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Abstract

Estimating the overall user experience (UX) on a device is a common challenge
faced by manufacturers. Today, device makers primarily rely on microbenchmark
scores, such as Geekbench, that stress test specific hardware components, such
as CPU or RAM, but do not satisfactorily capture consumer workloads. System
designers often rely on domain-specific heuristics and extensive testing of proto-
types to reach a desired UX goal, and yet there is often a mismatch between the
manufacturers’ performance claims and the consumers’ experience.

We present our initial results on predicting real-life user experience on laptops from
their hardware specifications. We target web applications that run on Chromebooks
(ChromeOS laptops) for a simple and fair aggregation of experience across applica-
tions and workloads. On 54 laptops, we track 9 UX metrics on common end-user
workloads: web browsing, video playback and audio/ video calls. We focus on a
subset of high-level metrics exposed by the Chrome browser, that are part of the
Web Vitals initiative for measuring user experience on web applications.

With a dataset of 100K UX data points, we train gradient boosted regression trees
that predict the metric values from device specifications. Across our 9 metrics,
we note a mean R? score (goodness-of-fit on our dataset) of 97.8% and a mean
MAAPE (percentage error in prediction on unseen data) of 10.1%.

1 Introduction

Computer hardware continues to evolve rapidly. Intel released 150+ CPU SKUs (unique identifiers
for processors) in 2022 alone [5], each with a unique base frequency, core count, thread count, etc.
The number of possible ways to assemble a system grows exponentially as we multiply the available
options for the various components: CPU, GPU, RAM, display etc. Computer architects have the
challenging job of perfecting a device assembly to match a target performance goal. This demands
deep domain knowledge, heuristics to estimate performance of designs, and then extensive testing
of prototypes to verify that the desired performance is achieved. Yet, the manufacturers’ claims
regarding device performance often does not match the consumers’ experiences [22].

While there has been prior effort [21, 27, 28] towards predicting performance, they have primarily
targeted popular CPU microbenchmark suites, such as Geekbench [4] and SPEC [18]. Li et al. [21]
propose an approach based on Multiple Additive Regression Trees (MARTSs) [16] for predicting
processor performance on SPEC benchmarks. Wang et al. [28] use deep neural networks (DNN5s) to
predict the performance of Intel CPUs on both Geekbench and SPEC suites. In a recent work, Cengiz
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Latency

Responsiveness

Smoothness

Startup Time

Time (ms) since an application
invocation to a window launch

Janky Intervals

Number of 100ms intervals in
which a user event was in queue

Dropped Frames

Fraction (%) of frames dropped
during scrolling or update

Tab Switch Time

Time (ms) since a tab switch
event to the first rendered frame

Key Press Delay

Time (ms) taken by application
to start a key press event

Window Animation

Relative (%) FPS (compared to
60 FPS) during window hiding

Largest Contentful Paint

Time (ms) taken to paint the
largest image or text block

Mouse Press Delay

Time (ms) taken by application
to start a mouse press event

Tab Switch Animation

Relative (%) FPS (compared to
60 FPS) during tab switching

Table 1: A subset of UX metrics from the “User Metrics Analysis” (UMA) framework in Chrome.

et al. [13] also leverage DNNSs to predict SPEC scores with very high accuracy. A recent survey by
Tousi and Lujan [27] compares a number of different approaches for predicting SPEC scores and note
that tree-based models provide the best results. Beyond CPU performance prediction, Morlans et al.
[23] recently proposed ML models for predicting power consumption. These approaches demonstrate
the power of ML for performance prediction, but they are too specific to particular subsystems, such
as CPU or power, and do not generalize to predicting overall user experience (UX).

While these microbenchmarks are excellent at stress testing a system, revealing the “peak” system
performance, they do not satisfactorily model the “average” UX, as observed by Moorhead [22].
Designing workloads that mimic end-user use cases is challenging, and the large diversity in operating
systems and software libraries makes a fair comparison of UX even more difficult. In this study, we
restrict our attention to ChromeOS [3], which primarily runs web applications (webapps), such as
Google Docs, Google Meet, YouTube etc. Every webapp runs within the Chrome browser, which
simplifies the tooling required for a fair aggregation and comparison of UX indicators.

