
On the Promise and Challenges of Foundation Models
for Learning-based Cloud Systems Management

Haoran Qiu1 Weichao Mao1 Chen Wang2 Hubertus Franke2 Zbigniew T. Kalbarczyk1

Tamer Başar1 Ravishankar K. Iyer1

1University of Illinois Urbana-Champaign 2IBM Research

Abstract

Foundation models (FMs) are machine learning models that are trained broadly on
large-scale data and can be adapted to a set of downstream tasks via fine-tuning,
few-shot learning, or even zero-shot learning. Despite the successes of FMs in the
language and vision domain, we have yet to see an attempt to develop FMs for
cloud systems management (or known as cloud intelligence/AIOps). In this work,
we explore the opportunities of developing FMs for cloud systems management.
We propose an initial FM design (i.e., the FLASH framework) based on meta-
learning and demonstrate its usage in the task of resource configuration search
and workload autoscaling. Preliminary results show that FLASH achieves 52.3–
90.5% less performance degradation with no adaptation and provides 5.5× faster
adaptation. We conclude this paper by discussing the unique risks and challenges
of developing FMs for cloud systems management.

1 Introduction
Lately, foundation models (FMs) have exhibited notable efficacy in tackling a range of intricate tasks,
especially in natural language processing (NLP) or computer vision. An FM is typically referred to as
any ML model that is trained on broad data at scale and can be adapted to a wide range of downstream
tasks [3]. The training of such an FM is called pretraining and the adaptation to a downstream task
is called fine-tuning. For example, a pre-trained BERT model [10] (an FM in the NLP domain) has
shown 6–11% improvement in downstream tasks including question answering, sentiment analysis,
and semantic pairing with light fine-tuning (i.e., 2–4 epochs on much smaller fine-tuning datasets).

Foundation
Model

Data

Image
Captioning

Text/Numbers

Code/Tests

Image/Videos

Speech/Signals

Question
Answering

Sentiment
Analysis

Instruction
Following

(I) Pretraining (II) Fine-tuning

FLASH
(This Work)

Data

Power
Management

Metrics

Configurations

HW/SW Events

… …

Resource
Config Search

Workload
Autoscaling

Load Balancing

(I) Pretraining (II) Fine-tuning

… …

Foundation Model in Language/Vision Domain Foundation Model in Cloud Systems Management

Downstream
Tasks

Downstream
Tasks

Pre-trained
Once

Pre-trained
Once… …

Adapted
At-scale

Adapted
At-scale

Figure 1: Foundation models in language/vision tasks (left) and the idea of FLASH (right).

FMs have been driving a paradigm shift in the way that modern-day ML models are trained and used.
As illustrated in Fig. 1, rather than learning each task-specific model from scratch (which is costly
in terms of both dataset collection and training time), an FM model that is pre-trained once can be
adapted to various tasks via lightweight fine-tuning [7] or few/zero-shot learning [57, 66].

Despite the successes of FMs in the language and vision domains, there is relatively little work
exploring the development of an analogous FM for cloud systems management, also known as cloud
intelligence or AIOps [2, 9]. Over the years, numerous ML-based solutions (especially supervised

Machine Learning for Systems Workshop at 37th NeurIPS Conference, 2023, New Orleans, LA, USA.

learning and reinforcement learning or RL) have been developed and deployed by cloud providers to
build, operate, and optimize cloud systems [2, 8, 14, 26, 21]. The tasks that benefit from ML include
resource management [38, 20, 62, 40, 59, 43, 56, 33, 61, 22, 69, 11, 42], job scheduling [30, 31, 64,
1, 5, 32], congestion control [60, 49, 19, 25, 28, 50], and power management [58, 65, 63, 6, 18].

However, the existing way of developing and training one model per task is costly in terms of both
training time and dataset collection effort. Yet, the learned model in each task requires substantial
retraining (even with transfer learning) when serving new applications or cloud infrastructures.

