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Abstract

As large language models (LLMs) like ChatGPT exhibited unprecedented machine
intelligence. However, existing LLM-based hardware generating frameworks gen-
erate verilog register transfer language(RTL) without considering its performance,
power, area(PPA). To overcome this challenge, we design a post LLM search
approach to merge design space exploration(DSE) process into current LLM
hardware generation workflow, which enables the PPA optimization. At first,
our framework begins by generating prompts for the LLM, which then produces
initial Verilog programs. Second, an output manager corrects and optimizes these
programs before collecting them into the final design space, which is constructed
as a HDL search tree. Eventually, our work will do search through this space to
select the optimal design under the target metrics. The evaluation shows that our
approach improves generating Verilog quality, and broader design optimization
space compared to prior work and native LLMs alone.

1 Intorduction

Recent advancements in large language models (LLMs) demonstrate their potential for automatic
Hardware Description Language (HDL) code generation from high-level prompts[1, 2]. Envisioning a
future where natural language expresses hardware logic design requirements holds the promise of rev-
olutionizing chip design by maximizing creativity and complexity. While higher-level programming
interfaces are emerging, they signify progress towards this vision. Fundamental generative models
take natural language input and produce the target Verilog program as output. For example, ChatGPT,
a state-of- the-art model, facilitates natural language programming. However, LLMs face limitations
in adapting to chip design tasks, generating raw programs without guarantees of hardware-level cor-
rectness or enabling exploration of PPA in the design space. To address these challenges, we propose
a natural language chip logic design method based on a post-LLM search tree, without modifying
the large model. The GPT output manager generates potential programs, and an enumeration search
selects the best design with the desired PPA. Experimental results show improved effectiveness. Our
framework, ChipGPT, integrates the design exploration process into LLM-based hardware generation
(Fig.1). This represents a simple yet significant step towards formally integrating design space
exploration into LLM-based hardware design flows. Contributions include:

• Proposing a hardware description language search tree to generate Verilog programs without
modifying LLM weights, seamlessly integrating with the latest LLM APIs.
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• Overcoming challenges of power/area/performance agnostic LLMs in chip design through a
post-LLM search method with an efficient output manager.

• ChipGPT outperforms previous agile chip logic design methods and native ChatGPT, show-
ing improvement in programmability and scalability, with potential for larger-scale chip
design extension.

2 Background and Motivation

Emerging hardware-driven large language models enable greater programmability to support HDL
designers. These powerful models allow for more flexibility to specify desired behaviors directly
in natural language. Instead of hand-crafting traditional HDL code, designers can leverage large
language models to translate high-level descriptions into optimized hardware implementations. These
large language models a natural language-level expressivity, as demonstrated in Fig. 2.

2.1 Generating hardware with Large Language Model

Researchers have explored the use of LLMs, where the model input is a natural language description of
the hardware module, and the output is corresponding Verilog code. Benchmarks in [1, 3] demonstrate
that these models’ capacity to alleviate the burden on hardware designers. While the existing LLMs
do not fully cover the entire space of Verilog generation, progress has been made on fine-tuning
for completer code [4], generic RTL generation[5] and enhancements to the existing open source
LLMs[6]. In hardware security, LLMs can help fix bugs [7] and generate assertions[8, 9]. Beyond
single-sentence models like GPT-3, conversational LLMs have also proven capable for hardware
generation [5]. LLMs are being applied to automate design for novel technologies like in-memory
computing [10] and quantum [11]. However, these approaches do not directly optimize the quality of
the generated HDL code itself. Although [12] applies template-based generation for AI chips, the
general LLM generated hardware still needs to be improved. This work aims to bridge this gap by
guiding LLM generation to achieve optimal implementations whithin physical design constraints.

