
PLPilot: Benchmark an Automated Programming
Language Design Framework Enabled by Large

Language Models

Kaiyan Chang1,3 Kun Wang1,2,3 Mengdi Wang1,3 Shengwen Liang1 Yinhe Han1

Huawei Li1 Xiaowei Li1 Ying Wang1

1Institute of Computing Technology, Chinese Academy of Science
2Hangzhou Institute for Advanced Study

3University of Chinese Academy of Science
Beijing, China 100190

changkaiyan@live.com,wangkun22@mails.ucas.ac.cn
{wangmengdi17s,liangshengwen,yinhes,lihuawei,lxw,wangying2009}@ict.ac.cn

Abstract

The design of new programming languages traditionally requires expertise across
syntax and semantics. Recently, large language models(LLMs) have provided
unprecedented power in the code generation field, which has the potential to revo-
lutionize the current programming language design stack, including automating
writing passes and formally defining a programming language’s semantics and
syntax. However, there is yet no framework to leverage LLMs to support program-
ming language design. We propose an programming language design framework
enabled by large language models, which decouples every part in the programming
language design process into a form acceptable by LLMs. We then propose a
set of benchmarks on LLM-based programming language tasks. We evaluate this
framework on eight decoupled programming language design stages, which shows
great productivity improvements over manually designed languages.

1 Introduction

The design and implementation of new programming languages is a complex task requiring expertise
across the full stack from syntax to semantics. Recent advances in large language models (LLMs)
open up new possibilities for automating aspects of programming language creation. These advances
promise to democratize programming language creation and enable new languages tailored to
emerging domains.

Researchers in programming language design have long sought to automate aspects of programming
language design to enhance software quality and engineer productivity. Recent work has explored
using automated tools to improve program safety, performance, and portability while reducing manual
effort. For example, frameworks like Soot[1] optimize Java byte code to facilitate program analysis
and verification. Projects such as MLIR[2] provide unified intermediate representations to liberate de-
velopers from creating lexical and syntactic parsers. Other systems including Ansor[3], AutoTVM[4],
and Pluto[5] apply rule-based methods or small machine learning models to automatically optimize
code for better performance.

While these compiler automation efforts have shown promise, their reliance on narrow AI models
and rule-based methods limits generalizability and fails to profoundly advance human productivity.
Tasks such as program analysis still require manually crafting thousands of lines of compiler passes.
Meanwhile, pioneering works on code generation LLMs like CodeX[6] and StarCoder[7] have

Machine Learning for Systems Workshop at 37th NeurIPS Conference, 2023, New Orleans, LA, USA.

focused solely on synthesizing code snippets. The extreme importance of key compiler tasks like
optimization and analysis remains untapped in Code LLM research so far.

To solve these challenges, PLPilot provides a workflow for rapidly prototyping and optimizing on
programming language. Designers can provide high-level natural language prompts to specify desired
language features. PLPilot utilizes LLMs to automatically generate language syntax. The system
handles lower-level details of validation, analysis, and optimizing code generation, while allowing
designers to focus on high-level semantics. Our initial results pave the way for realizing this
vision of democratized, AI-assisted programming language implementation.

The contributions are listed below:

• We demonstrate the potential of LLMs for automating programming language design.
By benchmarking LLMs on decoupled tasks across eight key stages, we show these models’
aptitude for this domain. Our work points the way towards integrating LLMs into the
language development workflow.

• Formallize programming language design problem to LLM accepted form. We for-
malize end-to-end language design into distinct, LLM-amenable modules with clear in-
puts/outputs. This decomposition enables leveraging LLMs for automated generation.

• Open Source LLM-based Programming Language Framework Benchmarks. We
propose the first open-source, full-stack benchmark for LLM-based programming language
design. This enables evaluating LLM capabilities across eight compiler pipeline stages,
demonstrating the potential to automate key tasks.

• Open Source unified LLM driven Programming Language Framework. We propose
PLPilot, a novel unified LLM-driven programming language design framework, which has
the capacity to assist people to design programming language.