In this position paper, we lay the groundwork for developing FMs in cloud systems management.
We first showcase a need for FMs in two systems management tasks, namely, resource configuration
search and workload autoscaling (see Appendix A.2). We then propose FLASH, an initial design
of an FM with meta-learning (see §2), and demonstrate the usage and efficacy of FLASH in the
two aforementioned tasks (see §3). Finally, we discuss some potential risks and challenges (see
Appendix A.1) that must be considered when developing such general-purpose models for cloud
systems management, which we believe will foster future research in this domain.

2 FLASH: An Initial Approach to FM
To facilitate efficient and lightweight model adaptation, we propose the design of FLASH, which
brings the pretrain-finetune paradigm of FMs to cloud systems management. Fig. 2 illustrates how
FLASH transforms the traditional ML model development for any specific systems management
task. Given a systems management task 5 in a managed system 1 (e.g., workload autoscaling in a
Kubernetes cluster), there are three main components: application 2 (i.e., the deployed workload),
environment 3 (i.e., the underlying infrastructure), and ML/RL agent 4 (the model trained to
control the task). Instead of developing and training one model per task for each ⟨app, env⟩ pair,
FLASH provides a framework for pre-training a base model as the common basis with meta-learning
and fine-tuning the base model to adapt to any ⟨app, env⟩ pair in the task.

Environment
Infrastructure

Application
Workload / Flow

Systems Management Task

Running
on

ML/RL Agent
Managed System

Task-specific Data Train Action
Prediction

Systems Management TaskML/RL AgentTask-specific Data Train Action

Prediction

…

Systems Management TaskML/RL AgentFine-tune
Action

Prediction

Systems Management TaskML/RL AgentFine-tune Action
Prediction

Systems Management TaskML/RL Agent
Fine-tune Action

Prediction

Meta-learnerPre-trainPre-training Data
(across Applications/

Environments)

……

……

Systems Management TaskML/RL AgentTask-specific Data Train Action
Prediction

FLASH Framework Base-learner

Embedding

Pre-train

Figure 2: Workflow of FLASH in transforming traditional ML model development processes.

We introduce embedding-based meta-learning [44, 35] in FLASH where the ML/RL agent is modeled
as a base-learner (6 in Fig. 2) and a meta-learner (7)1 is designed for learning to generalize across
applications and environments. The base-learner discovers policies that adapt to a specific application
and intra-environment dynamicity for each ⟨app, env⟩ pair, as each ML/RL agent originally does.
Meanwhile, the meta-learner generalizes across ⟨app, env⟩ pairs to address inter-environment
dynamicity and application heterogeneity. Inspired by word embeddings in NLP [34, 52], where
individual words are represented as numerical vectors in a lower-dimensional space and words
with similar semantic meanings get similar representations, FLASH’s meta-learner generates an
embedding that projects the application/environment-specific characteristics to a vector space. On this
projected vector space, FLASH maps ⟨app, env⟩ pairs with similar characteristics (e.g., applications
with similar performance sensitivity to resource contention) to neighboring locations (similar to
“clustering”), while projecting those with quite different characteristics to different clusters.

Interaction between Meta-learner and Base-learner. We focus on supervised learning (SL) and
RL which are the most common ML categories used in the systems domain [29]. The meta-learner
samples labeled data points (in SL) or RL trajectories and generates an embedding that accurately
represents the application running in the environment. As shown in Fig. 3, we use a bidirectional

1The meta-learner together with a shared model pre-trained via the base-learner compose the core of FLASH,
which is referred to as an FM that can fine-tuned to customize for particular applications or environments.

2

GRU (a special class of RNNs) [48, 15, 46] for embedding generation while leaving the exploration
of more advanced sequence models such as LSTMs [53, 16] and attention-based techniques (e.g.,
Transformers [55]) to our future research. The embedding is then fed to the base-learner (i.e., the SL
or RL agent) as part of its feature vector or state vector. The base-learner leverages the embedding
to adapt (fine-tune) its model or policy by differentiating heterogeneous workloads and computing
infrastructure changes. See Appendix A.5 for details about the meta-learner architecture.

SL Base Learner

SL Features
App+Env

Embedding

Features (𝑋)

Prediction (𝑌)

RL Base Learner

RL States
App+Env

Embedding

States (𝑆!)

Action (𝐴!)

