
Can Semi-Supervised Learning Improve Prediction of
Deep Learning Model Resource Consumption?

Karthick Panner Selvam
University of Luxembourg, SnT

Luxembourg
karthick.pannerselvam@uni.lu

Mats Brorsson
University of Luxembourg, SnT

Luxembourg
mats.brorsson@uni.lu

Abstract

With the increasing computational demands of Deep Learning (DL), predicting
training characteristics like training time and memory usage is crucial for efficient
hardware allocation. Traditional methods rely solely on supervised learning for
such predictions. Our work integrates a semi-supervised approach for improved
accuracy. We present TraPPM, which utilizes a graph autoencoder to understand
representations of unlabeled DL graphs, then combined with a supervised graph
neural network training to predict the metrics. Our model significantly surpasses
standard methods in prediction accuracy, with MAPE values of 9.51% for training
step time and 4.92% for memory usage. The code and dataset are available at
https://github.com/karthickai/trappm

1 Introduction

The rapid evolution of Deep Learning (DL) and the increasing complexity of its models necessitate
accurate predictions of training characteristics, such as memory consumption and training time.
Predicting these attributes optimizes hardware utilization and cost-effectiveness. However, predicting
the training characteristics of DL models remains a significant challenge, often involving substantial
trial and error Menghani [2023]. Earlier efforts predominantly used supervised MLPs and Graph
Neural Networks (GNNs) for this task Justus et al. [2018], Yu et al. [2021], Gao et al. [2023],
Panner Selvam and Brorsson [2023], Bai et al. [2022], Gianniti et al. [2018], Kaufman et al. [2021],
Dudziak et al. [2020], Liu et al. [2022]. Yet, an untapped reservoir of potential exists in the use of
unlabeled DL models.

We introduce the Training characteristics Performance Predictive Model (TraPPM), a novel semi-
supervised learning framework that leverages the power of unsupervised GNN; TraPPM derives
intricate graph embeddings from an unlabeled DL model graph. And combine the embedding with
DL static features to train the GNN-based regressor model using a labeled dataset to predict the
training characteristics without running it on target hardware. In a rigorous comparative assessment
against state-of-the-art baselines, including supervised GNN, MLP, and GBoost, TraPPM exhibits
superior performance, achieving a remarkable 910 MB RMSE and 4.92% MAPE for memory and 23
ms RMSE and 9.51% MAPE for step-time prediction. This superior performance underscores the
efficacy of harnessing unlabeled data for performance prediction. Furthermore, our comprehensive
dataset, encompassing 7,536 labeled graphs and 25,053 unlabelled graphs from various DL model
families, presents a substantial contribution to the community, paving the way for future research in
performance prediction and optimization.

Machine Learning for Systems Workshop at 37th NeurIPS Conference, 2023, New Orleans, LA, USA.

Z

Forward Pass
Sum Aggregator

Concatenated Vector

G
ra

ph 
Tr

an
sf

or
m

at
io

n

D
L

M
od

el

O
N

N
X

,

Fu
lly

 C
on

ne
ct

ed

R
eL

U

D
ro

po
ut

GNN
Supervised Training

Feature
Aggregation

MLP

In
: 1

03
0

O

ut
: 5

12

L
in

ea
r L

ay
er

O
ut

: 1

Predicted Training Characteristic

Static Features6

+

+

R
eL

U

D
ro

po
ut

,

Encoder

SA
G

E
 C

on
v

2x

512

512

2x

Figure 1: Training a GNN regressor using MSE loss to minimize the actual y vs. predicted ŷ.

