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Abstract

Real-time performance is crucial for interactive and exploratory data analysis,
where users require quick access to subsets or progressive presentations of query
results. Delivering real-time results over large data for common relational binary
operators like join is challenging, as join algorithms often spend considerable time
scanning and attempting to join parts of relations that may not produce any results.
Existing solutions often involve repetitive preprocessings, which are costly and may
not be feasible for interactive workloads or evolving datasets. Additionally, these
solutions may support only restricted types of joins. This paper presents a novel
approach for achieving efficient progressive join processing. The scan operator of
the join learns online during query execution, identifying portions of its underlying
relation that satisfy the join condition. Additionally, an algorithm is introduced
where both scan operators collaboratively learn to optimize join execution.

1 Introduction
Providing real-time performance for relational data queries is crucial in various applications Carey
and Kossmann (1997, 1998); Hellerstein et al. (1997); Haas and Hellerstein (1999); Li et al. (2016).
Users often require fast answers for each query in a sequence to expedite data analysis tasks. However,
with the substantial and rapidly growing volume of data, achieving highly efficient query processing is
challenging Dimitriadou et al. (2014); Idreos et al. (2015). This challenge is particularly pronounced
when dealing with queries over multiple relations, such as join or intersection, as algorithms may
need to explore a vast space of possible tuple combinations, resulting in significant computational
overhead for queries with conditions like join predicates.

Existing algorithms for returning subsets of query results quickly often demand substantial computa-
tional resources, significant preprocessing time, or are limited to specific query types Hellerstein et al.
(1997); Haas and Hellerstein (1999); Jermaine et al. (2005); Li et al. (2016). For example, Nested
loop ripple Join can run out of main memory for large relations Haas and Hellerstein (1999); Jer-
maine et al. (2005), while methods utilizing auxiliary data structures or indexes are time-consuming
and require user expertise Li et al. (2016); Chaudhuri and Narasayya (2007); Aken et al. (2021).
Sort- and hash-based approaches are constrained to specific query types and may need substantial
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memory Jermaine et al. (2005). With the rising complexity of join predicates, including user-defined
functions, and the need for efficient processing of large datasets, there is a growing demand for more
resource-efficient algorithms.

We propose a novel approach to join processing for delivering real-time insights over large data.
In this approach scan operators collectively learn during query execution, prioritizing promising
data portions and efficiently producing subsets of join results without upfront data preparation. This
method eliminates the need for offline training or precomputed data structures, accommodating both
stationary and non-stationary query workloads while minimizing initial delays in result generation.
The proposed algorithm currently works on join queries with two relations but further advancement
is possible to scale it to multiple joins making all the scan operators learn in similar way.

2 Framework
We present the framework that models processing of a join query method as online collaborative
learning of its operators.

Agents and Actions. Relational data Systems usually model a query as a tree of logical operators
called logical query plan Garcia-Molina et al. (2009). In a join query, the leaf nodes are scan operators
that read information from the secondary storage in blocks (pages). Each iteration (or round) of
processing the query starts with the call from the join operator. In our framework, each scan operator
in the query plan is a learning agent. The actions of an agent as the set of its available activities in
each round. The set of actions of each scan operator is the set of blocks in its base relation. Figure 1
shows the query plan for a join between two relations.

Reward. The reward of an action of an operator is the total number of output tuples produced if
this action is chosen by the operator. For example, in Figure 1, the reward of reading a tuple by a
scan operator is the number of joint tuples produced involving this tuple. After an operator selects an
action, the operator sends the intermediate results produced by this action to its parent operators and
eventually the root of the plan. The root operator recursively shares the reward of this action with its
child operators, e.g., in Figure 1 the join operator sends reward information to scan operators.

Figure 1: Framework for learning join strategy online
Strategies. The strategy of an operator is a mapping from its past actions and rewards to its available
actions. Some operators have fixed strategies that don’t change during query execution, while others
use adaptive strategies, selecting actions based on past performance and rewards. Adaptive strategies
become more beneficial when dealing with queries involving many rounds.

Learning strategies. Operators learn action rewards during query execution by exploring initially
and then alternating between exploration of new actions and exploitation of known rewarding ones to
maximize both short-term and long-term rewards. An important challenge in online learning is to
find a balance between exploration and exploitation. Exploring for too long may hinder learning by
investing excessive time in a single block, while exploring too briefly risks missing beneficial blocks.