Q(𝑆!, 𝐴!)

Actor Net
Critic Net

Meta Learner

Bi-
RNN
Layer

…𝑇𝑅"# 𝑇𝑅$# 𝑇𝑅%#Input LayerX1 Y1 XN YNX2 Y2 …

𝑇𝑅&# = (𝑠!, 𝑎!, 𝑟!)!∈(
One RL Trajectory from
the i-th <app, env>

Xi Yi

One data point
in SL base learner

Embedding
Layer (FCNN)

App+Env
Embedding

Figure 3: Interaction between the base-learner and the meta-learner in FLASH.

Pre-training and Fine-tuning with FLASH. During pre-training, FLASH is exposed to a pool of
⟨app, env⟩ pairs and trained to discriminate the individuality of each pair with meta-learning. For
commonality, FLASH also learns a shared model via the base-learner that can be used as a common
basis to build and adapt to customized models across different ⟨app, env⟩ pairs. The resulting
meta-learner and the shared model in FLASH are analogous to a pre-trained FM.

During fine-tuning, since the shared model is conditioned on application-/environment-specific
embeddings, the adaptation process only requires limited exposure. The embedding generation corre-
sponds to a few SL samples or RL trajectories to feed to the input layer of the meta-learner. Note that
even though the new pair has never been encountered, adaptation is still possible when the new pair
shares similar patterns with the encountered ones [35, 13, 36, 17]. For the pairs with quite dissimilar
patterns (detected based on the distance in the embedding space), the shared model/policy conditioned
on the embedding can be further fine-tuned to adapt to the optimal customized model/policy. Overall,
the pretrain-finetune paradigm provides an efficient way to balance the cost of pre-training with the
need for fast adaptation for heterogeneous cloud applications and environments.

3 Evaluation
We evaluate (a) the adaptation efficacy of FLASH across diverse applications and environments in
two case studies (described in Appendix A.2), and (b) the training and inference overhead of FLASH.

Resource Configuration Search. We implemented the Sizeless model with and without FLASH
in the task of resource configuration search, i.e., predicting the application runtime given the target
resource configuration. Three datasets were used for training and evaluation: (a) the Sizeless dataset
open-sourced by the original paper [11] consisting of 2000 serverless applications, (b) the OpenWhisk
dataset, which we collected on a local OpenWhisk cluster following the same methodology as [11],
and (c) the CloudBandit dataset [23] for 30 VM-based applications on three public cloud platforms.
Datasets (a) and (b) are used to evaluate the adaptability across different applications, while dataset
(c) is used to evaluate the adaptability across different cloud computing infrastructures. More details
about the task and datasets in this case study are deferred to Appendix A.3.

Table 1 shows the model performance comparison where the evaluation metric is mean absolute
percentage error (MAPE). For agents trained using the Sizeless dataset and OpenWhisk dataset (both
serverless applications), we use four real-world applications from [11] deployed on the OpenWhisk
cluster as the testing dataset. For agents trained using the CloudBandit dataset, we randomly split
the dataset by 8:2 to separate the testing dataset (20%) from the meta-learning training dataset.
Table 1: The prediction error of a Sizeless agent (i.e., MAPE) with and without FLASH. The number
of samples used as the base configuration to predict the target configuration is indicated as X-shot.

Dataset Sizeless [11] OpenWhisk CloudBandit [23]

of Samples 1-shot 2-shot 3-shot 1-shot 2-shot 3-shot 1-shot 2-shot 3-shot

Sizeless (training) 0.040 0.036 0.035 0.316 0.258 0.236 0.610 0.439 0.424
Sizeless (testing) 0.360 0.400 0.336 0.823 0.552 0.540 0.985 0.889 0.798

FLASH-Sizeless (training) 0.038 0.036 0.032 0.321 0.247 0.259 0.624 0.416 0.435
FLASH-Sizeless (testing) 0.046 0.038 0.034 0.357 0.263 0.275 0.649 0.424 0.497

Improved (testing) 87.22% 90.50% 89.88% 56.62% 52.36% 49.07% 34.11% 52.31% 37.72%