2 Background and Motivation

2.1 Programming Language related Large Language Model

The emergence of large language models (LLMs) has enabled the programming language community
to leverage AI to alleviate manual burdens. Much research has focused on applying LLMs to code
generation, with projects like Jigsaw[8], CHOOSE[9], and Synchromesh[10] demonstrating strong
results. Benchmarking popular LLMs like CodeX and GPT-J highlights their capacity for generating
code[11] and even mathematical code[12]. Using multi-turn training can further enhance code
LLM abilities[13]. To handle complex prompts, LLMs can break down problems before generating
solutions[14]. For reverse engineering, LLMs generate illustrative code examples[15]. While the
above focuses on code generation, LLMs also assist in complementary tasks like generating programs
to train compiler models[16] and optimizing LLVM[17] assembly code[18]. LLMs have been applied
to program repair as well[19]. However, these existing works focus more on isolated stages of the
programming language development process, overlooking the end-to-end automation needs of the
programming language design community.

2.2 Motivation

Challenge 1: Writing Compiler Pass requires great manual effort. Expert developers must
meticulously hand-engineer the intricate program transformations underpinning performance gains
and safety guarantees. For example, a production-grade optimizer may contain thousands of lines
of code just to perform one dataflow analysis and associated rewrites. Each new analysis requires
painstaking work to track values, build data structures, and codify rewrite rules.

Challenge 2: Designing programming language requires great formal skill, prevent engineers
to join to the community. The significant formal methods expertise required in programming
language design creates a high barrier to participation for many software engineers. Programming
languages are built upon intricate theoretical foundations spanning type theory, semantics, logic,
and category theory. Designers must construct rigorous frameworks governing syntax, type systems,
grammars, and semantics. This level of formality prevents many technically proficient developers
from contributing to the programming languages community.

2

Full stack Compiler Design

Computer Architecture Level

Programming Language Level

CPU GPU FPGA

Language Specification
Program
Examples

Compiler
Program

Optimized Program

Natural Language Visual Studio
1

2

3
4

5

6

7

8

Compiler System Level

AS

PL

OS

Figure 1: PLPilot Overview.

3 Decoupling the Programming Language Design Process

To make programing language’s design merge into current LLM, we decouple the whole programming
language design process into several part, which explicitly provide input and output to LLMs. As
shown in Fig. 1, the whole programming language design stack transforms several new programming
language examples to language specification then assist compiler designers to automatic optimize
program. For the more detailed implementation, We require readers use our open source website
https://github.com/changkaiyan/plpilot to access benchmark. The formal forms of this
framework are shown in Appendix Tab. 1.

3.1 Programming Language Level Design

Traditionally, when designing a new programming language, developers first prototype example
programs to explore the desired functionality. They then manually abstract syntax and semantics
from these examples before finally implementing the compiler according to the specifications.

❶ Transform Specification to Compiler Parser Traditionally, developers must manually transform
language specifications into lexer and parser inputs in a grammar definition format like .g4. This
requires familiarity with grammar file formats. PLPilot automates this process by taking language
specifications and directly generating the lexer and parser frontend code in Python. This bypasses the
need for manual grammar implementation.

❷ Transform Program Examples to Specification Before creating a new programming language,
designers prototype by writing example programs representing desired functionality. They then
manually analyze these to derive formal syntax and semantics. PLPilot automates this process. By
providing example programs as input, the system leverages an LLM to directly generate formal
syntax and semantics, bypassing manual analysis.

3.2 Compiler System Level Design

To assist compiler system level design, we separate this stage into two parts to assist IDE development
and compiler development.

3.2.1 Integrated Design Environment Assistant

In Integrated Design Environment such as vscode and intellij, the IDE often have program correction
and natural language programming function. ❻Program synthesis is a common technique in
IDE. LLM-era applications such as cursor, often provide an interface to accept natural language
description and output program. Therefore, PLPilot provide such function. Moreover, cuurent

3

https://github.com/changkaiyan/plpilot

IDEs use ❽program correction to correct wrong syntax. PLPilot can accept a program written by
programmer with flaws and remove these flaws.

3.2.2 Compiler Design Assistant

To enable agile compiler development, we leverage LLMs to automate program analysis and modifi-
cation without manually implemented passes.

❹Program Analysis Classical analysis requires implementing custom passes to analyze ASTs,
adding developer effort. We find LLMs can generalize for this task. By providing the analysis type
and program, PLPilot’s LLM outputs results without passes.