2.2 Motivation

Challenge 1: Limited PPA Awareness in Hardware LLMs. Hardware LLMs lack awareness of
PPA metrics, hindering optimal program generation. In Fig. 3, ideal program PPA results are in the
red area, while LLM-generated programs remain PPA-agnostic due to their training process. Models
like InstructGPT and ChatGPT, trained with general reinforcement learning, produce intuitively good
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Table 1: ChatGPT Program Ranking Model
on button count description(RP: Raw Programe)

Program Power
(mW )

Area
(µm2)

Rank
Model

RP 0 4.2900e-02 139.199999 5
RP 1 1.3593e-02 265.200006 4
RP 2 1.0704e-02 193.600004 3
RP 3 9.7253e-03 187.200004 2
RP 4 1.0283e-02 196.000003 1

Table 2: Search Result of Button Count Problem

Select by
Power

Select by
Area Direct Select

P3 P0 P0
P4 P3 P1
P2 P2 P2
P1 P4 P3
P0 P1 P4

programs but are not optimized for PPA. To address this, an output manager is introduced in Sec. 3.2
to enhance PPA optimization, aiming for the yellow area in Fig. 3.

Challenge 2: Complexities in Design Space Exploration. Navigating the design space for
optimized implementations is challenging. Traditional exploration relies on clear parameters and well-
defined design points, but the language model generation process lacks straightforward adjustment
knobs. The proposed approach transforms the LLM’s creative process into a state-transformed HDL
search tree for enumerated searches, addressing the complexities in design space exploration.

3 Exploring Design Space by Post-LLM Search

3.1 Formallized Hardware Description Language Search Tree

To optimize the generated hardware for key metrics such as PPA, we introduce a search space that
extends beyond the large language model, as depicted in Fig. 4. Each node represents a potential
HDL program generated by the language model. In a conversational model, the complete sequence
of prompts and model outputs cyclically returns to the model to elicit the subsequent response. This
dynamic forms a state transition graph, where the generated programs act as states, and prompts drive
the transitions between them. Conceptualizing prompt crafting and HDL code generation as a search
tree facilitates structured exploration of the extensive program space the language model can produce.
Traversing the tree allows for the identification of Pareto optimal points that balance trade-offs in
PPA, guiding code generation towards high-quality hardware implementations.

3.2 Cost Manager

As discussed in Section 2.2, PPA are crucial optimization targets in chip logic design. However,
large language models lack inherent support to directly optimize for these physical constraints. The
model’s internal reward system provides only a general quality ranking of generated programs. To
address this limitation, our framework integrates a cost manager to refine PPA following the initial
language model search. In this stage, EDA tools are employed to evaluate the PPA of each HDL
program enumerated in the search tree. The results are appended to the program list (Equ. 1). A
guided search is then conducted to select the optimal target version that aligns with design goals. For
example, as shown in Tab. 1, the language model generates multiple code variants with different
PPA trade-offs. The cost manager facilitates exploring these options to identify the one that best
aligns with specific PPA priorities. By combining the creative potential of large language models with
precisely targeted PPA optimization, the proposed approach aims to deliver high-quality hardware
implementations.

3.3 Enumerative Search

A key question is whether an additional search over model outputs is necessary. Table 3.3 reveals
the language model’s internal ranking does not consistently match the order of optimal PPA. For the
button counter module (see Table 3.3), the selected program heavily depends on the target optimization
goal, with different solutions highlighted in yellow. This mismatch indicates the necessity to enhance
the output manager with a guided search algorithm.By exploring the limited design space of plausible
programs (typically less than 10), the approach extracts improved solutions. With a modest output
size, an enumeration search suffices to select the optimal result based on the cost manager’s PPA
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evaluations. This search offers targeted refinement, ensuring the final hardware aligns with specified
PPA constraints rather than solely following the model’s default preferences.

program_list = {{p1, PPA1}, . . . , {pn, PPAn}} (1)

where p denotes a program. Enumerate search selects the best program in the program list of
performance, area and power, which relies on the programmers’ target.

4 Evaluation

We utilize the ChatGPT model (GPT-3.5) from OpenAI’s website. Design Compiler and 65nm
technology are employed for power and area evaluations, while simulation with handwritten testbeds
provides performance cycle numbers. Line of code measurements use the cloc tool. Due to page
constraints, high-level evaluation results are presented here, with detailed analyses in Appendix
B for interested readers. To validate our workflow with ChatGPT, we compare it to the baseline
ChatGPT model, which generates naïve code using only the module description as the prompt.
Comparisons with traditional agile workflows involve Chisel[13] and high-level synthesis (Xilinx
Vivado HLS). For fairness: 1) unroll directives are added to pipeline the HLS design, and Synopsys
Design Compiler is used for power and area measurements, mirroring our approach. 2) HLS and
Chisel implementations share the same specification, developed by the same 2-year graduate student,
and are evaluated with an identical testbed suite. In Fig. 5, simple workloads show no significant
PPA optimization relative to the baseline, given the limited raw program candidates. However, for
complex workloads, our framework’s targeted optimization at the search stage reduces average area
by 47% (0.53x) and overall average area by 35% (0.65x) compared to the original ChatGPT model.
This joint optimization of PPA objectives and program coherence for complex designs with ample
raw candidates achieves substantial optimization.
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Figure 5: Area Comparison under Area Optimization Setting. y-axis is normalized with log10().

