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Abstract

We are living in a golden age of machine learning. Powerful models perform many
tasks far better than is possible using traditional software engineering approaches
alone. However, developing and deploying these models in existing software systems
remains challenging. In this paper, we present SmartChoices, a novel approach
to incorporating machine learning into mature software stacks easily, safely, and
effectively. We highlight key design decisions and present case studies applying
SmartChoices within a range of large–scale industrial systems.

1 Introduction

Modern deep learning models power an increasing range of products and services, such as search,
recommendation and discovery systems, and online advertising. However, training and deploying
these models in production systems is often fraught with new failure modes and distinct forms of
technical debt [25].
This paper re-envisions the workflows to deploy machine learning in large-scale production sys-
tems, with an eye towards significantly reducing engineering effort and scope for errors. The result,
SmartChoices, uses ML models to provide learned implementations within an application. We tie
models directly to application behavior and eliminate separate development workflows for pipeline
management.1 SmartChoices’ design occupies a fertile middle ground between grand ambitions
to pervasively replace traditional software with deep learning and the hard–won lessons of veteran
engineers on how to build and run reliable production systems. A simple user interface, combined with
a design guaranteeing low latency, reliability & safety, enables SmartChoices users to successfully
deploy ML to address a diverse range of systems problems.

2 Scope and Capabilities

Machine learning can be applied towards many different problem classes. SmartChoices learns
implementations for contextual bandits problems; this covers many applications (see §A). Concretely,
SmartChoices addresses the following problem class. A system is faced with a sequence of decisions.
At time t, it is provided a context xt ∈ X as input, and a set of permissible outputs At (known as arms
in the bandit literature). At is a subset of the universe of arms A. The system chooses an arm at ∈ At

and receives feedback yt ∈ Rk indicating arm quality with respect to k ≥ 1 metrics. The goal is to
provide an implementation via a policy π : X × 2A → A to optimize the metrics2; SmartChoices
generates policies by post-processing a learned critic model m : X ×A → Rk targeting the metrics.

1Notably, this diverges considerably from the design philosophies of ML platforms that enable setting up
arbitrary ML pipelines, such as TFX [5] & Kubeflow [15].

2We will refer to metrics we wish to maximize as rewards and those we wish to minimize as costs.
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The basic formulation for contextual bandits involves a fixed small universe of arms A (i.e., categories
encoded as enum values) and a context domain X = Rd. SmartChoices supports several additional
important modeling features:

• Time-varying arm sets: Require at ∈ At when At ⊂ A, via selection masks in the policy.
• Mixed-type contexts: Numeric, enumeration, and string contexts are supported via

automatically-generated embedding layers in the critic model for π.
• Arm-features: Describing each arm with mixed-type features (henceforth arm-features) is

supported via embedding layers (as with contexts). This enables generalization across arms.
• Multimetric optimization: There are often several metrics of interest, with inevitable

tradeoffs. SmartChoices supports two variants of multimetric optimization, based on metric–
constraints and scalarization respectively. See Appendix C for more details.

3 User Interface

SmartChoices’ user interface is designed to be simple and foolproof. Deploying a learned policy
simply requires (i) specifying the problem, with any additional configuration options in a single file;
(ii) adding <10 additional lines of code to the application (see Fig. 2).

3.1 Problem Specification

SmartChoices users specify their problem in terms of Context, Arm, and Feedback types. (See Fig. 1).
Each type is defined as a protocol buffer (henceforth protobuf ) message [13]; data elements within
messages are described as a field with a type and a name. Users indicate field-specific modeling
information (e.g., the size of a categorical feature, whether a field should be ignored for modelling
purposes, whether a feedback field should be maximized / minimized) via field annotations.

message ExampleContext {
int32 category = 1 [(opts)={num_categories: 23}];
string name = 2 [(opts)={max_length: 5}];
repeated float dims = 3 [(opts)={shape: 2}];
string debug_info = 4 [(opts)={log_only: true}]; // not used by critic model

}

Figure 1: Example context type. Syntax simplified for brevity.