❺Program Verification Verifying programs involves inserting logic expressions. In PLPilot, LLMs
can symbolically check if a program satisfies given expressions, avoiding manual verification.

❸Program Optimization Compilers optimize by analyzing ASTs and applying rewrite rules.
PLPilot demonstrates LLMs can replicate this - given rules and unoptimized code, the LLM directly
transforms the program without human optimization.

3.3 Computer Architecture Level

In computer architecture level, researchers often setup a ❼cost model to measure the program
execution latency. LLMs offer zero-shot alternative to learn these cost models. However, LLMs
cannot directly output a program’s latency. We show PLPilot can compare two programs’ latency
without training, by simply inputting code snippets and outputting their relative performance. This
exemplifies LLMs’ potential for accelerating architecture-level optimizations.

4 Implementation

PLPilot is implemented in Python with OpenAI library. It uses GPT-3.5 as the base large language
model, while it can also generalize to other large language models. The inner structure of PLPilot
consists a set of prompt manager. Every prompt manager consists two partitions act as system prompt
and user prompt respectively. System prompts are defined to provide the input and output format
and the task functions. User prompts are defined to focus on the input content. For example, in the
program embedding task, the system prompt is "Users will give you a program. You are an assistant
to extract its information follows the provided syntax format and output the extract information. The
syntax format element enclosed by <>. The output should in a single line.", the user prompts are
"Embedding syntax format" and "Input program". System prompts act as the control flow to give user
constraint, while user prompts act as the data flow to give LLM the program which need to process.

5 Evaluation

Due to page limits,we have included the detailed evaluation in the appendix. The results of our
evaluation affirm the proficient performance of PLPilot across the majority of programming language
design tasks.

6 Conclusions and Future Work

Traditionally, creating programming languages requires extensive manual effort. In this paper, we
proposed a decoupled language design process powered by large language models to automate
key aspects of development. Our framework demonstrates the potential for LLMs to accelerate
programming language design. By providing a unified, LLM-driven framework, our approach
reduces manual effort and makes language design more accessible.However, the current PLPilot
system has limitations in accurately generating complete language specifications and implementations.
Going forward, we aim to enhance PLPilot’s capabilities by expanding the diversity of programming
language case studies. This includes conducting more case studies on both hardware and software
domain-specific languages to further improve the system.

4

References
[1] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. The soot framework for

java program analysis: a retrospective. In Cetus Users and Compiler Infastructure Workshop
(CETUS 2011), volume 15, 2011.

[2] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pienaar,
River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Oleksandr Zinenko. Mlir: Scaling
compiler infrastructure for domain specific computation. In 2021 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), pages 2–14. IEEE, 2021.

[3] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer Haj-Ali, Yida
Wang, Jun Yang, Danyang Zhuo, Koushik Sen, et al. Ansor: Generating {High-Performance}
tensor programs for deep learning. In 14th USENIX symposium on operating systems design
and implementation (OSDI 20), pages 863–879, 2020.

[4] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis Ceze, Carlos
Guestrin, and Arvind Krishnamurthy. Learning to optimize tensor programs. Advances in
Neural Information Processing Systems, 31, 2018.

[5] Uday Bondhugula, Albert Hartono, J Ramanujam, and P Sadayappan. Pluto: A practical and
fully automatic polyhedral program optimization system. In Proceedings of the ACM SIGPLAN
2008 Conference on Programming Language Design and Implementation (PLDI 08), Tucson,
AZ (June 2008). Citeseer, 2008.

[6] OpenAI. Openai codex, 2023. https://openai.com/blog/openai-codex, Last accessed
on 2023-09-29.

[7] Leandro von Werra, Loubna Ben Al. Starcoder: A state-of-the-art llm for code, 2023. https:
//huggingface.co/blog/starcoder, Last accessed on 2023-09-29.

[8] Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan Natarajan, Suresh Parthasarathy, Sriram
Rajamani, and Rahul Sharma. Jigsaw: Large language models meet program synthesis. In
Proceedings of the 44th International Conference on Software Engineering, pages 1219–1231,
2022.