2 Related Work

Performance prediction of DL models is a burgeoning field. Qi et al. [2017] use a analytical approach
to estimate the training time of DL models, layer by layer. Gao et al. [2020] also used an analytical
model to predict the memory consumption for the training DL model. Bouhali et al. [2021] used an
MLP-based regressor that used input features such as trainable parameter count, memory size, and
input size to predict the execution time. Nevertheless, the traditional MLP method could have been
more effective due to its limited understanding of the DL layers. Justus et al. [2018] and Gianniti
et al. [2018] used the layer-by-layer technique proposed by Qi et al. [2017] but used an MLP-based
regression model. Other researchers Sponner et al. [2022], Lu et al. [2021], Velasco-Montero et al.
[2020], Cai et al. [2017] also used the same layerwise approach to predict the characteristics of the
DL model. Yu et al. [2021] employed a wave-scaling method for estimating the training step time of
the deep learning model on a GPU. They also used the layerwise approach. However, this technique
necessitates the availability of a GPU to facilitate the prediction. On the other hand, researchers used
a GNN instead of MLP in a layerwise approach to predict the performance of the DL model Kaufman
et al. [2021], Dudziak et al. [2020]. The layerwise approach did not capture the DL model network
topology, and therefore prediction accuracy is sub-optimal Liu et al. [2022]. To solve the above
problem, Gao et al. [2023], and other researchers, Liu et al. [2022], Bai et al. [2022], Panner Selvam
and Brorsson [2023], have employed GNNs to represent a complete DL graph as input to predict both
training and inference characteristics. The majority of prior studies utilized supervised techniques
for DL model performance prediction, neglecting the vast pool of unlabelled DL model data. Our
innovative approach, TraPPM, bridges this gap using a semi-supervised learning paradigm, enhancing
prediction accuracy by harnessing unlabelled data.

3 Methodology

Given a DL model M with operations O = {o1, o2, ..., on}, we transform M (in ONNX format) into
a graph G compatible with PyTorch Geometric (PyG). In G, nodes represent M ’s operations stored
in the node feature matrix X , while A captures directed relationships. Specifically, G = (X,A)
where X = O and A[i][j] = 1 if a directed edge exists from oi to oj , else A[i][j] = 0. If M is
labeled, we incorporate a target vector Y into PyG data. For each node v in the DL model graph,
we define an attribute vector Av as: [EO(v), Iv,Ov,Macv, Pv,Mv]. Here, EO(v) is a one-hot
encoded vector of length |O|, where |O| = 98, surpassing the previous work supported only 32
operators Liu et al. [2022]. The vectors Iv and Ov, each of length 6, encapsulate the input and
output shape, respectively, with an extension to consider 3D convolution. The attributes Macv, Pv,
and Mv symbolize the MAC, parameters, and memory of node v, respectively. Thus, our node
feature vector n has a dimensionality of 113, offering a more exhaustive representation. To the
best of our knowledge, this is the first work to incorporate 2D and 3D convolutions, alongside
transformer-based architectures, into node features. This advancement distinguishes our approach
from prior studies that were limited to 2D convolutions. To exploit the rich information in unlabeled
data, we employ a Graph Autoencoder (GAE). The encoder ingests node feature matrix X of
dimension [#nodes, 113] and edge indices A. It comprises four consecutive SAGEConv layers.
The first layer expands the feature dimensions to 2c, where c = 512, and subsequent layers refine

2

them to the target embedding dimension c. The transformation within each convolutional layer is:
T (X,A, c) = Dropout(ReLU(BatchNorm(SAGEConv(X,A, c))), 0.5). The architecture we’ve
designed is adept at generating embeddings that holistically encapsulate the nuanced attributes of DL
models. Following the encoding process, the decoder aims to reconstruct the adjacency matrix using
the formula Â = σ(X4X

T
4). The primary goal of our GAE is to minimize the deviation between

the true adjacency matrix A and Â, derived from the latent space representation z. The discrepancy
between these matrices is measured using the Binary Cross Entropy (BCE) loss, defined as:

LBCE = − log(Â(z, ipos, jpos) + ϵ)− log(1− Â(z, ineg, jneg) + ϵ)