ChromeOS powers the Chromebook [2] laptops that are widely used in the education sector [9, 12, 29].
We define automated tests that replicate common end-user workloads from telemetry data, including
document editing and web browsing, YouTube playback, and video calling in Google Meet. We
observe that system-level health metrics such as CPU/RAM usage, system load etc. do not always
indicate perceivable UX degradation. Instead, we identify a subset of metrics from the Chrome
browser [7], that capture noticeable performance degradation. For instance, users notice when an
application takes too long to start, or when an application is slow in responding to keyboard or mouse
actions. Our metrics are part of the Web Vitals [8] initiative that outlines a set of key performance
indicators (KPIs) for web applications. We list these metrics in Table 1, and discuss more in § 2.

‘We run our test automation to track 9 UX metrics on 54 Chromebooks from 4 manufacturers, and
gather 100K UX data points. We train a set of gradient boosted regression trees (GBRTs) [16], one
per UX metric. We observe an average R? score [30] of 97.8% indicating that the trained GBRTs are
a “good fit” on our dataset, i.e., they explain the variations in the dataset well. We also achieve an
average MAAPE of 10.1%, indicating a low percentage error rate in predictions. We discuss these
models and our results in more detail in § 4.

In summary, the key contributions presented in this paper are the following:
1. We define automated tests for ChromeOS webapps that mimic end-user workloads, and identify
a subset Chrome browser metrics that strongly correlate with perceivable UX degradation.

2. On 54 Chromebooks, we evaluate these UX metrics across our tests, and curate a hardware
specifications — UX metrics dataset with 100K data points.

3. We train gradient boosted regression trees that predict these UX metrics accurately.

2 Data Collection

In this section, we detail our dataset — our collection of Chromebook devices, the target workloads
and automated tests, the UX metrics we track during these automated tests across all our devices.



Devices & Specifications. We setup a test bed of 54 Chromebooks. To ensure good diversity,
we collected devices from 4 well-known manufacturers, containing system on chips (SoCs) from 4
well-known vendors. While all our device SoCs have a 64-bit architecture, we have a mix of both
ARMO64 and x64 SoCs. In § A.1, we present a distribution of the hardware specs within our test bed.

We exclude the following major components from our current study: (a) battery specs: since we
only evaluate UX when devices are on AC power, (b) storage (HDD/SSD) specs: since ChromeOS
workloads are primarily CPU-intensive [10], and (¢) GPU specs: all of our Chromebooks have
integrated GPUs and exact specs on core count, FLOPS etc. are not readily available in most cases.

Workloads & Tests. Our target workloads are inspired by end-user telemetry data. They primarily
focus on web browsing, document editing in Google Docs, audio/ video calling in Google Meet, and
video playback in YouTube. We defined automated tests that mimic these use cases.

We take several steps to reduce variability in measurements: (a) our devices run the same ChromeOS
version, (b) tests are run only when the device is on AC power, (¢) we run each test is run multiple
times per device, and (d) if a test does not run to completion, we discard all collected metrics.

i

User-Experience Metrics. We track 9 metrics, listed in Table 1, from the “User Metrics Analysis’
framework [7] in the Chrome browser, that directly quantify UX degradation. Many of our metrics
are part of the Web Vitals [8] initiative that outlines a set of key performance indicators for webapps:

* Largest Contentful Paint (LCP) time [1] is part of the core set,
* A variant of janky intervals [6], called Total Blocking Time (TBT) is part of the lab set, and

* A key press and mouse press delay are part of the core set as Interaction to Next Paint (INP).

Beyond these page-level metrics, we also track application-level metrics such as startup time and
window / tab animation smoothness to capture a holistic view of user experience.

As a sanity check before building predictive models, we also performed a correlation analysis between
our Chromebook specifications and the UX metric values, to check if user experience generally
improved with better hardware. We discuss the correlation matrix in § A.2.