[9] Dominik Sobania, Martin Briesch, and Franz Rothlauf. Choose your programming copilot: A
comparison of the program synthesis performance of github copilot and genetic programming.
In Proceedings of the genetic and evolutionary computation conference, pages 1019–1027,
2022.

[10] Gabriel Poesia, Oleksandr Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher Meek,
and Sumit Gulwani. Synchromesh: Reliable code generation from pre-trained language models.
arXiv preprint arXiv:2201.11227, 2022.

[11] Frank F Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. A systematic evaluation
of large language models of code. In Proceedings of the 6th ACM SIGPLAN International
Symposium on Machine Programming, pages 1–10, 2022.

[12] Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus Rabe, Charles Staats, Mateja Jamnik,
and Christian Szegedy. Autoformalization with large language models. Advances in Neural
Information Processing Systems, 35:32353–32368, 2022.

[13] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. arXiv preprint arXiv:2203.13474, 2022.

[14] Xue Jiang, Yihong Dong, Lecheng Wang, Qiwei Shang, and Ge Li. Self-planning code
generation with large language model. arXiv preprint arXiv:2303.06689, 2023.

[15] Stephen MacNeil, Andrew Tran, Dan Mogil, Seth Bernstein, Erin Ross, and Ziheng Huang.
Generating diverse code explanations using the gpt-3 large language model. In Proceedings of
the 2022 ACM Conference on International Computing Education Research-Volume 2, pages
37–39, 2022.

5

https://openai.com/blog/openai-codex
https://huggingface.co/blog/starcoder
https://huggingface.co/blog/starcoder

[16] Foivos Tsimpourlas, Pavlos Petoumenos, Min Xu, Chris Cummins, Kim Hazelwood, Ajitha
Rajan, and Hugh Leather. Benchdirect: A directed language model for compiler benchmarks.
arXiv preprint arXiv:2303.01557, 2023.

[17] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program analysis
& transformation. In International symposium on code generation and optimization, 2004. CGO
2004., pages 75–86. IEEE, 2004.

[18] Chris Cummins, Volker Seeker, Dejan Grubisic, Mostafa Elhoushi, Youwei Liang, Baptiste
Roziere, Jonas Gehring, Fabian Gloeckle, Kim Hazelwood, Gabriel Synnaeve, et al. Large
language models for compiler optimization. arXiv preprint arXiv:2309.07062, 2023.

[19] Nigar M Shafiq Surameery and Mohammed Y Shakor. Use chat gpt to solve programming
bugs. International Journal of Information Technology & Computer Engineering (IJITC) ISSN:
2455-5290, 3(01):17–22, 2023.

A Structure

Tab. 1 shows formal expression of LLM driven compiler tasks.

Table 1: Formal expression of LLM driven compiler tasks.

Formal Expression Stage Description
LLM(Spec) → Comp : prog0 → prog1 1-Compiler Design
LLM(prog0, prog1, · · ·) → Spec 2-Programming Language Design
LLM(prog0) → prog1 3-Program Optimization
LLM(prog0) → attribute 4-Program Analysis
LLM(prog, attribute) → yes/no 5-Program Verification
LLM(prompt) → prog 6-Natural Language Compile
LLM(prog0, prog1, · · ·) → index 7-Program Cost Comparasion
LLM(prog0) → prog1 8-Program Correction

B Benchmarks

Tab. 2, 7, 5, 8, 4, 6, 3, 9 show the current benchmarks under different stages under PLPilot.

Table 2: Compiler Design Benchmark (Specification To Compiler).

Workload Description
C A tiny C language specification, an interpreter.
Python A subset Python language specification, an interpreter.
Pytorch A subset Pytorch DSL specification.
State Machine A customized state machine manipulate language.
SQL A subset SQL specification, compile to C.
Graph A customized Graph computing language.
Java A subset Java language specification, an interpreter.
LLVM A subset C language specification compile to llvm.
RISC-V A subset RISC-V specification , output an interpreter.
CPU-ISA A customized CPU-ISA, an interpreter.

C Case Study

Tab. 10 shows input and output of every stage in the whole programming language design framework.
Tab. 2, 7, 5, 6, 4,9, 8, 3 show several case studies in PLPilot, which provide a comprehensive view.