5 Conclusions and Future Work

This paper explores natural language hardware design and proposes a post-LLM search method
to improve large language model hardware generating quality. This is a simple yet significant
step towards formally integrating design space exploration into LLM-based hardware design flow.
By harnessing language, ChipGPT significantly accelerates chip development. Our method is an
interface for GPT to address natural language hardware design and PPA optimization, which has an
area reduction of 47% compared with the original ChatGPT in area target optimization mode.
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A Workflow Detail

A.1 Prompt Manager PM

Due to the context-aware feature of GPT, the prompt manager directly determines the quality of the
generated code.

The goal of the prompt manager is to serialize natural language software specifications into a
structured prompt format. By formatting the specifications in this way, prompts can be used as input
for GPT. With well-designed prompts, GPT can generate code that successfully captures the details
and purpose of the original specifications.

arch =< setup, submoduleN , compose > (2)

submodule =< {funcdesc, iface}, addition > (3)

To improve prompt quality, we design a template-based prompt manager where prompts are inter-
connected within templates. We first provide a formal representation for the prompt manager. Let
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act as a professional verilog programmer

As an AI language model, I can assist you with 
verilog programming questions and …

give me an example of Vector and matrix 
multiplication in verilog

module vec_mat_mult ( input [3:0] vector [0:1], 
input [3:0] matrix [0:1][0:1], output [7:0] result 

[0:1] );…

give me another example of Vector and matrix 
multiplication in verilog

module vec_mat_mult ( input [2:0] vector [0:2], 
input [2:0] matrix [0:2][0:2], output [2:0] result 

[0:2] );…

act as a professional verilog programmer

As an AI language model, I can assist you with 
verilog programming questions and …

give me an example of module vec_mat_mult
( input [3:0] vector [0:3], input [3:0] matrix 

[0:3][0:3], output [7:0] result [0:3] );

module vec_mat_mult ( input [3:0] vector [0:3], 
input [3:0] matrix [0:3][0:3], output [7:0] result 

[0:3] );…

give me an example of module vec_mat_mult ( input 
[3:0] vector [0:3], input [3:0] matrix [0:3][0:3], input 

clk, input rst, output [7:0] result [0:3] );

module vec_mat_mult ( input [3:0] vector [0:3], 
input [3:0] matrix [0:3][0:3], input clk, input rst, 

output [7:0] result [0:3] );…
Original ChatGPT

ChatGPT with interface (More Stable Version)

Figure 6: An observation of interface principle in prompt manager

S = {(Q1, A1), (Q2, A2), . . . , (QN , AN )} denote a dialogue sequence with N question-answer
pairs. GPT takes queries as input and generates the final answer. We define arch in Equ. 2 as a query
sequence, or prompt sequence. The query sequence comprises three partitions. Elements enclosed
in <> represent a sequence of prompts, while elements in {} represent groups combined into a
single prompt. The first setup prompt < acts as a proficient Verilog programmer> establishes an
execution environment enabling the following queries to operate in a Verilog context. Next, for the
basic modules in the specification, GPT generates N modules following the interface model principle
in A.1.1 and post-addition principle in A.1.2. Finally, there is a top module following the compose
rule that connects these submodules from the second step. This composition adheres to the module
composition principle in A.1.3.

A.1.1 Principle for Interface Model

An intuitive approach to generate Verilog program is to specify the module function as a prompt only.
However, omitting the module interface declaration from the prompt makes the GPT ignore chip
port specifications, where the generated module cannot be integrated seamlessly into the testbench
environment. Moreover, including the interface declaration within the prompt defines attributes like
bit widths and array sizes that are essential for generating high-quality internal module code. This
enhanced context enables GPT to produce consistent versions with the same interface, as depicted in
Fig. 9.