In this equation, Â denotes the predicted adjacency matrix. The terms ipos, jpos signify the indices
of positive edges, while ineg, jneg correspond to negative edges, obtained through negative sampling.
To ensure stability during the computation of logarithms, we used a small constant ϵ = 1× 10−15 .
The essence of this loss metric lies in its ability to guide the GAE towards accurately reflecting the
original graph structure. Post-training, the encoder’s weights are freezed, yielding embeddings for
ensuing supervised tasks. The primary goal of TraPPM is to predict the DL training characteristics,
specifically memory usage µ (MB) and step time τ (ms). The overview of TraPPM is shown in
Figure 1. From the input graph G we extract static features Fs. It encompass the batch size B,
the total number of nodes Nt, the total number of edges Et, total MAC operations (MACt), total
parameters (Pt), and total memory (Mt). The values Nt and Et are directly extracted from G, while
the values MACt, Pt, and Mt are obtained using the ONNX tool. Supervised learning consists of
three components. Initially, the GNN component processes the graph, utilizing two SAGEConv layers,
each complemented by a ReLU activation and a 0.05 dropout. This results in embeddings EGNN with
dimensions [1, 512] after sum aggregation. Concurrently, embeddings from the GAE (EGAE) are
reduced to a similar dimensionality after sum aggregation. The feature aggregation component then
fuses these embeddings with static features Fs to form an enriched vector V = EGAE ⊕ EGNN ⊕ Fs,
which spans [1, 1030]. The MLP component subsequently processes V through two FC layers, each
accompanied by ReLU activations and a 0.05 dropout, followed by a final linear layer yielding a
singular output Y . Using the Mean Squared Error (MSE) as a loss function and the Adam optimizer
for updates, two distinct models M1 for µ and M2 for τ are trained, embodying our comprehensive
approach to predicting DL model training characteristics.

4 Experiments and Results

For our TraPPM experiments, we constructed datasets differentiated as unsupervised (DU) and
supervised (DS). DU consists of 25,053 unlabeled DL models across 11 families. DS , derived from
DU , contains 7536 labeled DL models. Detailed environmental setup and data collection can be
found in Section A.1 and A.2.

The first phase of the TraPPM experiment involves training the GAE. Initially, we considered the
Masked Graph Autoencoder technique, as presented in Hou et al. [2022] study. This method masks
random node features and attempts to reconstruct them, facilitating graph representation learning.
However, our node features, largely sparse due to one-hot encoding, did not align well with this
strategy. As a result, we turned to the classical GAE, which proved to be a better fit for our needs.
The GAE model was developed using the PyG Library. For training, we set Adam optimizer with
a lr = 5× 10−4, β = (0.9, 0.999), and ϵ = 1× 10−8. To train the GAE, we utilized an DU , for a
total of 400 epochs. Finally, we have achieved a LBCE of 0.9291. The core part of the experiment
involves training the TraPPM model. We used the PyTorch library to create the TraPPM model. We
used a DS collected from A100 GPU to train the model. We partitioned our dataset according to
a 70:30 ratio for each model family. Specifically, 70% of the data was used for training and 30%
for testing. We adopted a Monte Carlo validation approach. To ensure robustness and reliability
in our results, we employed five distinct seeds: S = {1337, 1338, ..., 1341} . By utilizing these
seeds, we generated five different dataset splits and subsequently averaged the results to derive a
more comprehensive performance evaluation. During the training process, we utilized the Adam
optimizer with a lr = 1× 10−3, β = (0.9, 0.999), and ϵ = 1× 10−8. We assessed the performance
of the TraPPM model by comparing it with baseline models. Detailed baseline setup explained in
Section A.4. Both the TraPPM model and the baselines were trained using a DS , with a specific
focus on predicting µ and τ . We trained the TraPPM, NNLQP, and MLP models for 100 epochs,

3

0 500 1000 1500
Actual Step Time (ms)

0

500

1000

1500

Pr
ed

ic
te

d
St

ep
 T

im
e

(m
s)

0 10 20 30 40
Actual Memory (GB)

0

10

20

30

40

Pr
ed

ic
te

d
M

em
or

y
(G

B
)

100 200 300
Actual Power (W)

0

100

200

300

400

Pr
ed

ic
te

d
Po

w
er

 (W
)

Figure 2: Comparison of actual values with predictions from TraPPM on the test set.

repeating the process five times using different seeds as mentioned above to perform a fair comparison
with baseline models. When we assessed the models for their capability to predict µ and τ , the
epoch-versus-loss plot, as shown in Figure 3, revealed that the TraPPM model converges more rapidly
compared to both NNLQP and MLP. This faster convergence can be attributed to TraPPM’s ability to
leverage unsupervised learning from unlabeled data.

Table 1: Average Performance Comparison of TraPPM with
Baseline Models. The lower the value higher the accuracy.