6

Table 3: Programming Language Design Benchmark (Program To Specification).

Workload Description
C A subset C language specification.
Python A subset Python language specification.
Pytorch A subset Pytorch DSL specification.
State Machine A customized state machine manipulate language in python.
SQL A subset SQL specification.
Graph A customized Graph computing language.
Java A subset Java language specification.
LLVM A subset LLVM IR.
RISC-V A subset RISC-V specification.
CPU-ISA A customized CPU-ISA.

Table 4: Program Optimization Benchmark.

Workload Description
Matmul-C matrix multiply in C.
FC+bias Fully connect layer add bias in C.
Vector mul Vector multiply in Python.
Matmul-Cuda A cuda implementation of matmul.
Convolution Convolution in C.
Attention Implement attention operator in C.
Graph A graph aggregate in Python.
Tensorize A gemm for vector-based TPU in C.
Matmul-thread A matrix multiply in multi-CPU system.
Image crop Image crop on cuda devices.

Table 5: Program Analysis Benchmark.

Workload Description
C-DC find dead code.
C-CE find common expression.
C-Array find array size beyond scape.
C-OverSize find number size beyond scape.
BitMismatch find wrong bit size(FPGA).
Memleak Find memory leakage.
Pointernull Find null pointer.
Wrongpointer Find wrong pointer type.
CUDA-thread Find thread overflow(CUDA).
CUDA-sync Find sync error.(CUDA)

Table 6: Program Verification Benchmark.

Workload Description
Undef var Undefined variable in C++.
Type error Undefine type error in C++.
Loop overflow Out of bound error in C++.
Number over Out of variable number overflow
Number bound Two number add result <a number.
If bound Write a logic with /\and ->to check.
Number bound 2 Two numbers has precondition and postcondition.
Mixed bound A mixed constraint.
Memory bound Dynamic memory should less than a value.
Type error 2 Customize type mismatch in C++.

7

Table 7: Natural Language Benchmark.

Workload Description
Linux button driver Synthesis button driver based on Linux driver DSL.
Linux LED driver Synthesis LED driver based on Linux driver DSL.
CPU on FPGA A simple CPU on FPGA.
Vecmul on FPGA Apply matmul on FPGA
Graph DSL Synthesis graph DSL to python.
Parser Normal expression analyze in python.
DFS DFS in python.
BFS BFS in python.
Draw Call library in python.
Deep learning Synthesis deep learning DSL in python.

Table 8: Program Cost Benchmark.

Workload Description
Matmul-C matrix multiply in C.
FC+bias Fully connect layer add bias in C.
Vector mul Vector multiply in Python.
Matmul-Cuda A cuda implementation of matmul.
Convolution Convolution in C.
Attention Implement attention operator in C.
Graph A graph aggregate in Python.
Tensorize A gemm for vector-based TPU.
Matmul-thread A matrix multiply in multi-CPU system.
Image crop Image crop on cuda devices.

Table 9: Program Correction Benchmark.

Workload Description
VNC Variable name correction
GC Grammar correction
LBC Logic bug correction
API API use correction.
REC Code reconstruction.
VNC-DSL Variable name correction in DSL
GC-DSL Grammar correction in DSL
LBC-DSL Logic bug correction in DSL
API-DSL API use correction in DSL.
REC-DSL Code reconstruction in DSL.

Program Example Specification

for(i = 1..10){
for(j = 1..10){

A[i][j]=B[j];
}

}

program = { statement } ;
statement = assignment | loop ;
assignment = identifier , "=" , expression ;
loop = "for" , identifier , "in" , range , "{" ,
program , "}" ;
range = number , ".." , number ;
expression = identifier | number ;
identifier = letter , { letter | digit } ;
number = digit , { digit } ;
letter = "a" | "b" | ... | "z" | "A" | "B" | ... | "Z" ;
digit = "0" | "1" | ... | "9" ;

Figure 2: A Case of PLPilot-based translating program example to language specification.

