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Abstract

As datasets and models grow in size and complexity to increase performance, the
risks associated with sensitive data also grow. Differential privacy (DP) offers a
framework for designing mechanisms that provide a degree of privacy that can
help conceal sensitive features or information. However, different domains and
applications can naturally exhibit different rates of trade-offs between privacy and
performance depending on their characteristics. In contrast to well-studied areas
(e.g., healthcare), one relatively unexplored domain is network traffic analysis
where the data contains sensitive information on users’ communications. In this
paper, we apply DP to various machine learning models trained to classify between
encrypted and non-encrypted packets from network traffic; we emphasize that our
goal is to examine a relatively unexplored area to analyze the trade-offs between
privacy and performance when the data contains both encrypted and un-encrypted
observations. We show how varying model architecture and feature sets can be a
relatively simple way to achieve more optimal performance-privacy trade-offs; we
also compare and contextualize reasonable privacy budgets from our analysis in
the network traffic domain against those in other more well-studied domains.

1 Introduction

Network traffic analysis is a key component of infrastructure security—proper identification of
network protocols can facilitate network sizing and enable the detection of anomalous connections,
revealing ongoing attacks or insecure protocols within the network. A unique challenge for training
machine learning (ML) models on network traffic data lies with the data itself, which contains
sensitive information such as IPs, ports, protocols, or clear-text payloads. If these models are shared
across different parties, it is imperative that no sensitive information on the underlying data is leaked.

In this paper, we explore the trade-offs of applying differential privacy (DP) [9] to protect the privacy
of the training data in the context of network traffic classification; by varying the choice of model
architecture and features used, we study the privacy-performance trade-offs of training both the DP
and non-DP versions of models and show how these changes, along with the underlying domain and
data characteristics, can considerably impact the selection of reasonable privacy budgets.
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2 Background

2.1 Network Traffic

Data is carried over computer networks in the form of discrete network packets where each packet
carries protocol-dependent headers along with information in its payload. These packets then
constitute a tuple-like structure consisting of multiple fields of information including source and
destination IP addresses, ports, and other data relevant to network protocols. These packets are our
fundamental unit of information as we classify between encrypted and un-encrypted/plain traffic. We
note that if a compressed file is sent over an un-encrypted protocol we consider it plain.

2.2 Differential Privacy (DP)

Differential privacy, intuitively, ensures that for any given individual in a dataset, the output of a
DP-satisfying mechanism will be similar whether the individual’s data is included in the mechanism
input or not. Those protected by DP guarantees (i.e., the entity whose presence is to be concealed)
are known as privacy units and can represent any entity in the data (e.g., a user). In this paper, our
privacy unit is a network packet or the information in said packet. We first formalize the notion of DP.
Definition 1 ((ε, δ)-differential privacy). [8] A randomized mechanism M satisfies (ε, δ)-DP if for
all S ⊂ Range(M) and all neighboring datasets D and D̃ (datasets differing by a single individual),

P (M(D) ∈ S) ≤ eεP (M(D̃) ∈ S) + δ, (1)

where ε > 0 and δ ∈ [0, 1) are privacy budget parameters. When δ = 0, we denote this as ε-DP.

The degree of similarity between neighboring datasets for a DP mechanism is governed by ε; smaller
values correspond to more privacy and vice versa. The parameter δ is commonly viewed as the
probability with which ε-DP fails and is usually set on the order of o(1/poly(n)), where n is the size
of the dataset. DP’s popularity can be largely attributed to its strong theoretical properties, relative
ease of use, and overall flexibility. We refer to [10] for a more comprehensive review.

2.3 Related Work

Ad hoc anonymization methods alone have been insufficient to ensure privacy for sensitive
datasets [15, 1]. Sweeney [21] linked public voter records to anonymized health records from
Massachusetts state employees to identify then-governor William Weld’s health records. A similar
attack [15] shut down the Netflix Prize competition after individuals in the anonymized competition
dataset were partially de-identified. Even summary statistics of anonymized data have proven insecure
as attacks on 2010 US Census statistics were able to reconstruct 46% of the records [6].

Models trained on sensitive data are also susceptible to attacks. [19] showed that, by using a black-box
“target model” to synthesize training data and using those to train “shadow models” replicating the
target model, an attacker can use the shadow models and synthesized data to infer membership of a
given record in the training dataset for the target model. [24] demonstrated (approximate) attribute
inference is also possible using membership inference as a subroutine. If attackers have additional
information (e.g., model parameters), more attacks are possible [19, 24].DP makes no assumptions
on the methods used by attackers to reveal an individual’s presence in a sensitive dataset. [22] proved
that an attacker’s membership inference (MI) advantage AdvMI (i.e., the difference between the
attacker’s true and false positive rates) is bounded by AdvMI ≤ eε − 1. Even for larger ε where
theoretical MI advantage bounds no longer hold, [13] demonstrated that DP still limits state-of-the-art
MI attack success rates in practice. [2] explored the use of DP to train a deep neural network to
classify encrypted network traffic into classes of interest but do not attempt to classify between
encrypted and plain data or study performance-privacy trade-offs using reasonable privacy budgets.