Memory Usage (MB) Step Time (ms)
Model MAPE RMSE MAPE RMSE
TraPPM 4.92% 910.34 9.51% 23.23
NNLQP 8.29% 1688.18 14.47% 37.02
MLP 85.01% 8045.68 134.07% 188.36
GBoost 16.10% 2971.52 16.98% 54.54

To evaluate TraPPM’s prediction capa-
bilities in comparison to the baseline
models, we used a test dataset and re-
lied on the MAPE and RMSE metrics,
as elaborated in Section A.3. Lower
values of MAPE and RMSE are in-
dicative of predictions being more ac-
curate. A breakdown of the results
for each model family is provided in
Tables 3 and 4. The aggregate per-
formance, presented in Table 1, high-
lights that TraPPM consistently deliv-
ers superior prediction accuracy for
both µ and τ compared to the baselines. TraPPM achieved a relative improvement in MAPE of
40.6% over NNLQP, underscoring its robust performance in predicting µ. For predictions related
to training step time, TraPPM consistently demonstrates superior accuracy when compared to other
models. Notably, against NNLQP, TraPPM showed a relative improvement of 34.2% in MAPE,
further emphasizing its proficiency in predicting step time.

It is worth noting that the TraPPM model’s semi-supervised approach, which leverages unsupervised
training for generating embeddings, provides a competitive advantage in predicting µ and τ compared
to the supervised training approach of NNLQP, which relies solely on labeled data. Overall, these
results emphasize the efficacy of the TraPPM model, as it outperforms the majority of model
families in predicting both µ and τ . We also explored the flexibility of TraPPM in predicting a new
performance metric power consumption, represented as Pc. By utilizing the embeddings from the
already trained GAE encoder, we simply retrained a GNN regressor tailored for Pc. Upon training
for 100 epochs, TraPPM achieved a MAPE of 5.01% and an RMSE of 17 W. This underscores
TraPPM’s capacity to adeptly estimate diverse performance metrics with commendable accuracy.
To provide visual evidence of TraPPM’s effectiveness, we present the actual versus predicted plots
in Figure 2. These plots exhibit a notable correlation between the predicted values by TraPPM and
the actual outcomes, reflecting the TraPPM’s superior prediction accuracy in forecasting training
characteristics.

5 Conclusions

We present TraPPM, a novel framework that combines unsupervised GAE with a supervised GNN
regressor to precisely predict DL model training characteristics without necessitating execution on
target hardware. Our results highlight the potent advantages of a semi-supervised paradigm in DL
resource prediction, consistently outstripping purely supervised approaches. TraPPM stands as a
significant stride in DL performance prediction, facilitating better resource allocation. Complementing
our methodology, we have made available an extensive dataset encompassing 25,053 unlabeled and
7,536 labeled DL graphs, fostering further research in this domain.

4

Acknowledgments and Disclosure of Funding

This work has been done in the context of the MAELSTROM project, which has received funding
from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No
955513. The JU receives support from the European Union’s Horizon 2020 research and innovation
program and the United Kingdom, Germany, Italy, Switzerland, Norway, and in Luxembourg by the
Luxembourg National Research Fund (FNR) under contract number 15092355.

References
Lu Bai, Weixing Ji, Qinyuan Li, Xilai Yao, Wei Xin, and Wanyi Zhu. Dnnabacus: Toward accurate

computational cost prediction for deep neural networks, 2022.

Noureddine Bouhali, Hamza Ouarnoughi, Smail Niar, and Abdessamad Ait El Cadi. Execution
time modeling for cnn inference on embedded gpus. In Proceedings of the 2021 Drone Systems
Engineering and Rapid Simulation and Performance Evaluation: Methods and Tools Proceedings,
DroneSE and RAPIDO ’21, page 59–65, New York, NY, USA, 2021. Association for Computing
Machinery. ISBN 9781450389525.

Ermao Cai, Da-Cheng Juan, Dimitrios Stamoulis, and Diana Marculescu. NeuralPower: Predict
and deploy energy-efficient convolutional neural networks. In Min-Ling Zhang and Yung-Kyun
Noh, editors, Proceedings of the Ninth Asian Conference on Machine Learning, volume 77 of
Proceedings of Machine Learning Research, pages 622–637, Yonsei University, Seoul, Republic
of Korea, 15–17 Nov 2017. PMLR.