To introduce the interface-based model principle into our template-based prompt manager PM , we
examine current port definitions in specifications and hardware description languages (HDLs), such
as Verilog. Port definitions comprise five elements: 1. Direction (D): Whether the port is input,
output, or inout 2. Data width (W ): The bit width of the port (e.g. 32 bits) 3. Variable name (V N ):
The name given to the port (e.g. instruction) 4. Array size (S): The number of elements in an array
port 5. Port description (PD): A text description of the port’s purpose.

iface = {D,W, V N, S, PD}

Among the port definition elements, the variable name (V N ) is particularly important. Because
GPT is a variable name-aware model, the names given to ports help the model infer the appropriate
program structure.
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No Post-Addition Principle Post-Addition Principle
Prompt: Give me an example of on chip 
network with ready and valid signal

Prompt 1: Give me an example of on chip 
network
Prompt 2: add ready and valid signal

module network( input clk, input [7:0] 
data_in, 
input valid_in, output ready_in, 
output [7:0] data_out, output valid_out, 
input ready_out );

// valid is not a output signal

…(Ignore the implementation)

module network(input clk, input rst, 
input [4:0] src_addr, input [4:0] dst_addr,
input [7:0] data, input ready, 
output [7:0] data_out, output valid);

… (Ignore the implementation)

Correct

Figure 7: An example of post-addition Principle in LLM.

A.1.2 Post Addition Principle

In a production environment, it is common to add multiple cross-module handshake signals to existing
modules(e.g. ready-valid mode). However, combining handshake signals directly into the interface
prompt reduces the accuracy of the generated original program. GPT struggles to well understand
programs created this way. The reason is that LLM’s reward model always selects the highest-ranked
raw program version based on both the handshake and function. It considers the weights of the
handshake and function together. However, programmers prioritize the correctness of the function.

Based on the above observations, we place additional information such as cross-module handshake
signal declarations after generating the first raw program in Equ. 3. Because this supplemental
information is added after the primary module details, we refer to it as the "post-addition principle".
For example, in Fig. 10, we show the effectiveness of the post-addition principle. In the left column,
the handshake signals are added to the same prompt. As a result, the language model generates
incorrect implementation where valid cannot be an output port. The right column implements the
principle of post-addition, where the implementation is correct.

A.1.3 Module Composition Principle

An architecture-level chip specification includes not only component modules but also a top module
to connect them. To gain a high-level overview, chip designers typically take a top-down design
approach. However, if we prompt GPT to generate the top-level module directly, it lacks information
about the submodules it should reference.

Based on this observation, we propose the "bottom-up composition principle" to improve the quality
of the generated raw program. As shown in Equation 4, this principle specifies that submodule
interfaces must be declared before the top module. For example, < the submodule has interface
. . . > followed by < the top module consists of . . . >. By following this sequence, when GPT
generates the top module, the ports of the submodules are clearly defined. As a result, GPT can
connect them appropriately. Because this principle is recursive, it can be applied to a wide range of
architectural design scenarios. For example, in Fig. 11, we want to design a complex module. On the
left, the add module and minus module are defined in the same prompt, where the LLM cannot output
the correct implementation of the submodules. However, when applying the composition principle,
the LLM can generate correct implementations of the submodules.

compose : submoduleN −→ topmodule (4)
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No Composition Principle Composition Principle

Prompt: Define top module and the two number 
add module output through FIFO to a two number 
minus module, where the input of minus module 
are two FIFO connect to two add modules.

Prompt 1: Define minus module as a module to substract two numbers.
Prompt 2: Define add module as a module to add two numbers.
Prompt 3: Define top module and the three numbers add module output 
through FIFO to a two number minus_module, where the input of 
minus_module are two FIFO connect to two add_modules.

module add_module(
input clk,
input reset, 
input [31:0] a, 
input [31:0] b,
output [31:0] sum 

); 
// Note: This is unimplement
endmodule

module minus_module(
input clk,
input reset, 
input [31:0] a, 
input [31:0] b,
output [31:0] diff 