Example 1. Let us review a simple approach to learning query processing. Consider a query that
joins relations R and S in Figure 1. To identify rewarding tuples, the scan operators on R and S
which we can call R-scan and S-scan respectively may first sequentially scan small subsets of these
relations and send them to the join operator. The join operator joins tuples in the explored subsets
of R and S and informs the scans of their tuples’ rewards. Using this sample of join attempts, the
R-scan may learn of highly rewarding tuples in the relation. R-scan exploits this knowledge by
sending highly rewarding tuples of R to the join operator to join with the remaining tuples of S where
the S-scan sequentially reads tuples in S. The R-scan iteratively explores and then exploits other
rewarding tuples in R.
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Challenges and overheads. To learn the rewards of explored tuples accurately, the early join
successes must be an unbiased sample. It may also take a while to learn the reward of each tuple. The
algorithms does not exploit its knowledge quickly, i.e., only after the complete join of the explored
subsets. Furthermore, many join attempts between highly rewarding tuples of R and tuples of S
might still not produce any result.
3 Single scan learning
In this section, we focus on learning for the R-scan operator in the join of R and S in Figure 1,
assuming a fixed strategy of reading randomly chosen tuples for S-scan. It is shown that in the
absence of any order, e.g., sorted relation, sequential scan, i.e., heap-scan, simulate random sampling
effectively Haas and Hellerstein (1999). R-scan aims to quickly and accurately learn the rewards of
tuples in R, joining them with S in decreasing order of rewards to efficiently produce results and
minimize user waiting time as explained in Section 2. Learning occurs during join processing, as
R-scan lacks prior knowledge of tuple rewards. The algorithm operates in super-rounds, where it
learns and selects the most rewarding unselected tuples from R to generate join results, continuing
until a specified number of tuples or complete results are achieved based on user input. In Appendix
A the Algorithm 1 is presented to clarify what occurs in each super-round.

Learning most rewarding tuple. Utilizing the many-armed bandit (MAB) algorithm M -Run Berry
et al. (1997), our algorithm employs N -Failure exploration technique. During each round, S-scan
reads a fresh tuple from S, while R-scan, if its current tuple produced joint tuples in the last N
rounds, continues sending it to the join operator; otherwise, it reads the next tuple of R. The reward
for each R tuple is the number of joint tuples during N -Failure exploration, stored in a reward table
in main memory. R-scan performs N -Failure for each R tuple until scanning M tuples or finding a
tuple producing at least one join tuple in each of the last M rounds. At this point, R-scan and S-scan
fully exploit the most rewarding R tuple by performing a full join. R-scan selects the highest reward
tuple from the reward table, reads it from disk using random access, and sends it to the join operator.
S-scan resets its sequential scan from the beginning of S, reading and sending each tuple to the join
operator. To handle sparse rewards, R-scan may pick the last scanned tuple in main memory for the
full join in some super-rounds, updating the reward table to track fully exploited tuples.

Subsequent super-rounds. After each super-round, R-scan excludes the most rewarding tuple from
its available actions, resuming sequential scanning from the last stopped position. It reads and sends
the next unread tuple of R to the join operator, explores its reward with the N -Failure technique,
and updates the reward table in main memory if the reward is non-zero. S-scan continues sequential
scanning of S during this N -Failure exploration. In each super-round after the first, R-scan estimates
the new most rewarding tuple by reading only one new tuple from R since it has enough information
after reading one tuple to select the most rewarding tuple from the reward table. It then accesses the
selected tuple using its address in the reward table.

4 Collaborative scans
In m-to-n joins of R and S, employing learning strategies on both R-scan and S-scan may optimize
response time but doubles I/O accesses, significantly slowing join processing. To address this,
interleaving learning and sampling is proposed, treating explored tuples as both scan actions and
random samples from the base relation. Using the M -Run learning method, each exploration involves
sending both available actions and random samples to the join operator. In each super-round, one
scan performs N -Failure exploration, while the other performs sequential scan, switching strategies
for subsequent rounds. The join stops after reaching the desired tuple count. Due to switching, a scan
may not immediately resume N -Failure after the last explored tuple, potentially skipping exploration.
5 Preliminary empirical results
Methods. We evaluate our proposed methods and the comparable methods explained in Section 1. We
compare our methods to Nested Loop join (NL) Garcia-Molina et al. (2009) and Sort-Merge-Shrink
(SMS) join Jermaine et al. (2005). SMS is a sort-based approach to generate a subset of results of
equi-joins progressively and quickly. Empirical studies indicate that SMS outperforms hash-based
algorithms Jermaine et al. (2005). Although SMS is not fully comparable to ours for not supporting
non-equijoins, to better understand the performance of our methods, we compare them to SMS.

Data. We use TPC-H benchmark www.tpc.org/tpc, to generate the queries and databases for our
experiments. We generate a TPC-H database of size 50 GB. The join processing time is influenced
by the skewness of join attribute values. We evaluate the query run-time over different versions
of TPC-H database with different degrees of skewness in the join attributes. Our experiments use
Zipf distributions with z values ranging between [0, 1, 1.5] wherein z = 0 will result in uniform
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distribution and for z ≥ 0.5, the distribution becomes more skewed as the value of z grows. We run
each query 3 times by randomly shuffling orders of tuples and report the average. The reported times
include both learning and execution.

Queries. We have used the following M-N joins, Q9:partsupp ▷◁partkey lineitem and
Q11: orders ▷◁o_orderdate=l_shipdate lineitem and the following 1-N join queries, Q10 :
customer ▷◁custkey orders, Q12 : orders ▷◁orderkey lineitem, Q15 : supplier ▷◁suppkey
lineitem from TPC-H workload. To evaluate the performance of our methods over joins with
complex conditions, we modify the join predicates of these queries to resemble similarity joins. We
modify the join predicate of TPC-H queries and use Levenshtein distance instead of equality to
implement approximate match between join attributes and perform non-equal joins.