Łukasz Dudziak, Thomas Chau, Mohamed S. Abdelfattah, Royson Lee, Hyeji Kim, and Nicholas D.
Lane. Brp-nas: Prediction-based nas using gcns. In Proceedings of the 34th International
Conference on Neural Information Processing Systems, NIPS’20, Red Hook, NY, USA, 2020.
Curran Associates Inc. ISBN 9781713829546.

Yanjie Gao, Yu Liu, Hongyu Zhang, Zhengxian Li, Yonghao Zhu, Haoxiang Lin, and Mao Yang.
Estimating gpu memory consumption of deep learning models. In Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2020, page 1342–1352, New York, NY, USA, 2020. Association
for Computing Machinery. ISBN 9781450370431.

Yanjie Gao, Xianyu Gu, Hongyu Zhang, Haoxiang Lin, and Mao Yang. Runtime performance
prediction for deep learning models with graph neural network. In ICSE ’23. IEEE/ACM, May
2023. The 45th International Conference on Software Engineering, Software Engineering in
Practice (SEIP) Track.

Eugenio Gianniti, Li Zhang, and Danilo Ardagna. Performance prediction of gpu-based deep
learning applications. In 2018 30th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), pages 167–170, 2018. doi: 10.1109/CAHPC.2018.8645908.

Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, and Jie Tang.
Graphmae: Self-supervised masked graph autoencoders. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 594–604, 2022.

Daniel Justus, John Brennan, Stephen Bonner, and Andrew Stephen McGough. Predicting the
computational cost of deep learning models. In 2018 IEEE International Conference on Big Data
(Big Data), pages 3873–3882, 2018.

Sam Kaufman, Phitchaya Phothilimthana, Yanqi Zhou, Charith Mendis, Sudip Roy, Amit Sabne, and
Mike Burrows. A learned performance model for tensor processing units. In A. Smola, A. Dimakis,
and I. Stoica, editors, Proceedings of Machine Learning and Systems, volume 3, pages 387–400,
2021.

Liang Liu, Mingzhu Shen, Ruihao Gong, Fengwei Yu, and Hailong Yang. Nnlqp: A multi-platform
neural network latency query and prediction system with an evolving database. In 51 International
Conference on Parallel Processing - ICPP, ICPP ’22. Association for Computing Machinery, 2022.

5

Zongqing Lu, Swati Rallapalli, Kevin Chan, Shiliang Pu, and Thomas La Porta. Augur: Modeling the
resource requirements of convnets on mobile devices. IEEE Transactions on Mobile Computing,
20(2):352–365, 2021.

Gaurav Menghani. Efficient deep learning: A survey on making deep learning models smaller, faster,
and better. ACM Comput. Surv., 55(12), mar 2023. ISSN 0360-0300. doi: 10.1145/3578938.

Karthick Panner Selvam and Mats Brorsson. Dippm: A deep learning inference performance
predictive model using graph neural networks, 2023.

Hang Qi, Evan R. Sparks, and Ameet Talwalkar. Paleo: A performance model for deep neural
networks. In International Conference on Learning Representations, 2017.

Max Sponner, Bernd Waschneck, and Akash Kumar. Ai-driven performance modeling for ai inference
workloads. Electronics, 11(15), 2022. ISSN 2079-9292. doi: 10.3390/electronics11152316.

Delia Velasco-Montero, Jorge Fernández-Berni, Ricardo Carmona-Galán, and Ángel Rodríguez-
Vázquez. Previous: A methodology for prediction of visual inference performance on iot devices.
IEEE Internet of Things Journal, 7(10):9227–9240, 2020. doi: 10.1109/JIOT.2020.2981684.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

Geoffrey X. Yu, Yubo Gao, Pavel Golikov, and Gennady Pekhimenko. Habitat: A Runtime-Based
Computational Performance Predictor for Deep Neural Network Training. In Proceedings of the
2021 USENIX Annual Technical Conference (USENIX ATC’21), 2021.

A Appendix

A.1 Enviroment setup

We used an AMD EPYC 7402 processor with two sockets (24 cores per socket), 512 GB DDR4-3200
RAM, and an NVIDIA A100 GPU with 40 GB HBM for data collection and experiment. The
experimental environment for developing TraPPM involved the utilization of several essential Python
libraries. The important libraries used were PyTorch 2.0.0, torch-geometric 2.3.0, torch-cluster,
ONNX 1.13.1, and torch-sparse. These libraries played a crucial role in implementing and training
the TraPPM model. The experiments for training TraPPM and generating the dataset were conducted
on the abovementioned system using CUDA 11.7.