);
// Note: This is unimplement
endmodule

// The top module

module minus_module(
input clk,
input reset, 
input [31:0] a, 
input [31:0] b,
output [31:0] diff 

);

reg [31:0] sub;

always @(posedge clk) begin
if (reset) begin

sub <= 0;
end else begin

sub <= a - b;
end

end

assign diff = sub;

// The top module is the same as left

module add_module(
input clk,
input reset, 
input [31:0] a, 
input [31:0] b,
output [31:0] sum 

);

reg [31:0] add;

always @(posedge clk) begin
if (reset) begin

add <= 0;
end else begin

add <= a + b;
end 

end

assign sum = add;

endmodule

Better

Figure 8: An example of composition principle in LLM.

act as a professional verilog programmer

As an AI language model, I can assist you with 
verilog programming questions and …

give me an example of Vector and matrix 
multiplication in verilog

module vec_mat_mult ( input [3:0] vector [0:1], 
input [3:0] matrix [0:1][0:1], output [7:0] result 

[0:1] );…

give me another example of Vector and matrix 
multiplication in verilog

module vec_mat_mult ( input [2:0] vector [0:2], 
input [2:0] matrix [0:2][0:2], output [2:0] result 

[0:2] );…

act as a professional verilog programmer

As an AI language model, I can assist you with 
verilog programming questions and …

give me an example of module vec_mat_mult
( input [3:0] vector [0:3], input [3:0] matrix 

[0:3][0:3], output [7:0] result [0:3] );

module vec_mat_mult ( input [3:0] vector [0:3], 
input [3:0] matrix [0:3][0:3], output [7:0] result 

[0:3] );…

give me an example of module vec_mat_mult ( input 
[3:0] vector [0:3], input [3:0] matrix [0:3][0:3], input 

clk, input rst, output [7:0] result [0:3] );

module vec_mat_mult ( input [3:0] vector [0:3], 
input [3:0] matrix [0:3][0:3], input clk, input rst, 

output [7:0] result [0:3] );…
Original ChatGPT

ChatGPT with interface (More Stable Version)

Figure 9: An observation of interface principle in prompt manager
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No Post-Addition Principle Post-Addition Principle
Prompt: Give me an example of on chip 
network with ready and valid signal

Prompt 1: Give me an example of on chip 
network
Prompt 2: add ready and valid signal

module network( input clk, input [7:0] 
data_in, 
input valid_in, output ready_in, 
output [7:0] data_out, output valid_out, 
input ready_out );

// valid is not a output signal

…(Ignore the implementation)

module network(input clk, input rst, 
input [4:0] src_addr, input [4:0] dst_addr,
input [7:0] data, input ready, 
output [7:0] data_out, output valid);

… (Ignore the implementation)

Correct

Figure 10: An example of post-addition Principle in LLM.

No Composition Principle Composition Principle

Prompt: Define top module and the two number 
add module output through FIFO to a two number 
minus module, where the input of minus module 
are two FIFO connect to two add modules.

Prompt 1: Define minus module as a module to substract two numbers.
Prompt 2: Define add module as a module to add two numbers.
Prompt 3: Define top module and the three numbers add module output 
through FIFO to a two number minus_module, where the input of 
minus_module are two FIFO connect to two add_modules.

module add_module(
input clk,
input reset, 
input [31:0] a, 
input [31:0] b,
output [31:0] sum 

); 
// Note: This is unimplement
endmodule

module minus_module(
input clk,
input reset, 
input [31:0] a, 
input [31:0] b,
output [31:0] diff 

);
// Note: This is unimplement
endmodule

// The top module

module minus_module(
input clk,
input reset, 
input [31:0] a, 
input [31:0] b,
output [31:0] diff 

);

reg [31:0] sub;

always @(posedge clk) begin
if (reset) begin

sub <= 0;
end else begin

sub <= a - b;
end

end

assign diff = sub;

// The top module is the same as left

module add_module(
input clk,
input reset, 
input [31:0] a, 
input [31:0] b,
output [31:0] sum 