Having a clear separation between the structured representations users work with (i.e., protobufs) and
the underlying data representation ingested by the model allows us to surface better errors (e.g., “this
named field is unset”) and more informative diagnostics (e.g., per-field summary statistics).
Using protobufs specifically provides several additional benefits. Support for reflection makes
it simple to create generic components for converting any protobuf object into encoding tensors
suitable for training and deploying ML models. These components eliminate the need for “glue code”
and “pipeline jungles” [25] for feature extraction in user code. Field annotations allow users to
configure parameters in-line with their field datatypes, reducing risk of “configuration debt” [25].
Cross-language generated code for protobuf objects enables turnkey cross-language SmartChoices
support. Compressed serialization makes logging data memory- and bandwidth- efficient.
In addition to field-specific modelling information, SmartChoices users can configure additional
settings for their learned policy. These settings include access controls to diagnostic information, how
new policies are trained, evaluated, and monitored, and so on. All of these settings are specified in a
single configuration file checked into a repository. This makes it simple to compare the difference
between two configurations and enforce that configuration changes undergo a full code review [25].

3.2 Using the Learned Policy

Having defined the problem, SmartChoices users instrument their code in two steps. First, users need
to ensure that the built application has access to the compiled configuration file. In Bazel [6], this is
done by declaring a dependency on a build rule in the application’s build target. Users then call the
SmartChoices API in code (see Fig. 2); no separate user code is needed for logging data for training.
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auto smartchoice = CreateSmartChoice <ExampleContext , ExampleArm , ExampleFeedback >();

ExampleContext context = // protobuf with context features; see Fig. 1.
ExampleContextBuilder().SetCategory(3).SetName("foo").SetDims({2, 5}).SetDebugInfo("bar");

ExampleArm selected_arm;
// (i) note explicit required `default_arm `.
auto feedback_handle = smartchoice.Choose(context , default_arm , candidate_arms , &selected_arm);
// [... user performs action with `selected_arm ` ...]
ExampleFeedback feedback = ...; // protobuf with feedback measuring impact of action
feedback_handle.GiveFeedback(feedback);

Figure 2: An abbreviated example of calling the SmartChoices API in C++.

Figure 3: SmartChoices service infrastructure. Policies are trained in a central service and sent to the
client application. Inference is local to the client application and implemented using XLA.

We highlight three key features of the API:
A default arm is required. This provides three advantages. First and foremost, it provides a safe
fallback in case of any detected errors. Next, we can use the identity of the default arm to estimate
the metrics for a policy that always chooses the default arm (henceforth the “default policy”) via
counterfactual policy evaluation (CPE) [7] . Finally, having the default arm allows us to implement
imitation learning against the default policy and regularize to it by penalizing deviations from it. This
allows us to bootstrap from a policy that achieves the current system performance.
selected_arm is provided directly. Eliminating user post-processing of model output is not only
convenient for SmartChoices users but ensures that all data required for training and analysis (e.g.,
At, metadata about policy π) is available at Choose and GiveFeedback time.
Feedback handles are restorable. The feedback_handle object required to GiveFeedback can
be restored from an ID, allowing feedback to be provided days later in a separate process. This is
particularly useful for users who are only able to measure the quality of the decision after some delay.
In addition, Choose and GiveFeedback calls can optionally be tied together by an ID provided by
user code, significantly reducing the amount of infrastructure users need to add to use SmartChoices
(e.g., storing a mapping from a SmartChoices ID to their ID).