8

Table 10: Detailed Stage Design

Id Type Task Description Input Output LLM Capac-
ity

1 Compiler Compiler
AutoDesign

From pro-
gramming
language
specification
to compiler

EBNF, Test
Case

Compiler
components

LLM
abstract
capacity

2 Programming
Language

Programming
language
syntax,
semantic
design

Extract the
syntax, se-
mantic and
type system
of program

Program ex-
ample

EBNF, Big-
step Seman-
tic

PL syntax
abstract
capacity

3 Program Op-
timization

Reduce pro-
gram latency

Change
program
structure
to reduce
program
latency

Raw pro-
gram

Optimized
program

Optimize ca-
pacity

4 Program
Analysis

Analyze pro-
gram seman-
tic attribute

Analyze
program to
its specific
attribute

Raw pro-
gram

If has com-
mon sub-
expression,
inactive
variables
Etc.

Inductive ca-
pacity

5 Program Ver-
ification

Verify if pro-
gram follow
the natural
language
specification

Verify if
program can
match the
verifying
statement

Program,
verification
statement

Match or
Mismatch

Fuzzy logic
verification
capacity

6 Program
Synthesis

Natural Lan-
guage Com-
piling

Translate
natural
language to
target pro-
gramming
language

Natural
language
description

program GPT ab-
stract un-
derstanding
capacity

7 Program
cost com-
parasion

Evaluate pro-
gram perfor-
mance

Evaluate
programs’
relative
latency and
performance
measure-
ment

Program 0,
Program 1

Cost rank Comparasion
capacity

8 Program cor-
rection

Language
syntax and
semantic
correction

Correct syn-
tax and se-
mantic error
in a program

Raw pro-
gram

Right pro-
gram

Formal un-
derstanding
capacity

9

Specification Compiler

state_transition = "state" state_id
transition_operator action_id ">" state_id
state_machine = state_transition
{ state_transition }

class StateTransition:
def __init__(self, state_id, transition_operator,

action_id, next_state_id):
self.state_id = state_id
self.transition_operator = transition_operator
self.action_id = action_id
self.next_state_id = next_state_id

class StateMachine:
def __init__(self, transitions):

self.transitions = transitions

def generate_code(self):
code = ""
for transition in self.transitions:

code += f"if state == '{transition.state_id}'
and action == '{transition.action_id}':\n"

code += f" state =
'{transition.next_state_id}'\n"

return code

Figure 3: A Case of PLPilot-based translating language specification to compiler design.

Program Optimized Program (Unroll) Optimized Program (locality)

for(i=0;i<10;i++){
for(j=0;j<10;j++){

for(k=0;k<20;k++){
C[i][j] += A[i][k]*B[k][j];

}
}

}

for(i=0;i<10;i++){
for(k=0;k<20;k++){

for(j=0;j<10;j+=4){
C[i][j] += A[i][k]*B[k][j];
C[i][j+1] +=

A[i][k]*B[k][j+1];
C[i][j+2] +=

A[i][k]*B[k][j+2];
C[i][j+3] +=

A[i][k]*B[k][j+3];
}

}
}

for(i=0;i<10;i++){
for(k=0;k<20;k++){

for(j=0;j<10;j++){
C[i][j] += A[i][k]*B[k][j];

}
}

}

Figure 4: A Case of PLPilot-based program optimization.

10

Program Corrected Version

int mian(int argc, char**argv){
int sum;
for(int i=0;i<argc;i++){
sum+=argv[i];

}
return 0;

}

int main(int argc, char** argv) {
int sum = 0;
for (int i = 1; i < argc; i++) {

sum += atoi(argv[i]);
}
return 0;

}

Figure 5: A Case of PLPilot-based program correction.

Program 0 Program 1 Cost Compare

for(i=0;i<10;i++){
for(k=0;k<20;k++){

for(j=0;j<10;j+=4){
C[i][j] += A[i][k]*B[k][j];
C[i][j+1] += A[i][k]*B[k][j+1];
C[i][j+2] += A[i][k]*B[k][j+2];
C[i][j+3] += A[i][k]*B[k][j+3];

}
}

}

for(i=0;i<10;i++){
for(j=0;j<10;j++){

for(k=0;k<20;k++){
C[i][j] += A[i][k]*B[k][j];

}
}

}

Based on the given program latency,
it seems that the second program in p
rogram would be better.
The reason for this is that the second
program has a loop that increments j
by 4,
allowing for more efficient memory a
ccess.