A.2 Datasets

For our TraPPM experiment, we employed a dual-method approach, harnessing both unsupervised
and supervised datasets. As we already discussed, unsupervised datasets are used for training GAE,
and the supervised dataset is used to train the GNN-based regressor. We utilized the Timm Wightman
[2019] Python library to generate the unsupervised dataset for TraPPM, which offers various CNN
and transformer-based architecture models. We saved these models in the ONNX format and
converted them to PyG data, as described in Section 3. We created 25,053 DL models without labels,
representing eleven different model families, as shown in Table 2. These models were utilized for
unsupervised learning.

Our supervised dataset is a subset of the unsupervised dataset. The data collection was conducted
on NVIDIA A100 GPU. We collected a total of 7536 labeled DL models. For baseline model
comparisons, we utilized the labeled DL models. We again utilized the Timm library to generate
DL models. However, instead of saving them to the ONNX format, we trained each model for 55
iterations, with the initial five iterations serving as a warm-up phase. We calculated the CUDA time
during each iteration, representing the time taken to process a single iteration or step time in the
training process. Our focus was primarily on step time, as it remains consistent during the training
of the DL model, except for the initial few iterations that may exhibit variations due to warm-up
effects. Therefore, we excluded the first five iterations when calculating the metrics. Additionally, we

6

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

Table 2: TraPPM: Dataset distribution
Family Unsupervised Supervised
densenet 838 466
efficientnet 1370 566
mnasnet 7208 795
mobilenet 2449 1613
poolformer 601 377
resnet 1805 821
swin 787 421
vgg 6171 937
visformer 237 235
convnext 1530 439
vit 2057 866

Total 25053 7536

collected memory usage and power consumption data using the NVML1 Python library. For each
DL model, we repeated this process, averaging the step time (ms), memory usage (MB), and power
consumption (W). The results, along with the corresponding ONNX model files, were saved. While
converting these models to PyG data format, we appended the measured values to the graph data.

A.3 Evaluation Metrics

To evaluate the performance of our TraPPM model relative to the baseline models, we leverage two
primary evaluation metrics: Mean Absolute Percentage Error (MAPE) and Root Mean Square Error
(RMSE). MAPE, given by:

MAPE =
100

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ ,
where yi and ŷi denote the actual and predicted values for the ith observation respectively and n is
the total number of observations, quantifies the average percentage deviation between predicted and
actual values, offering a relative accuracy perspective. Conversely, RMSE, defined as:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2,

assesses the aggregate magnitude of prediction errors, providing a standardized measure aligned
with the scale of the predicted variable. By concurrently applying MAPE and RMSE, we furnish a
comprehensive evaluation of TraPPM’s predictive prowess against baseline models.

A.4 Baseline Models

In our evaluation, we compared TraPPM with three baseline models: Gboost, MLP, and the supervised
GNN. Gboost served as a strong foundation for further development, while MLP was chosen for its
wide usage in performance prediction Justus et al. [2018]. Finally, we included the supervised GNN
model introduced by Liu et al. [2022], referred to as NNLQP. This model served as a reference for
evaluating the performance of TraPPM in relation to a well-established supervised GNN approach.

Gradient Boosting: To develop the GBoost model, we conducted training using the XGBoost
python library. The training process involved utilizing a supervised dataset that solely consisted
of DL static features as input. To optimize its hyperparameters, we conducted a grid search. The
hyperparameters explored during the grid search were estimators with values [500, 1000, 2000],
lr with values [1 × 10−3, 1 × 10−4], max depth with values [10, 30, 50], subsample with values

1https://pypi.org/project/pynvml/

7

[0.5, 0.75, 1], and colsample bytree with values [0.5, 0.75, 1]. After performing the grid search, we
identified the best hyperparameters as follows: colsample bytree: 1, lr: 1 × 10−3, max depth: 50,
estimators: 2000, subsample: 1.
MLP: We created a baseline MLP model that is similar to the TraPPM MLP component, with the
only difference being that it accepts only static features as input during training. We trained the
baseline MLP model using 100 epochs, utilizing the MSE loss function and the Adam optimizer with
lr=1× 10−3, which is the same setting as the TraPPM supervised training.
NNLQP: It is important to note that a key distinction between the NNLQP model and the TraPPM
model is that the NNLQP model is unable to utilize unsupervised datasets. It can only operate with
supervised datasets. To ensure a fair comparison, we kept the model architecture unchanged, only
adapting the node features to accommodate the TraPPM dataset as discussed in Section 3. We trained
the model for 100 epochs using the Adam optimizer with lr=1× 10−3, following the same settings
as the TraPPM model. The NNLQP model takes the graph representation G as input, generates
embeddings, concatenates them with static features, and employs an MLP to predict performance.

