain.95

The main issue with using NAS approaches like RAMOSS is the computational time. Given96

that SIXray has over a million data points, we recognised the need to find a heuristic evaluation97

method. Motivated by the promising results of "Zero-cost NAS"(1), come up with a rapid multi-98

objective neuroevolution approach capable of finding optimal architectures in less than an hour of99

computational time. More specifically, we use two of the proxy scores presented in (1) - NASWOT100

(19) and SYNFLOW (33). In contrast to "Zero-cost NAS", we do not use a cumulative score to101

aggregate over the selected proxies. Instead, we use them as separate objectives and try to optimise102

for both simultaneously.103

To convert the NASWOT and SYNFLOW scores from a pruning metric to an architecture performance104

estimation proxy, we reformulate them similarly to (1). The NASWOT score in our study is calculated105

using: ln (|det(K)|) where K contains all per-neuron pruning scores, which in turn are calculated as:106

l∑
i=0

((
gi(X) ∗ gi(X)T

)
+
(
(1− gi(X)) ∗

(
1− gi(X)T

)))
(1)

where l is the number of layers, gi(X) = 1|fi(X)>1| is the normalised output fi(X) for layer i given107

input X and X is the selected batch of data fed to the model.108

The SYNFLOW score in our work is computed similarly. The original per-neuron score is obtained109

by: Spθ = ∂ℓ
∂θ ⊙ θ where ℓ is the loss function used and θ denotes the parameters of the network.110

Using the scores, the authors of (1) reformulate them to generate a score for each neuron in the111

network by using the following operation: Sn =
∑i=0

N Sp(θ)i where N is the total number of112

parameters. We take this one step further by aggregating these scores into an optimisation objective113

by applying the following operation where n is all the neurons in each layer i of all layers l:114

ln(

∑l
i=0

∑n
j=0 ln(Sj+1)

n

l
) (2)

As part of our work, we conduct an ablation study exploring different backbone architectures to115

establish a baseline model to compare the newly produced RAMOSS models. With this ablation116

study, we aim to establish which architectures work well for our given problem, if any architectures117

significantly outperform others and to explore why. We believe this can help search for the "ideal"118

architecture to solve the present problem.119
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Table 1: SIXRAY results

Gun Knife Wrench Pliers Scissors Mean
ResNet34 89.71 85.46 62.48 83.50 52.99 74.83
ResNet50 90.64 87.17 64.31 85.78 61.58 77.87
ResNet101 87.65 84.26 69.33 85.29 60.39 77.38
Inception-v3 90.05 83.80 68.11 84.45 58.66 77.01
DenseNet 87.36 87.71 64.15 87.63 59.95 77.36
RAMOSS-s1 94.93 89.47 67.48 86.13 89.29 85.46
RAMOSS-ens 95.51 94.04 77.34 76.12 96.34 87.87

To conduct our study, we use an Adam optimiser with a learning rate of 0.001, beta 1 of 0.9, beta 2120

of 0.99 and epsilon of 0.0000001. We discard the top layers and add the same five dense layers for121

classifying the produced features to ensure a fair comparison. The loss function used is conventional122

binary cross-entropy. We train each architecture for 50 epochs and evaluate it using the test set. We123

do not use augmentation during our study to keep as many control variables as possible. We also124

shuffle and fetch the dataset using the same random seeds.125

After setting up the corresponding data loaders and computing the benchmarks, the general process126

we follow can be described by the following steps: 1. We specify any hyperparameters. 2. We run127

the RAMOSS algorithm (7) for g generations with a population size p. The number of maximum128

convolutional layers used in all experiments in this work is set to 35 3. We take the Pareto front of129

produced solutions and train the architectures for the same 50 epochs with the other state-of-the-art130

methods. 4 Using the predictions of the top-performing discovered models as inputs, we construct131

an ensemble model. 5 We evaluate all architectures and the ensemble model on the held-out test132

set. We report the best performing architecture score as well as the score from the ensemble model133