Figure 6: A Case of PLPilot-based program cost comparasion.

Program Analyzed Result (Dead Code)

for(int i=0;i<100;i++){
for(int j=0;j<10;j++){
A[i]=B[i+1];
B[i]=C[i-1];

}
}

The reason for this is that the inner for lo
op does not seem to be doing anything
with the variable j.
This means that the loop will simply itera
te through 10
times without actually performing any ac
tions.

As a result, the line B[i]=C[i-
1]; will be executed 100 times,
regardless of the value of j.
This suggests that the inner loop is unne
cessary and could be removed without a
ffecting the functionality of the program.

Figure 7: A Case of PLPilot-based program analysis.

11

Program needs to be verified Verification Result

int func(int a){
int b;

if(a > 0){
b = a;

}
<< b < 0 >>
}

#include <iostream>

bool isSatisfied = false;

int func(int a) {
int b;
if (a > 0) {

b = a;
}
if (b < 0) {

isSatisfied = true;
}
return b;

}

int main() {
int a = 5;
int result = func(a);
std::cout << "Result:

" << result << std::endl;
if (isSatisfied) {

std::cout <<
"true" << std::endl;

}
return 0;

}

Figure 8: A Case of PLPilot-based program verification.

Input: give me an example Linux button driver

/* Example Linux button driver */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/gpio.h>
#include <linux/interrupt.h>

#define BUTTON_PIN 17

static irqreturn_t button_isr(int irq,
void *data)
{

printk(KERN_INFO "Button
pressed\n");

return IRQ_HANDLED;
}

static int __init button_init(void)
{

int ret;

ret = gpio_request(BUTTON_PIN,
"button");

if (ret) {
printk(KERN_ERR "Failed to

request GPIO pin %d\n", BUTTON_PIN);
return ret;

}

ret =
gpio_direction_input(BUTTON_PIN);

if (ret) {
printk(KERN_ERR "Failed to set

GPIO pin %d as input\n", BUTTON_PIN);
gpio_free(BUTTON_PIN);
return ret;

}

ret = gpio_to_irq(BUTTON_PIN);
if (ret < 0) {

printk(KERN_ERR "Failed to get
IRQ for GPIO pin %d\n", BUTTON_PIN);

gpio_free(BUTTON_PIN);
return ret;

}

ret = request_irq(ret, button_isr,
IRQF_TRIGGER_RISING, "button",
NULL);

if (ret) {
printk(KERN_ERR "Failed to

request IRQ for GPIO pin %d\n",
BUTTON_PIN);

gpio_free(BUTTON_PIN);
return ret;

}

printk(KERN_INFO "Button driver
initialized\n");

return 0;
}
static void __exit button_exit(void)
{

free_irq(gpio_to_irq(BUTTON_PIN),
NULL);

gpio_free(BUTTON_PIN);
printk(KERN_INFO "Button driver

exited\n");
}

module_init(button_init);
module_exit(button_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Your Name");
MODULE_DESCRIPTION("Example
Linux button driver");

Figure 9: A Case of PLPilot-based program synthesis.

12

Program
Correct

Program
Optimization

Program
Cost

PL
Design

Compiler
Design

Program
Analysis

Program
Verification

NL
Compiler

Benchmark

0.0

0.2

0.4

0.6

0.8

pa
ss
@
3

PLPilot

Figure 10: A comprehensive evaluation on PLPilot.

C
Pyth

on
Pyto

rch

Stat
e M

ach
ineSQL grap

h Java LLVM RISC
-V

CPU
-ISA

Benchmark

0

2

4

6

8

10

12

14

Pa
ss
@
3

Compiler Design
Specification Scale
Code Coverage

Figure 11: Evaluation on Compiler Design Task
(From Specification to Compiler).

Linu
x bu

tton
 driv

er

Linu
x LE

D d
rive

r

CPU
 on

FGP
A

Vec
mul

 on
FPG

A

Gra
ph D

SL
Pars

er DFS BFS Dra
w

Dee
p le

arni
ng

Benchmark

0

1

2

3

4

5

pa
ss
@
3

Nature Language Compiler
Assertion numbers
Passed numbers

Figure 12: Evaluation on natural language program
synthesis task (Fron natural language to program).