0 20 40 60 80 100

Epochs
0

1

2

3

4

5

6

Lo
ss

1e4 TRAPPM
NNLQP
MLP

(a) Step Time (ms)

0 20 40 60 80 100

Epochs
0

2

4

6

Lo
ss

1e7 TRAPPM
NNLQP
MLP

(b) Memory Usage (MB)

Figure 3: Epoch vs Loss plot comparing the convergence rates of TraPPM, NNLQP, and MLP.
TraPPM showcases rapid convergence due to its ability to leverage unsupervised learning from
unlabeled data, as trained over 100 epochs.

Table 3: Comparative Performance Analysis of Memory Usage (MB) Prediction: Averaged results
over five distinct splits. Results highlight TraPPM’s enhanced accuracy compared with baseline
models. The lower the values, the higher the accuracy.

Family TraPPM NNLQP MLP GBoost
MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE

convnext 4.95% 1005.71 7.01% 1490.67 54.74% 8906.85 14.62% 3230.67
densenet 3.52% 730.47 8.29% 1675.17 66.44% 8317.23 14.64% 3113.40
efficientnet 3.55% 537.84 7.67% 1687.05 51.70% 11952.91 16.70% 3458.01
mnasnet 4.53% 585.65 6.75% 1804.18 94.42% 4908.33 14.72% 2756.27
mobilenet 5.28% 633.74 6.74% 1587.84 108.22% 5051.35 24.65% 2879.35
poolformer 4.41% 1441.70 6.96% 2027.24 76.10% 8951.67 15.04% 3332.57
resnet 4.65% 658.40 8.09% 1229.99 124.26% 7393.93 16.78% 2479.84
swin 5.09% 774.91 10.37% 1853.26 53.68% 8294.61 15.12% 2909.59
vgg 10.48% 2341.17 10.76% 2271.89 42.29% 7145.38 15.87% 3911.28
visformer 3.92% 318.97 9.49% 722.83 191.19% 8671.54 13.97% 1170.94
vit 3.78% 985.22 9.07% 2219.88 72.05% 8908.69 14.99% 3444.81

8

Table 4: Comparative Performance Analysis of Step time (ms) Prediction: Averaged results over five
distinct splits. Results highlight TraPPM’s enhanced accuracy compared with baseline models. The
lower the values, the higher the accuracy.

Family TraPPM NNLQP MLP GBoost
MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE

convnext 8.09% 46.00 9.50% 61.06 64.92% 354.59 16.15% 102.72
densenet 6.69% 15.46 18.41% 36.50 104.45% 155.09 14.08% 33.61
efficientnet 6.81% 13.46 9.45% 22.51 49.18% 118.56 15.36% 34.94
mnasnet 7.98% 12.72 18.59% 40.05 106.86% 80.87 14.49% 41.18
mobilenet 9.20% 8.95 14.66% 21.69 116.48% 52.97 25.79% 31.44
poolformer 13.02% 27.05 13.23% 26.79 166.75% 119.56 14.59% 32.51
resnet 11.26% 16.20 25.45% 36.02 192.95% 122.75 24.13% 46.33
swin 9.01% 35.18 8.89% 33.66 60.08% 263.86 15.68% 72.44
vgg 10.74% 22.51 13.20% 30.29 69.91% 83.70 15.89% 43.59
visformer 14.79% 17.88 18.61% 15.29 437.33% 287.67 13.99% 14.85
vit 7.06% 40.13 9.15% 83.41 105.84% 432.32 16.60% 146.39

9

	Introduction
	Related Work
	Methodology
	Experiments and Results
	Conclusions
	Appendix
	Enviroment setup
	Datasets
	Evaluation Metrics
	Baseline Models