);

reg [31:0] add;

always @(posedge clk) begin
if (reset) begin

add <= 0;
end else begin

add <= a + b;
end 

end

assign sum = add;

endmodule

Better

Figure 11: An example of composition principle in LLM.
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module matrix_multiplier ( 
input signed [15:0] A [0:3][0:3], 
input signed [15:0] B [0:3][0:3], 
output reg signed [31:0] C [0:3][0:3]); 
integer i, j, k; 
always @ (*) begin
for (i = 0; i < 4; i = i + 1) begin

for (j = 0; j < 4; j = j + 1) begin
C[i][j] = 0; 
for (k = 0; k < 4; k = k + 1) begin

C[i][j] = C[i][j] + A[i][k] * B[k][j]; 
end

end
end end
endmodule

Power:      105.2380           Area 179679.995125

module matrix_multiplier ( 
input signed [15:0] A [0:3][0:3],
input signed [15:0] B [0:3][0:3], 
input clk, 
output reg signed [31:0] C [0:3][0:3]); 
reg signed [31:0] M [0:3][0:3]; 
always@(posedge clk) begin
for (i = 0; i < 4; i = i + 1) begin

for (j = 0; j < 4; j = j + 1) begin
M[i][j] <= A[i][0] * B[0][j] + A[i][1] * B[1][j] + A[i][2] * B[2][j] + A[i][3] 

* B[3][j]; 
……
end end
endmodule

Power:    122.3770             Area 198511.994667

module matrix_multiplier ( 
input [15:0] A [0:3][0:3], 
input [15:0] B [0:3][0:3], 
output [31:0] C [0:3][0:3]); 
wire [31:0] P [0:15]; 
assign P[0] = {A[0][0], A[0][1]} * {B[0][0], B[1][0]};
…… 
assign C[0][0] = P[0][15:8] + P[8][15:8] + P[4][15:8] + P[12][15:8]; 
endmodule

Power: 13.1363           Area 21743.999433

Figure 12: Matrix Multiply Verilog Program list, where power is measured in milliwatts (mW ), area
is measured in micrometers squared (µm2)

A.2 A Motivation Case study on PPA-aware output manager

As discussed in the method part, PPA are crucial metrics in chip logic design. However, GPT lacks
comparable PPA configurations. In GPT model, the reward model only provides general ranking.
Therefore, ChipGPT proposes a cost manager to optimize PPA following the GPT model.

This stage uses design tools to test the PPA for each program, appending the results to the list of
program until the enumeration search is complete to select the target version. For example, in Fig.
12, GPT generates different versions, they have different PPAs. Therefore, the cost manager tries to
use EDA tools to output their PPAs and search for the optimal one.
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Figure 13: Power Comparison under Area Optimization Setting. To facilitate presentation, y-axis is
normalized with log10().

B Evaluation Detail

B.1 Evaluation Results Detail

The benchmarks include several typical hardware structures and algorithm accelerator implementa-
tions, as shown in Table 3. GPT exhibits different performance on different workloads. Therefore,
we classify them into three parts based on complexity: 1) Composition (CM): The most complex
architecture, requiring module composition. 2) Complex single module (CSM): More complex
individual modules. 3) Simple single module (SSM): The simplest modules, with identical program
lists and PPA.

Table 3: workload detail

Workload Type Brief Illustration
matmul CSM Multiplying two matrices 4x4 with 16 bits
mux SSM A 4x1 Multiplexer
3-8decoder SSM Select one of the eight lines in a 3-to-8 decoder
button CSM Counts the number of button presses
vecmat CSM Vector matrix multiply with 4-bits element
addmulti tree CM Add multiply tree with 8-bit operand
accumulator CSM Sum an array of 8-bits elements
simple CPU CM A simple CPU implementation

Fig. 14 compares the number of code lines generated for the same designs by our approach, high-
level synthesis (HLS) tools, and the Chisel hardware design framework. On average, ChipGPT
decreased the code volume by 9.25 times compared to HLS and 5.32 times compared to Chisel. This
substantial reduction clearly demonstrates the enhanced programmability enabled by natural language
techniques.

Fig. 15 shows less than 10 lines of code needing correction for all workloads. Simple modules
like the 4x1 multiplexer required no feedback, demonstrating autonomous generation. For complex
modules and integrated accelerators up to 100 lines of code, only minor corrections were needed.

Figure 13 presents a comparison of power consumption with area optimization enabled. The y-axis
values are normalized with a log10() transformation to improve readability. This experiment utilizes
the same settings as Figure 5 for consistent comparison.