3

We evaluate the model performance on previously unseen applications with 1-shot, 2-shot, and
3-shot configurations, corresponding to the number of data samples the model uses as the base
configuration(s) to predict the application performance under the target configuration. In Sizeless,
OpenWhisk, and CloudBandit datasets, FLASH helps achieve up to 90.5%, 56.6%, and 52.31% lower
MAPE compared to the original Sizeless model, respectively. The improvement on the CloudBandit
dataset is the lowest because both Sizeless and OpenWhisk datasets contain detailed system-level
container-related metrics (e.g., heap used, user/system CPU time, voluntary context switches, and
bytes written to the file system), while the CloudBandit dataset does not. Therefore, the embeddings
generated from only performance metrics and resource configurations are not as expressive as the
embeddings generated with additional system-level metrics during application runtimes.

Workload Autoscaling. We generated 1000 synthetic applications based on the open-source ap-
plication generators and serverless benchmarks in Sizeless [11] as serverless workloads are highly
dynamic (and thus require autoscaling) and rely on the provider to manage the resources. For RL
agent training and inference, we used real-world datacenter traces [68] released by Microsoft Azure,
collected over two weeks in 2021. Next, we deployed the selected workloads as Deployments in a
five-node Kubernetes cluster in a public cloud and ran an RL-based multi-dimensional autoscaler with
each Deployment, controlling both the number of replicas (horizontal scaling) and the container sizes
(vertical scaling). We divided the 1000 generated applications with an 8:2 ratio. The 800 applications
are used in pre-training while the remaining 200 applications are used to evaluate the adaptability in
fine-tuning. The total application runtime is ∼60 days, and the offline pre-training time is ∼5.2 hours
with an NVIDIA Tesla V100 (16 GB) GPU. More details are deferred to Appendix A.4.

To evaluate the adaptation cost, we perform A/B tests (100 times) on FIRM with and without FLASH.
In each test, we randomly select a workload from the application pool and train the FIRM agent until
convergence. We then randomly select ten other different workloads from the pool for RL reward drop
evaluation. Fig. 4 shows the performance degradation without adaptation as well as the adaptation
costs. FLASH reduces the average reward drop percentage from the baseline (i.e., FIRM agent trained
using the testing applications) from 37% to 10.5%. FIRM leverages transfer learning (TL) with
parameter sharing to retrain an RL agent for a new application based on previous RL experience gained
when previously training the RL agent for known applications [38]. We measure the retraining time,
utilization deficit (compared to the converged RL policy), and performance degradation (compared to
SLOs) of the TL-based approach and FLASH. We find that FLASH adapts 5.5× faster than TL, which
results in 67.1% less performance degradation and 4.6× less CPU utilization deficit, during retraining.

0 50 100 150 200

Reward

0.00

0.25

0.50

0.75

1.00

C
D

F

FIRM

FLASH

Converged

(a) Reward Degradation.

0 100 200 300

Retraining Episodes

0.00

0.25

0.50

0.75

1.00

C
D

F

FIRM

FLASH

(b) Retraining Cost.

0 25 50 75 100

Utilization (%)

0.00

0.25

0.50

0.75

1.00

C
D

F

CPU

Memory

(c) Resource Utilization.

0 25 50 75 100

SLO Preservation (%)

0.00

0.25

0.50

0.75

1.00

C
D

F

FIRM

FLASH

(d) Performance.
Figure 4: Comparison of the performance and retraining cost of the FIRM model with FLASH.

Training and Inference Overhead. We evaluate the overhead of FLASH introduces in each case
study. At the inference stage, generating embeddings and including the embedding in the forward
pass process of the original neural network introduce additional latency. The average inference
overhead is up to 3.5× (i.e., from 2.3 ms to 8.1 ms for FIRM). However, compared to the second
(s)-level RL time steps, such overhead did not affect the RL training convergence or policy-serving
performance. At the training stage (including the meta-learner), the model update latency overhead
is up to 4.1× (from 1.21 s to 4.95 s for FIRM), leading to a pre-training time of ∼5.2 hours with an
NVIDIA Tesla V100 (16 GB) GPU. Model update of the RNN/GRU layer accounts for 75% of the
total model update latency. Therefore, after meta-learner training and meta-learner model parameters
are fixed, the model update overhead of the base-learner is negligible compared to the model update
latency of the original ML/RL agent (1.25 s compared to 1.21s).