2.4 DP in Network Analysis

As described in § 2.2, DP provides mathematically rigorous privacy guarantees to the data which,
in this context, we use to try and protect sensitive data that is commonly exchanged throughout
our networks. One problem with network data is that sensitive information might be exposed
while travelling the network. If attributes can be inferred from the data, user information such as
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visited websites, financial transactions, or even passwords can be revealed. Other domain-specific
peculiarities include the possible existence of more efficient DP mechanisms when portions of the
network data are already encrypted or applying DP to an online stream of network packet time-series
data among others—all relatively unexplored areas which we leave as part of our future work.

3 Methodology

The goal is to train a binary classifier using two sets of features, with and without DP, to distinguish
between encrypted and un-encrypted network traffic. These two sets of features can be characterized
by two approaches towards where the most useful network data lies: namely header-based, in
which information about the network packet header is extracted, and payload-based, that focuses in
calculating metrics that characterize the network payload. We train vanilla versions of these models
(without DP guarantees) as baselines to compare against their differentially private versions.

3.1 Approach

To classify network traffic into encrypted and non-encrypted (or plain) data, we pursue two strategies,
each characterized by a different set of explanatory variables in classifying network data: a header-
based approach and a payload-based approach. In the former, a number of features are extracted
from the header of the packet, while, in the latter, information from the payload itself is used to
calculate randomness metrics as our features.

Our privacy-preserving versions of both random forest and logistic regression models are implemented
in Python via IBM’s DP library, diffprivlib [12]. These are produced with ε-DP guarantees for various
values of ε. As the dataset considered for this paper is already public, our main focus is to explore
the privacy-utility trade-off to determine a reasonable domain-specific value for the privacy budget
ε that balances DP guarantees and model performance. To have a fair comparison between vanilla
and DP models, especially given the additional privacy budget allocation that would be necessary for
hyper-parameter tuning, we train each model with its default settings.

Header-based. In this approach, the features are extracted from the header of the network packets
in the dataset 3.2 including multiple fields of network protocols found in the network and transport
layers. These features are calculated through a custom network dissector tool, which provides a
serialized representation before entering into a pre-processing pipeline that processes the data in a
way to mitigate inconsistencies produced during the data capturing process from network interfaces
such as invalid or incomplete packets.

Payload-based. A payload-based approach is characterized by the hypothesis that the entropy of
encrypted data will be higher than that of equal-length plain data. Inspired by [4], we use the statistics
from randomness tests conducted on the payload data as features to train our classifiers. The payload
is first extracted using a custom extraction algorithm before being passed into a module that conducts
randomness tests on the payload including entropy, chi-squared, and arithmetic average, which are
used as the key features in our payload-based approach.

Model Choices. We train random forest, decision tree, AdaBoost, and logistic regression models as
our base models. Due to our specific domain and dataset, we favored tree-based approaches that tend
to be well-suited with both numerical and categorical data. Likewise, we also chose to evaluate an
AdaBoost algorithm since weak learners behave similar to decision trees using a single split. Due to
the nature of the network data and its heterogeneity across different network environments it might be
useful to leverage its iterate methods to improve overall performance. Finally, we explore the logistic
regression model as a simple binary algorithm to benchmark against previous models accordingly.

3.2 Dataset

The dataset [18] consists of network data captures in PCAP format collected between July 3rd at
9AM to July 7th at 5PM in 2017 and has been used relatively frequently in the field of network traffic
applications [17, 20, 23]. The data is labeled as encrypted or un-encrypted (plain) before being
divided into train/test splits. The training set consists of ∼1.26 million packets while the test set has
∼350,000 with approximately equal representation between the encrypted/un-encrypted classes.
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4 Evaluation

We evaluate the performance and trade-offs of our models with and without DP using both the
feature and payload-based approaches with a 70%/30% train-test data split. Vanilla (without DP)
random forests, decision trees, AdaBoost, and logistic regression models are trained; these classifiers
were then evaluated via prediction accuracy and F1-score on the test set. Then, for each ε ∈
{10−7, 10−6.5, . . . , 103}, we train 30 random forests and logistic regression models satisfying ε-DP,
and calculate their accuracy and F1-scores on the test set for comparison.