4 Implementation

Many different implementations of the SmartChoices interface are possible. Our goals are to: (i)
provide low-latency inference; (ii) guarantee reliability and safety; (iii) eliminate the need for custom
code to analyze, monitor and manage deployments. We have two implementations: in-process (see Ap-
pendix D) and service (see Fig. 3). These design principles underpin the service implementation:
Inference is local. Policies are backed by local models running on CPU. This means that Choose is
non-blocking and has median latency of ∼10 µs. Local inference is also key to our reliability and
safety guarantees. First, a trained policy is available even if the network is temporarily down. In
addition, bugs causing inference errors can be identified at test time via standard unit tests employing
test models, and any inference errors at runtime can be detected immediately, allowing graceful
fallbacks to the user-specified default arm. Client applications can seamlessly switch to new policies
since models are instantiated by the XLA just-in-time (JIT) compiler [16]. Local inference does limit
SmartChoices users to models that can fit in a single machine’s RAM, but this suffices in practice to
outperform existing heuristics for a wide variety of applications (see Appendix A).
All communication is asynchronous. Choose and GiveFeedback calls write training data to a
shared queue. Background threads initialized when the SmartChoice object is instantiated periodi-
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Data Tests
Feature expectations are captured in a schema. X
All features are beneficial. ✎
No feature’s cost is too much. 🙋

Features adhere to meta-level requirements. X
The data pipeline has appropriate privacy controls. X
New features can be added quickly. X
All input feature code is tested. 🙋

Model Tests
Model specs are reviewed and submitted. X
Offline and online metrics correlate. X
All hyperparameters have been tuned. X
The impact of model staleness is known. ✎
A simpler model is not better. ✎
Model quality is sufficient on important data slices. X
The model is tested for considerations of inclusion. ✎

Infrastructure Tests
Training is reproducible. X
Model specs are unit tested. X
The ML pipeline is integration tested. X
Model quality is validated before serving. X
The model is debuggable. X
Models are canaried before serving. X🔧
Serving models can be rolled back. X
Monitoring Tests
Dependency changes result in notification. 🙋

Data invariants hold for inputs. X
Training and serving are not skewed. 🙋🛡

Models are not too stale. X🔧
Models are numerically stable. X
Computing performance has not regressed. ✎
Prediction quality has not regressed. X

X met by design (🔧 indicates configurable behavior)
✎ users must handle manually based on analysis automatically performed and displayed on our frontend (§4)
🙋 user responsibility (🛡 indicates using SmartChoices simplifies passing this test)

Table 1: Measuring SmartChoices against the ML Test Score Rubric of Breck et al. [8]. SmartChoices
deployments meet most tests by design. Tests that remain user responsibility all involve feature
generation. SmartChoices reduces the likelihood of training/serving skew (🛡) by (i) discouraging
use of different code paths in training and inference, and (ii) simplifying detection of changes.

cally retrieve the latest validated policy and transmit batches of training data to the central service by
reading from the queue. (Note: before a model is ready, calls to Choose return the default arm.)
Users rely on the same infrastructure. SmartChoices’ use of protobufs (§3.1) enables data for all
SmartChoices users to be serialized in the same logging format. In addition, compatible ML models
are constructed directly from protobuf definitions. This enables a single well-tested code path to be
used for preprocessing (e.g., normalizing model input), model training, and analysis.
Analysis is automated. For every new SmartChoices policy, the service automatically performs
a suite of evaluations using a hold-out dataset. These include feature importance & prediction
distributions for the critic model, selected arm frequencies, Pareto frontier estimates (for multi-metric
SmartChoices), accuracy and precision plots (for boolean metrics), and comparison to other policies
(e.g., CPE). Users can configure validation criteria to automatically determine whether the new policy
is fit to serve production traffic. Table 1 shows how these analyses improve production readiness.
Behavior and performance information are displayed on an automatically generated web front-
end. The frontend shows: (i) training progress; (ii) logged distributions for each context, arm, and
feedback field over time and for each policy; (iii) analysis results for each policy.
Policy rollouts are managed via human-readable “tags”. Each tag references a single policy; the
referenced policy can change over time. Two tags are available by default. The “latest” tag always
references the most recently trained policy, while the “live” tag references the most recent trained
policy that was validated. SmartChoices users typically use the “live” policy, but custom tags enable
them to use SmartChoices within the framework of existing integration testing, canary, release and
rollback processes. For example, users can specify environment-dependent policy tags, allowing
policy updates to be first deployed in a staging environment before being used for all traffic.