B.2 Case Study

To demonstrate our method using open source EDA tools, we present an experimental case study of a
matrix multiplier design targeting the Skywater130 130nm process design kit (PDK). The experiments
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Figure 16: A HDL synthesis layout(Matrix Multi-
plier1).

Figure 17: A HDL synthesis layout(Matrix Multi-
plier2).

utilize SiliconCompiler, an open source EDA flow comprising OpenLane and KLayout. Fig. 16 and
Fig. 17 show layouts for two matrix multiplier versions. Tab. 4 and Tab. 5 detail synthesis results
comparing the two versions. These multiplier designs showcase how different hardware versions
generated by GPT exhibit tradeoffs in area and other key parameters.
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Table 4: A HDL synthesis result(Matrix Multiplier1) in the GPT generating program list.

- units import0 syn0 floorplan0 physyn0 place0 cts0 route0 dfm0 export0 export1
errors 0 0 0 0 0 0 0 0 0 0
warnings 1 236 21 4 5 4 4 4 1 4
drvs — — 0 0 0 0 0 0 — 0
unconstrained — — 1 1 1 1 1 1 — 1
cellarea um^2 — 11.261 100.096 100.096 100.096 100.096 100.096 100.096 — 100.096
totalarea um^2 — — 6277.27 6277.27 6277.27 6277.27 6277.27 6277.27 — 6277.27
utilization % — — 1.595 1.595 1.595 1.595 1.595 1.595 — 1.595
peakpower mw — — 0 0 0 0 0 0 — 0
leakagepower mw — — 0 0 0 0 0 0 — 0
holdpaths — — 0 0 0 0 0 0 — 0
setuppaths — — 0 0 0 0 0 0 — 0
macros — — 0 0 0 0 0 0 — 0
cells — 2 78 78 78 78 78 78 — 78
registers — — 0 0 0 0 0 0 — 0
buffers — — 0 0 0 0 0 0 — 0
pins — — 3 3 3 3 3 3 — 3
nets — — 5 5 5 5 5 5 — 5
vias — — — — — — 3 — — —
wirelength um — — — — — — 11 — — —
memory B 25.109M 39.027M 132.910M 128.781M 254.195M 131.031M 561.984M 140.871M 520.039M 139.230M
exetime 0.58 7.75 2.509 2.52 2.14 2.66 2.56 1.669 6.69 1.72
tasktime 0.971 11.638 4.933 4.386 6.809 7.762 6.458 6.503 8.574 4.802

Table 5: A HDL synthesis result(Matrix Multiplier2) in the GPT generating program list.

- units import0 syn0 floorplan0 physyn0 place0 cts0 route0 dfm0 export0 export1
errors 0 0 0 0 0 0 0 0 0 0
warnings 1 237 21 4 5 4 4 4 1 4
drvs — — 0 0 0 0 0 0 — 0
unconstrained — — 1 1 1 1 1 1 — 1
cellarea um^2 — 11.261 41.29 41.29 41.29 41.29 41.29 41.29 — 41.29
totalarea um^2 — — 2432.33 2432.33 2432.33 2432.33 2432.33 2432.33 — 2432.33
utilization % — — 1.698 1.698 1.698 1.698 1.698 1.698 — 1.698
peakpower mw — — 0 0 0 0 0 0 — 0
leakagepower mw — — 0 0 0 0 0 0 — 0
holdpaths — — 0 0 0 0 0 0 — 0
setuppaths — — 0 0 0 0 0 0 — 0
macros — — 0 0 0 0 0 0 — 0
cells — 2 31 31 31 31 31 31 — 31
registers — — 0 0 0 0 0 0 — 0
buffers — — 0 0 0 0 0 0 — 0
pins — — 4 4 4 4 4 4 — 4
nets — — 6 6 6 6 6 6 — 6
vias — — — — — — 2 — — —
wirelength um — — — — — — 11 — — —
memory B 26.363M 39.355M 133.680M 129.047M 251.859M 131.805M 553.316M 138.086M 517.164M 138.348M
exetime 0.32 8.539 1.77 2 1.389 1.149 1.94 2.859 4.419 1.389
tasktime 0.713 12.111 2.872 4.528 4.111 3.031 5.962 8.839 5.959 4.492
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