("RAMOSS-s1" and "RAMOSS-ens" in Table 1 respectively).134

4 Results and Discussion135

We report results based on average precision. We use precision for SIXray not only to match the136

original SIXray paper (23) but also because of the massive imbalance in the dataset. From Table137

1, it becomes evident that from the state-of-the-art architectures, the best ones are ResNet50 and138

ResNet101, which are mostly on par with DenseNet. Interestingly, most of the architecture displays139

consistent performance throughout all threats, but it is worth mentioning that the number of images140

with the class "Scissors" is the most undersampled class.141

Interestingly, DenseNet is the best architecture for detecting Pliers, which is, in fact, the class with142

the most samples, excluding the benign ones. However, the best-recognised classes seem to be the143

Gun and the Knife throughout most architectures. We notice a general increase in performance going144

from ResNet34 to ResNet50. At the same time, from ResNet50 to ResNet101, the performance drops145

except for a single class. This phenomenon can be explained by the depth of ResNet101, which may146

prevent it from converging for the same 50 epochs as ResNet50. Also, it is possible that the model is147

overparameterised for this particular problem in line with the findings of (26) and (18).148

Strikingly, the models produced from RAMOSS captured the imbalance better than the state-of-the-art149

benchmark architectures judging by the undersampled classes and the overall precision. This connotes150

that the multi-objective optimisation within RAMOSS is searching for optimal architectures and151

implicitly enforces this discriminative ability. We attribute this implicit objective to the way the proxy152

scores work. As discussed above, both proxy scores are positively influenced by the distance between153

samples’ activations. Hence, the proxy scores implicitly reward architectures capable of "seeing"154

distinct or simply unlike features, which in our case, helps the algorithm produce architectures capable155

of capturing the difference between the different classes. The best RAMOSS model significantly156

outperforms the state-of-the-art models used for SIXray, even with the class-balanced hierarchical157

refinement (CHR) technique discussed in (23). The large gap between the automatically discovered158

architecture and the state-of-the-art calls for future work to focus on the importance of designing159

specific architectures for data from different domains. Moreover, the RAMOSS-s1 architecture uses160

just above 11 million parameters, less than half of the 23.5 million parameters used by ResNet50.161

One possible explanation of how the RAMOSS model outperforms the rest of the architectures162
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becomes apparent when taking a closer look at the architecture itself (See Figure 2). One of the key163

steps in the CHR (23) is the hierarchical refinement which utilises low and high-level features by164

concatenating intermediate activations and then filtering out noisy information based on the signals165

of the activations of the next layer. Each selected layer for feature extraction, thus becomes a separate166

stream of ãl that is fed into an auxiliary classifier f l(ãln; ξ
l) = yln where ξl is the hashing vectoriser167

of the selected layer and finally all yln are averaged to obtain the final output y. Looking back at the168

architecture discovered by RAMOSS in Figure 2, some large skip connections can be seen. After169

the first convolutional layer, a skip connection is made to much lower dimensional representations.170

Then, the signals are added inside an auxiliary feature extraction arm, which is effectively similar171

to what the CHR accomplishes with the separated streams. Moreover, the architecture seems to be172

composed of ResNet-like blocks with various degrees of skip connection depth, which, as we can see173

from Table 1, seems to be working better than InceptionNet or DenseNet-like blocks.174

Interestingly, the models produced from RAMOSS excelled at recognising different classes, which175

we attribute to the multi-objective optimisation underneath the algorithm. As we wanted to utilise a176

better portion of the generated front of solutions rather than just one(in the form of RAMOSSs1),177

we decided to select four architectures with the highest contributing hypervolume (as in (7) ). Then,178

we designed a classifier which uses the outputs of these architectures y1, y2...yn in order to make a179

final prediction yens, which we can then evaluate using the actual labels y∗. The architecture of the180

ensemble model is custom designed, and it composes of a custom layer, the aim of which is to do a181

weighted average of the predicted probabilities of y1, y2...yn.182

It naturally achieves the best overall scores; however, it is beaten by DenseNet only in terms of183

the most out-of-distribution upsampled class in the testing set - the Pliers. Thanks to our ensemble184

approach, we beat the state-of-the-art by more than 10%, which is more than five times better185

improvement than the one coming from the incorporation of CHR.186

Since we used only 20 generations with a population size of 20, it is fair to assume that the algorithm187

did not successfully explore the enormous search space. Thus we recognise that this caveat needs to188

be addressed with an ablation study over these two hyperparameters in future work.189