4 Conclusion
In this paper, we proposed an initial design of FM with FLASH and demonstrated its usage in two
critical systems management tasks, namely, resource configuration search and workload autoscaling.
Preliminary results show that FLASH reduces the performance degradation of the ML/RL agents by
52.3–90.5% (with no adaptation) while reducing the retraining time by a factor of 5.5× (for adaptation).
We concluded this work by discussing some potential risks and challenges (see Appendix A.1) that
must be considered when developing such general-purpose models for cloud systems management,
which we believe will foster future research in this domain.

4

A Appendices

A.1 Discussion and Open Questions

Why Meta-learning for FMs? We observe a growing paradigm shift across domains where numerous
downstream models are directly built upon FMs which are pre-trained once but can be fine-tuned at
scale. Meta-learning provides a systematic framework for learning (via pre-training) the individuality
and commonality of ⟨app, env⟩ pairs in a systems management task, thereby demonstrating fast
adaptability in fine-tuning. In contrast, simply training on a wide range of ⟨app, env⟩ pair leads
to average or suboptimal performance while training on a narrow distribution of applications or
environments results in poor generalization [60, 38]. For example, resource autoscaling policies vary
with resource consumption characteristics, workload sensitivity to different resource allocations, and
heterogeneous SLOs. On the other hand, training one model per application or environment leads
to significant overhead [47, 54], while there is a lack of a principled and systematic approach for
fine-grained clustering and training one model per cluster.

Model Size and Complexity. Preliminary results in our experiments show that a two-layer bidi-
rectional GRU (RNN) followed by a fully connected layer can already provide 5.5× faster model
adaptation compared to transfer learning (in the task of workload autoscaling). We plan to conduct
larger-scale experiments to investigate the necessity of an extreme-size model or a more complex
model architecture (e.g., Transformers [55]). However, a larger model may lead to unnecessarily
higher pre-training costs and inference overhead which could be detrimental to latency-sensitive
online systems management tasks (e.g., job scheduling or autoscaling [39]).

Trade-offs between Generalizability and Heterogeneity. An open problem for cloud systems
management is how to achieve ML model generalizability across both (1) cloud systems (i.e.,
applications and environments) and (2) management tasks while still allowing the model to capture
the heterogeneity of the various systems in a task. FLASH is proposed as an initial FM design to
facilitate adaptability across applications/environments (but not across tasks). For example, the
pre-trained meta-learner from workload autoscaling may work for resource configuration search (by
generating application-representative embeddings) but not for congestion control (whose management
target is a traffic flow). Ultimately, we desire an FM that can learn general systems management
policies while still memorizing both task-specific details and application characteristics. However,
such a task-aware FM requires both a homogeneous task specification structure and unified data
representation modeling that can be generalized across systems management tasks, similar to a
unified next-token prediction task across different NLP-related tasks. In addition, focusing more on
generalizability may introduce unavoidable intrinsic model bias in downstream systems management
tasks while focusing more on heterogeneity may hinder learning an optimal shared model.

Risk of Homogenization and Bias. As the same shared models are repeatedly reused as the basis for
many applications and tasks (as described in §2), we enjoy the benefits of fast adaptation and training
cost amortization. However, centralization also means that these shared models are singular points of
failure that can radiate harm (e.g., security risks or biases) to downstream applications/tasks at scale.
It is well known that FMs have the potential to amplify existing biases present in the pre-training
dataset [67, 51]. For instance, a key consideration for cloud systems management could be application
bias or cloud infrastructure bias due to diverse characteristics. Compared to task-specific models, FMs
suffer more from such bias because (1) the training data is collected on a large scale which is likely
to be dominated by over-represented cloud applications or regions; (2) the huge number of learnable
parameters and complex model structures make model interpretation and debiasing much more
difficult; and (3) the bias of the FMs can be easily inherited (or even amplified) by all downstream
adapted models. This indicates a pressing need for designing proper debiasing frameworks for FMs
in the cloud systems management domain.