5 Evaluation & Case Studies

Production Readiness. Our service implementation mitigates many of the novel types of technical
debt and production risks ML can create (see §1) by design. We quantify this in Table 1.
Case Studies. A wide range of problems fit into the contextual bandits framework (§2). The low
latency of SmartChoices deployments enables ML to be applied towards low-level problems, and
its guaranteed safety and reliability gives engineers the confidence to deploy ML in mission-critical
settings. As evidence, we share a representative sample of four systems deployments in Appendix A.
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Appendix A Case Studies

Learned Cache Eviction. SmartChoices was used to reduce the fraction of user-requested bytes
missed in a large-scale video Content Delivery Network (CDN) cache by 9.1% at peak traffic by
improving its eviction policy [26]. The low-latency inference and continuous training provided by
SmartChoices was crucial in enabling this deployment.
Optimizing Compilation. SmartChoices achieved performance gains in the XLA compiler by op-
timizing tile size selection [22] for high-level operations (HLO). Instead of evaluating all possible
tile sizes for each HLO, we evaluate only the most promising 1% of candidates using SmartChoices.
This lets us achieve 90− 95% of the speedup achieved by a full exhaustive search and is about 20
times faster overall. More detail on context features and a discussion of the differences between this
optimization approach and existing search-based techniques (e.g., TVM) are available at [21].
Optimizing Thread Counts. SmartChoices reduced tail latency for end-user queries on a flight
booking search service by optimizing thread count for parallelizable stages (e.g., processing all
relevant sequences of flights). SmartChoices dynamically selected the thread count per query based
on context features (e.g., number of flight sub-sequences and the source and destination regions).
For each query, latency and CPU usage is provided as feedback, with SmartChoices minimizing a
weighted linear combination (§C) of the two. At launch, average latency reduced by 25% and 99th

percentile latency reduced by 16%, without a significant increase in CPU cost.
Optimizing Work Partitioning. SmartChoices improved data freshness for a monitoring service via
dynamic work rebalancing between tasks [14]. Each task retrieves & summarizes telemetry for a list
of workloads. Overly large tasks are terminated when they reach an execution deadline td, resulting in
stale data for any unprocessed workloads. Conversely, overly small tasks incur unnecessary overhead.
For each task, SmartChoices chooses whether to shard the list of workloads (with 0 reward) or
execute (with reward td − te, where te is actual execution time); the reward formulation encourages
sharding only large tasks. Context features include workload count, day of week, and metadata on
retrieved data sources. Using SmartChoices reduced the fraction of tasks hitting td by 53% and
significantly reduced alerts on stale data, translating directly into time savings for the service’s owners.

Appendix B Related Work

Contextual bandits have been applied across industry to a wide range of problems, including person-
alizing products [4], improving recommendations [10, 17, 24], and responding well in ambiguous
contexts [19, 23]. SmartChoices has been successfully applied to similar problems; however, its low
latency also enables applications to the systems problems discussed in §A.
Two classes of problems similar to contextual bandits are bayesian optimization (BO) and reinforcement
learning (RL). BO focuses on the low-data regime where gathering feedback is expensive; in contrast,
we focus on settings with more abundant data. In the RL setting, the arm selected at time t affects the
next context xt+1. Since a large class of practical optimizations can be framed as a contextual bandit
problem, we have not yet needed to support RL, though it would be straightforward to add.
Carbune et al. [9] presented an earlier prototype of SmartChoices. The version we present here has
some significant differences based on our production experience, most notably a focus on contextual
bandits over general RL, assorted safety features, and a service architecture. Associated semantics for
SmartChoices were analyzed in Abadi & Plotkin [1].
Several other projects have explored how to effectively deploy ML for decision making within
production systems. We summarize key differences in Table 2, with additional details below.
Microsoft’s Decision Service [2] is most similar to SmartChoices, sharing many design principles &
goals. SmartChoices’ lower decision latency makes it better suited for low-level system optimizations.
ReAgent [11] (prev. Horizon) is a platform for deploying RL in production, with similar goals to
SmartChoices. SmartChoices provides greater ease of use (e.g., providing more automation for
data preprocessing, training, and model updates). Looper [18] is a platform for optimizing over
“product goals”: metrics that summarize the aggregate effect of many decisions. Looper uses both
per-decision metrics and product goals to optimize over a class of parameterized “strategy blueprints”
using a sequence of A/B tests selected via BO. Unlike Looper, SmartChoices does not have a direct
notion of product goals and is not tightly integrated with an A/B experiment framework. However,
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DS R L PSS SC
Multimetric Optimization X X (§C)
Built-in Fallback Logic X (§3.2)
Local Inference X X X (§4)
Training on Data from Multiple Machines X X X X (§4)
Policy Rollouts can be Gated on CPE X X X X (§4)
Median Inference Latency (reported) / µs 200† N/A 2000‡ 0.004 10 (§4)