It is worth mentioning that using the advancements listed in the previous section (by using the proxy190

score heuristic), we managed to reduce the time needed to run RAMOSS to under 1 GPU hour for a191

population size of 20 for 20 generations. This is a drastic improvement over the original time required192

listed in the original paper (7), making it one of the fastest NAS runs. Moreover, since we do not even193

train the architectures during the discovery phase, we have essentially made the algorithm compatible194

with machines without GPUs because the CPU can handle inference on most machines. This makes195

the research field immensely more accessible for new practitioners and feasible to use in many new196

domains and industry settings, as demonstrated by our experiments. Our code base can be found on197

URL withheld to comply with double-blind submission.198

5 Conclusion and Future work199

In this work, we demonstrate that neural architecture search methods, which have limited use in200

industry, can be utilised to address real-world problems. We pick a specific modular AutoML201

approach, and its use with new datasets is straightforward, which is not usually the case. Although202

our ensemble strategy seems to generate some promising results, future work can explore using the203

collective knowledge of the generated networks to conduct knowledge distillation (11). We manage204

to beat the state-of-the-art, and our results undeniably avow that there is a need to make AutoML205

more practical by designing the systems so that they are disentangled from the dataset used for proof206

of concept and scalable to real-world scenarios. We believe that making such algorithms run faster207

by utilising heuristic performance estimation to substitute the regular and highly resource-greedy208

evaluation presents a unique opportunity, which we explore. We also modify a well-performing multi-209

objective approach to use multiple proxy scores to speed up the architecture search and showcase how210

these proxies can be used in conjunction with multi-objective optimisation to beat state-of-the-art211

architectures. What is more, we design an ensemble approach that successfully utilises multiple of212

the optimally produced set of architectures. In summary, our results and the exorbitantly low search213

time with a NAS method(1 hour) without the need to use a GPU are a testament to the untapped214

potential of the use of AutoML in industrial applications.215
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A Appendix 1: RAMOSS-s1 architectures216

Figure 2: RAMOSS-s1 architecture for SIXray (truncated after the last convolution for legibility)
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(c) Did you report error bars (e.g., with respect to the random seed after running experi-337

ments multiple times)? [No] This is one of the limitations of our current study, and we338

are working on improving it.339

(d) Did you include the total amount of compute and the type of resources used (e.g., type340

of GPUs, internal cluster, or cloud provider)? [Yes] We have used an NVidia 3090 for341

our experiments, and the RAMOSS run took less than 1 GPU hour, as mentioned in the342

methodology. The retraining of the architectures, on average, takes around 3 hours to343

retrain for 50 epochs.344

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...345

(a) If your work uses existing assets, did you cite the creators? [Yes]346

(b) Did you mention the license of the assets? [N/A] Non of the assets require licensing.347

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]348

The URL to our codebase (which would be made public upon acceptance). We plan to349

submit an anonymised version of the code as supplementary materials.350

(d) Did you discuss whether and how consent was obtained from people whose data you’re351

using/curating? [N/A]352

(e) Did you discuss whether the data you are using/curating contains personally identifiable353

information or offensive content? [N/A]354

5. If you used crowdsourcing or conducted research with human subjects...355

(a) Did you include the full text of instructions given to participants and screenshots, if356

applicable? [N/A]357

(b) Did you describe any potential participant risks, with links to Institutional Review358

Board (IRB) approvals, if applicable? [N/A]359

(c) Did you include the estimated hourly wage paid to participants and the total amount360

spent on participant compensation? [N/A]361
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