D Detailed Evaluation Result

Fig.10, 11, 13, 16,14,18,15,17,12 show several evaluation results. Fig. 10 shows that The results
show that for most of the tasks in programming language design, PLPilot has a positive evaluation
results. Fig. 11 shows the ability of LLM for compiler design.The blue columns represent the number
of specifications, while the orange columns represent the number of specifications covered by the
compiler code generated by LLM. Fig. 13 shows the ability of LLM for programming language
design, EBNF , Sematic and type system are used to evaluate the quality of programming languages.
Only the number of errors in the benchmark where the programming languages design failed is listed
here.Fig.16 shows the ability of LLM for program analysis.The blue columns represent the number
of semantic information in the program , while the orange columns represent the number of semantic
information that LLM can analyze correctly. Fig.14 shows the ability of LLM to compare program
performance.The results of the LLM output are compared with the ground truth which can evaluate
the ability of the large model as a cost model.Fig.18 shows the ability of LLM for program correction.
The blue columns represent the total number of errors ,while the orange columns represent the number
corrected by the LLM.Fig.15 shows the ability of LLM for program verification. The blue columns
represent the total number of validation statements, while the orange columns represent the number
of validation statements correctly verified by LLM. Fig.17 shows the ability of LLM for program
optimization.The speed-up ratio of LLM-optimized programs reflects the effectiveness of LLM in
program optimization. Fig.12 shows the ability of LLM for natural language programming. Blue
columns represent the number of sub-tasks mentioned in the prompt, while orange columns represent
the number of sub-tasks that can be completed by the code generated by LLM.

13

C
Python

Pytorch

State MachineSQL
graph Java

LLVM
RISC-V

CPU-ISA

Benchmark

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Pa

ss
@

3

Programming Language Design
EBNF errors
Semantic errors
Type System errors

Figure 13: Evaluation on programming language
specification generation.

Matmul-C
FC+bias

Vector m
ul

Matmul-Cuda

Convolution
Attention

Graph
Tensorize

Matmul-thread

Image crop

Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

@
3

1/1 1/1 0/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1

Program Cost
Passed
Unpassed

Figure 14: Evaluation on program cost compari-
son.

Und
ef v

ar

Type
 err

or

Loo
p ov

erflo
w

Num
ber

ove
r

Num
ber

bou
nd
If bo

und

Num
ber

bou
nd2

Mix
ed b

oun
d

Mem
ory

bou
nd

Type
 err

or2

Benchmark

0

1

2

3

4

5

6

pa
ss
@
3

Program Verification
Total verification statements
Passed verification statements

Figure 15: Evaluation on program verification.

C-DC C-CE
C-Array

C-OverSize

BitMismatch
Memleak

Pointernull

Wrongpointer

CUDA-thread

CUDA-sync

Benchmark

0

1

2

3

4

5

6

7

8

pa
ss

@
3

Program Analysis
Total numbers
Finded numbers

Figure 16: Evaluation on program analysis.

Mat
mul

-C
FC+

bias

Vec
tor

mul

Mat
mul

-Cud
a

Con
volu

tion
Atte

ntio
n
Gra

ph
Tens

oriz
e

Mat
mul

-thr
ead

Ima
ge c

rop

Benchmark

0

2

4

6

8

pa
ss
@
3

2.95x

9.5x

0.875x 1.08x

2.73x

1.83x

0.44x

1.63x
1.16x 1.27x

Program Optimization
Base
Speedup

Figure 17: Evaluation on program optimization.

VNC GC LBC API
REC

VNC-DSL
GC-DSL

LBC-DSL
API-DSL

REC-DSL

benchmark

0

2

4

6

8

10

12

14

pa
ss

@
3

Program Correct
Total errors
Corrected errors

Figure 18: Evaluation on program correction.

14

	Introduction
	Background and Motivation
	Programming Language related Large Language Model
	Motivation

	Decoupling the Programming Language Design Process
	Programming Language Level Design
	Compiler System Level Design
	Integrated Design Environment Assistant
	Compiler Design Assistant

	Computer Architecture Level

	Implementation
	Evaluation
	Conclusions and Future Work
	Structure
	Benchmarks
	Case Study
	Detailed Evaluation Result