Header-based approach. Figure 2 shows the results of our DP simulations. As expected, the
average performance of the privacy-preserving models approaches the performance of non-DP models
as ε increases. For the DP version of logistic regression, its performance approaches that of the
non-DP version starting from ε = 102 onward. While theoretical privacy guarantees at these ε values
are weak, [13] demonstrated that even at this large of a privacy budget, practical privacy benefits
can still be realized. For the header-based approach, the random forest model appears to be more
promising with only a slight performance loss. The performance metrics level off beginning around
ε = 10−4. Though at this ε we see on average a 10% performance loss, the privacy guarantees at
this level are strong. Based on [22], an attacker’s membership inference advantage can be at most
e0.0001 − 1 ≈ 0.0001, guaranteeing that an attacker’s ability to infer whether any given network
packet is in the training set is barely better than random guessing. Based on these results, a DP
version of the random forest with the header-based approach works best.

Payload-based approach. In Figure 2, for the payload-based approach, in contrast to the header-
based comparisons, both the DP logistic regression and DP random forest reach their best performance
levels at smaller values of ε. DP logistic regression begins performing similarly to its vanilla
counterpart around ε = 10−3, while the performance of DP random forest levels off at around
ε = 10−4.5. In fact, for ε ≥ 10−2, DP logistic regression even outperforms DP random forest for the
payload-based approach. These values of ε all represent strong theoretical privacy guarantees against
membership inference attacks.

4.1 Privacy budget ε comparisons with other domains

We compare the minimum ε reasonable privacy budgets from our network traffic domain to DP models
in more common, well-studied domains in finance and healthcare (Table 1). For our purposes, we
define a “reasonable privacy budget” to be a value ε at which an ε-DP classifier achieves performance
that is both better than a baseline fully-random classifier and as close as possible to the performance of
its analogous vanilla (non-DP) classifier. For example, a reasonable privacy budget for the DP random
forest classifiers in Figure 2 would be ε ≥ 10−4. To ensure a fair comparison, we took a random
sub-sample of our network traffic data of approximately the same size and class distribution and re-ran
our DP model simulations. In this circumstance, the payload-based approach achieves reasonably
good utility for ε values comparable to the finance domain, while the header-based approach struggles
to obtain better-than-baseline performance for any ε in [5, 11], possibly due to the dimensionality of
feature sets used. Though the healthcare domain results are not directly comparable to ours due to
differences in the types of differential privacy and ML models used, we believe these comparisons
give additional perspective and highlight the importance of better understanding reasonable privacy
budgets with respect to the particular data-generating process and characteristics of each domain.

5 Conclusion

In this paper, we explored the performance/privacy trade-offs in the network security domain and
assessed how these trade-offs vary with the choice of features and model architecture as well
as against other more well-studied domains. A better understanding of these trade-offs between
performance and privacy guarantees can derive easy and efficient ways to protect sensitive data and
still preserve performance. Our future work hopes to build upon this by developing more efficient
privacy-preserving mechanisms such as studying DP guarantees for only protecting/concealing
un-encrypted observations in datasets with both encrypted and un-encrypted data.
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6 Appendix

Domain Dataset Model Type Reasonable
Budget

References

Finance Adult [7] Logistic regression ε ≥ 0.1 [5]
Finance Adult [7] Decision tree ε ≥ 1 [11]
Healthcare eICU [16] Deep learning ε ≥ 2.88 [3]
Healthcare Pneumonia [14] Deep learning ε ≥ 2.69 [25]
Network
traffic

PCAP data [18] Logistic regression
(payload)

ε ≥ 0.45 This paper

Network
traffic

PCAP data [18] Random forest (pay-
load)

ε ≥ 0.01 This paper

Table 1: Comparison of privacy budgets (smallest values of ε achieving acceptable utility) between
our network traffic domain and other domains in other works. For a fair comparison, we adjusted
the size of our training dataset to match the size of datasets from these other domains; therefore, the
reasonable budgets shown for the network traffic domain here differ from those in Figure 2.

(a) An example of a plain network packet: a data unit
transmitted over a computer network without any addi-
tional headers, encapsulation, or encryption.

(b) An example of an encrypted network packet: a
packet that has been encoded or scrambled to protect
content from unauthorized access or interception.

Figure 1: An illustration of the two types of packets: encrypted and un-encrypted (or plain).
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Figure 2: Comparison of model performance between vanilla classifiers and classifiers trained with
ε-DP guarantees across a range of ε privacy budget values. Both the accuracy and the F1-score are
shown. The first two columns show model results from the header-based approach, while the last two
pertain to the payload-based approach. The solid lines represent the average metric value over 30
seeds and the error bars represent one standard deviation in each direction. Dotted lines indicate the
non-DP models’ performance.
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