3 Methodology

In this section, we overview (a) our data pipeline — our data cleaning and feature engineering
processes, and (b) our machine-learning (regression) model. Formally, for each metric m we train a
function f,,, that given a vector x of hardware specifications predicts an estimated value ¢,, for the

metric m (with some true value y,,,) based on the model parameters B learned during training.

g’m = f7rL (Xa ﬂ) Where X = <$cpu_freqa e axram_capacitya DR xdisplay_res>

Data Cleaning. We discard metrics from tests that terminate before completion. We also remove
extreme values, such as 100% dropped frames and 0% smoothness. To reduce the impact of outliers,
we only use the median of the multiple per-test iterations. Mean seemed highly susceptible to outliers.

Feature Engineering. We list our features § A.3; all are numeric, except the following:

* We use a one-hot encoding [31] for the CPU vendor name: a categorical feature with 4 choices.

* We use a single pixel count feature as opposed to using vertical and horizontal components of
display resolution, as performance typically depends on the number of pixels not their position.

ML Model. Tree-based models have been shown to be more effective [14, 26] than neural models,
especially at regression on tabular data, i.e., data with a fixed set of features. Tabular data often poses
challenges for neural networks: lack of locality, data sparsity, mixed feature types etc. Further, given
their determinism and interpretability, we use Gradient Boosted Regression Trees (GBRTS) [16]. We
clip the outputs of our GBRTs from below at zero, since all our metrics assume non-negative values.
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Figure 1: The R? fits and MAAPE errors of our predictors. Dotted lines indicate the mean values.

4 Evaluation

We use a 80% / 10% / 10% pseudo-random split of our devices for training / validation / testing,
ensuring good diversity of specs in all sets. We detail our training process and then our results below.

Training. For training our GBRT models, we use the GradientBoostingRegressor interface in
the scikit-learn [25] Python library. We minimize the default loss function on the training data —
the Mean Squared Error (MSE) using Friedman [16]’s least-squares improvement criterion.

We use cross-validated grid search [24] to optimize 5 hyperparameters: (a) learning rate, (b) the
number of estimators, (¢) subsampling for estimators, (d) depth of estimators, and (e) number of
features to split on. The optimal hyperparameter values are listed in the appendix, § A.4.

Assessment. In Figure 1, we present an evaluation of our GBRTs, one per metric from Table 1. We
measure (a) the goodness of fit on learning dataset, and (b) the prediction error rates on test dataset.

We compute the R? score [30], to measure how well our regression models fit our datasets. We
observe a mean R2 score of 97.8%, indicating that our models fit our datasets very well. However,
R? does not indicate prediction accuracy or model generalization on out-of-sample points [17]. For
prediction error rate, we compute the Mean Arctangent Absolute Percentage Error (MAAPE) [20],
which provides a stable relative error even when the true values are zero. For instance, a zero value
for the “Janky Intervals” metric indicates that there was no queuing in browser event processing
during a test, which is actually observed on several devices.

In § A.5, we also discuss the permutation importance of features [11] for each GBRT.

5 Limitations

While we believe that our results are promising, we are aware of the following key limitations:

¢ While ChromeOS supports Linux and Android applications inside virtual machines or within
containers, we restrict the workloads in our experiments to only native (web) applications.

* There is an observation cost in measuring UX metrics while running the workloads. We believe
this overhead is minimal, as we directly use the Chrome browser’s UMA [7] framework.

* We collect UX metrics only when the devices are connected to AC power, so our current study
makes no claims regarding the user experience when laptops are on battery power.
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A Appendix

A.1 Distribution of Hardware Specifications

All 54 devices in our test bed had 60 Hz display refresh rate. Below, we present the distribution of
other CPU, RAM and display specs across our devices.
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A.2 UX Metrics ~ Hardware Specs Correlation

As opposed to Pearson’s p [15], which captures linear correlation, we found Kendall’s 7 rank
correlation [19] to be more informative. We present the correlation matrix below.