Table 2: A comparison of the key features of SmartChoices & other projects deploying ML for
decision making within production systems. Lower decision latency makes projects better suited for
low-level system optimizations. †: average latency; ‡: excludes feature extraction latency of 45 ms. R:
ReAgent, L: Looper, DS: Decision Service, PSS: Prediction System Service, SC: SmartChoices.

optimizing per-decision metrics that are a proxy for the product goal (combined with a grid search
over scalarization parameters in the multimetric case) has typically sufficed. Last, the Prediction
System Service [29] focuses on low-latency predictions for systems applications. It is similar to our
in-process implementation (§4), with logging and training occurring on a single machine. However,
in contrast to SmartChoices, it focuses on predictions, without an explicit notion of data gathering or
exploration. Using service SmartChoices also enables training on data from an entire cluster.
Finally, Natarajan et al. [20] present programming by rewards (PBR), which synthesizes decision
functions as if-then-else programs that are checked in. This has advantages in terms of interpretability,
speed, and avoiding additional dependencies; however, there are no affordances for adapting policies
to changing environments over time. In addition, the class of policies supported are restricted.

Appendix C Multimetric optimization

Metric Constraints. SmartChoices can optimize with respect to one metric while constraining our
decisions with respect to the others, e.g., maximize reward r : X ×A → R while keeping the average
cost c : X ×A → Rk−1 below a target C ∈ Rk−1, over a random stream of (context, arm set) pairs:

π∗ := arg maxπ
{
E(X,A) [r(X,π(X,A))] : E(X,A) [c(X,π(X,A))] ≤ C

}
Without contexts (i.e., X = ∅), this is Bayesian optimization with unknown constraints [12]. With
contexts, it is closely related to contextual bandits with knapsack constraints, which has known results
for stochastic [3] and adversarial settings [27]. In contrast to prior work, we are interested in average
budgets (e.g., serving an infinite stream of requests at bounded average latency) rather than cumulative
budgets that run out (e.g., dynamically pricing a limited supply of goods for maximum revenue).
Note costs, like rewards, must be learned; hence constraint violations during learning cannot be
fully avoided. While there are ways to mitigate this, SmartChoices is not designed or intended for
circumstances where individual decisions are high-stakes (e.g., selecting medical treatments).
Scalarization. For applications with soft constraints, SmartChoices supports exploring the Pareto
frontier of achievable metric combinations by scalarizing predicted metrics, i.e., combining them
in a single scalar reward via a known scalarization function. SmartChoices users can select from
parameterized scalarizations at inference time. Rapidly changing between diverse scalarizations
induces efficient exploration of the Pareto frontier. Linear scalarizations (i.e., linear combinations
of metrics) are simple and work well when the achievable metrics form a convex set. For generally
shaped Pareto frontiers, we use the hypervolume scalarizations [28], which can discover arbitrarily
shaped frontiers. After investigating the metric frontier, SmartChoices users may fix a preferred
tradeoff (i.e., scalarization parameters) and easily deploy the corresponding policy.
Decoupling scalarization from metric predictions allows us to largely reduce multiobjective optimiza-
tion to the single objective case, which simplifies both the infrastructure and the algorithmics.

Appendix D In-Process Implementation

Users typically find a service deployment sufficient, and choose in-process deployments in extremely
low-level settings with low latency requirements (<1 µs), where network usage is limited, or where
fast policy updates (∼200 ms) are critical.
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