Platform. We have performed the empirical study inside PostgreSQL 11.5 database management
system on a Linux server with Intel(R) Xeon(R) 2.30GHz cores and 500GB of memory. We have used
query Q12 : orders ▷◁orderkey lineitem to train the hyper-parameters of the proposed algorithms,
e.g,. N .
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Figure 2: Discounted weighted average times for CL, OSL_right, OSL_left, SMS, and NL over Q9.

In Figure 2 we compare collaborative learning (CL), single scan learning (OSL_left and OSL_right),
NL, and SMS using an M-N equi-join query Q9 using log-log graphs for three different z values.
There we plotted the discounted weighted average times of different approaches for different output
sample size (K). Here, discounted weighted average time measures the users’ waiting time for
receiving samples of results and sample size means the required amount of joint tuples to be generated
from the query. Here, for all three different z values, at least one approach among OSL_left,
OSL_right, and CL is performing better than both SMS and NL. NL does not produce any results
over the dataset with z = 1.5. The reported results for SMS use significantly larger memory (4GB)
than other methods (0.5GB). The differences between the learning algorithms with NL and SMS
become generally more significant as the skewness parameter z increases. In each setting, one of
the relations may contain more tuples with high rewards than the other. Therefore, using OSL for
one of the scan operators may sometimes become more efficient than using CL. Nonetheless, it is
not clear which scan operators should use a learning strategy to deliver the most efficient results
before running the query. It is an interesting question and requires more analysis to figure out what
characteristics should be present for making this decision intuitively. In Figure 4 of Appendix B we
presented another comparison among all the approaches using another M-N equi-join query Q11.
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Figure 3: Discounted weighted average times for CL, OSL_left, OSL_right, and NL over Q10

Figure 3 reports the results of CL, OSL (OSL_left and OSL_right), and NL over non-equijoin query
created from Q10, using log-log graphs. We observe almost a similar trend to the ones of equi-join
queries where learning-based methods substantially outperform NL. SMS is not present here as it
does not support non-equijoin queries. Figure 5 of Appendix B reports the results over non-equijoin
query created from Q15.
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Appendix A Single scan learning algorithm

Algorithm 1: OSL algorithm to generate k tuples for R ▷◁ S

rewardTable← ∅
while Size(result) < k do

// start a super round
while Size(rewardTable) ≤M do

// Read sequentially the next tuple in R
r← R-Scan.nextTuple()
// Estimate reward of r using N-Failure
failure← 0
success← 0
// Read tuples sequentially from S
s← S-Scan.nextTuple()
while failure ≤ N do

if r ▷◁ s ̸= ∅ then
success ++
Append(result, r ▷◁ s)

else
failure ++

if Size(result) ≥ k then
return

s← S-Scan.nextTuple()
// Add information of r to reward table
rewardTable← rewardTable ∪(r.address, success)

// Find most rewarding tuple
maxTuple← ArgMax(rewardTable)
rewardTable← rewardTable \ maxTuple
// Exploit the most rewarding tuple
r← R-Scan.getTuple(maxTuple.address)
Append(result, t ▷◁ S)

Algorithm 1 describes the general structure of the Single Scan Learning algorithm Online Sequential
Learning (OSL) for R-scan. To simplify the exposition, we show operations of both R-scan and
S-scan. OSL constitutes a series of super-rounds. In each super-round, our method first explores and
learns the most rewarding tuple amongst all (remaining) tuples in R. It produces join results while
learning. It then exploits the information learned in the super-round and performs a full join of the
selected tuple with S. Our method continues to the next super-rounds until it generates sufficiently
many results based on the user’s preference.
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Appendix B More empirical results
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Figure 4: Discounted weighted average times for CL, OSL_right, OSL_left, SMS, and NL over Q11.

Figure 4 compare the discounted weighted average times of the collaborative learning (CL), single
scan learning (OSL_left and OSL_right), NL, and SMS for different output sample sizes (K) using
the M-N equi-join query Q11 using log-log graph. Here NL again does not produce any results over
the dataset with z = 1.5. The reported results for SMS use significantly larger memory (4GB) than
other methods (0.5GB). The differences between the learning algorithms with NL and SMS become
generally more significant as the skewness parameter z increases.
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Figure 5: Discounted weighted average times for CL, OSL_right, OSL_left and NL over Q15.

Figure 5 reports the results of CL, OSL (OSL_left and OSL_right), and NL over non-equijoin
query created from Q15 using log-log graphs. We observe almost a similar trend to the ones of
equi-join queries where learning-based methods substantially outperform NL. This difference is more
significant for values of z > 0 in the results of Q15 as due to the skewness in the data learning-based
methods may find more highly rewarding partitions. NL has not produced any answers for Q15 and
z = 1.5 after about 15 minutes.
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