CPU Base Frequency - -0.1 -0.2 -0.3 -0.1 -0.1 -0.2 -0.1 0.1 -0.1
CPU Core Count - -0.2 -0.3 -0.2 -0.2 -0.3 -0.3 -0.3 -0.2

cou Thread Count | 203 04 04 0

RAM Data Rate - -0.4 0.4 -0.3 0.3 0.4 0.3 0.2
Display Resolution - -0.3 -0.3 -0.4 -0.3 -0.3 -0.3 -0.2 0.2 -0.2
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A positive value indicates that the UX metric often increases as a hardware spec value improves and
vice versa. Similarly, a negative value indicates that the UX metric often decreases as a hardware
spec value improves and vice versa. The correlation patterns match our expectations: (a) latencies,
and timings metrics negatively correlate with hardware specs, (b) frame drop rate and jankiness
also negatively correlate, and (¢) animation smoothness metrics positively correlate with hardware
specs. We observe that RAM capacity and CPU thread count have the strongest correlation with most
UX metrics. CPU base frequency seemed to have the weakest correlation across metrics, but that is
expected since the OS dynamically adjusts the CPU’s running frequency.

We note one interesting correlation that ran counter to our intuition. Higher display resolution seems
to correlate with lower latencies and with higher animation smoothness! On performing a cross
correlation between hardware specifications, it was revealed that most devices with higher display
resolution simultaneously also had better CPU and RAM specifications, therefore demonstrating
lower latencies and higher animation smoothness.



A.3 Device Specification Features

CPU RAM Display
Base Frequency (GHz) Data Rate (GT/s) Pixel Count *
(Float) (Integer) (Integer)
Core Count Capacity (GB) RefreshRate-(Hz) ¥
(Integer) (Integer) (Integer)
Thread Count
(Integer)
Vendor Code #
(One-Hot)

* Pixel Count = Horizontal Pixels x Vertical Pixels, e.g. 2073600 for 1920 x 1080 resolution.
$ Refresh rate, although collected, is dropped from training, since it is 60 Hz for all our devices.

# Vendor Code is a one-hot encoding [31] for 4 distinct CPU vendor names (a categorical field).

A4 Model Hyperparameters

In the tables below, an unspecified (-) indicates the following:

* for Max Features parameter: all features are considered for the best split.

* for Max Depth parameter: tree nodes are expanded until all leaves are pure.

A.4.1 GBRTs for Latency Metrics

Startup Tab Switch LCP

Time Time Time
Estimators 128 128 96
Learning Rate 0.3 0.3 0.2
Subsample 0.7 0.7 0.5
Max Features 3 - 6
Max Depth 2 - -

A.4.2 GBRTs for Responsiveness Metrics

Janky Key Press Mouse Press
Intervals Delay Delay
Estimators 128 96 128
Learning Rate 0.3 0.3 0.3
Subsample 1.0 0.7 0.6
Max Features 3 6 3
Max Depth 5 5

A.4.3 GBRTs for Smoothness Metrics

Dropped Window Tab
Frames Animation Animation
Estimators 96 128 96
Learning Rate 0.3 0.1 0.3
Subsample 1.0 1.0 0.6
Max Features 7 - 2
Max Depth 5 5 3




A.5 Feature Importance for GBRTSs

For a high-level understanding of our models, we compute the permutation importance of features [11]
for each GBRT. Permutation importance of a particular feature is defined as the decrease in a model
score when only that feature is randomly shuffled. Below, we show the feature importance matrix
with the feature importance values for each model normalized to [0, 1].

Latency Responsiveness Smoothness
SoC Vendor A “ 0.1 0.1 0.2 0.1
CPU Base Frequency - 0.2 0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.3
CPU Core Count {1 0.2 0.2 0.1

cruhresdcount { 01 o2 [ | o 02 02 o1
RAM Capacity - 0.1 m 0.2
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Display Resolution 4 0.1 0.1 0.3
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As in the correlation matrix in § A.2, we observe that CPU thread count is one of the most important
features across all models. On the other hand, CPU core count and display resolution have low
importance across all models. RAM capacity seemed more important in predicting smoothness
metrics, but not so much for latency or responsiveness. A few models relied heavily on the one-hot
encoded SoC vendor id, perhaps to effectively partition the feature space and learn more accurate
vendor-specific predictors. It is important to note that unlike correlation analysis, which reveals true
patterns in the data, feature importance only indicates the subset of specs that the GBRTs use to
accurately partition the feature spaces and predict metric values with minimal errors.
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