Relation to Large Language Models (LLMs). FMs are a strict superset of LLMs (e.g., GPT-3 [4])
in our definition as LLMs also follow the pretrain-finetune paradigm that FMs introduce. The term
“LLMs” emphasizes the way in which these pre-trained models are produced (e.g., with large textual
corpora trained using next-token prediction). Akin to how deep learning was popularized in computer
vision (e.g., ImageNet, AlexNet, and ResNet) [24] but now extends beyond, FMs emerged in NLP
with LLMs but FMs exist for many other modalities, including images, code, speech, proteins, and
molecules. However, although LLMs are quite good at information processing or summarization,
they may not be suitable for decision-making tasks or prediction tasks in cloud systems management.
In FLASH, on the other hand, the original ML/RL agents (i.e., base-learner) are kept because those
base-learner models have been proven to be successful in handling each downstream task (e.g., an

5

RL framework is good at workload autoscaling [40, 59]). The pretrain-finetune paradigm of FLASH
additionally benefits the base-learners by providing generalizability and fast model adaptability.

A.2 Case Studies and Motivation

In this section, we describe two ML-for-systems tasks, namely, resource configuration search (with
supervised learning) and workload autoscaling (with RL), and illustrate the motivation for an FM.

• Resource configuration search [56, 33, 61, 22, 69, 11] is a critical cloud systems management
task to decide the optimal resource allocation for VMs/containers to run (e.g., the memory size for a
serverless function) to meet application requirements without overprovisioning. This task is usually
modeled as a regression problem where a supervised learner is trained to predict the performance
and/or cost given a resource configuration. For example, Sizeless [11] leverages a fully connected
neural network to predict the average execution times of a serverless function given a target memory
size based on the monitoring data when running with a base memory size.
• Workload autoscaling [38, 20, 62, 40, 59, 43, 41] is modeled as a sequential decision-making
process, i.e., to decide the vertical and/or horizontal concurrency of the controlled application. RL is
well-suited for learning such policies, as it provides a tight feedback loop for exploring the state-action
space and generating optimal policies without relying on inaccurate assumptions (i.e., heuristics
or rules) [30, 40]. For example, FIRM [38] leverages an RL model DDPG to scale vertically (i.e.,
CPU/memory allocation) and horizontally (i.e., number of replicas). The goal of the RL agent is to
maximize resource utilization while maintaining application service-level objectives (SLOs).

Adaptation Requirements. Unfortunately, application or cloud environment heterogeneity could
invalidate model assumptions and result in suboptimality for the trained model. Re-training models
can be costly and requires a large amount of training data [26, 1]. Specifically, we took the open-
source implementation of Sizeless and FIRM models, trained them in the original setup described in
their papers, and studied the model performance degradation on new setups. Detailed descriptions of
the model architecture, training, and datasets are deferred to Appendices A.3 and A.4.

0.0 0.2 0.4 0.6 0.8

Absolute Percentage Error

0.00

0.25

0.50

0.75

1.00

C
D

F

Better

Sizeless

New Env

New App

(a) OpenWhisk dataset.

0.4 0.5 0.6 0.7 0.8

Absolute Percentage Error

0.00

0.25

0.50

0.75

1.00

C
D

F

Better

Vendor A

Vendor B

Vendor C

(b) CloudBandit dataset.

128 256 512 1024 1536 2048

Memory Config (MB)

50

100
E

xe
cu

ti
on

T
im

e
(m

s) 128MB

256MB

512MB

1024MB

1536MB

2048MB

Measured

(c) An example of estimation error.
Figure 5: Performance of trained Sizeless model [11] on unseen cloud platforms or new applications.

For Sizeless, we quantify the model performance degradation and show in Fig. 5 the CDFs of the
absolute percentage error (APE). The baseline (labeled as “Sizeless”) is the CDF of the Sizeless
model tested using the original Sizeless dataset, which has an average APE of 0.04 (consistent with
the original paper [11]). When testing the trained model on unseen applications deployed on the same
OpenWhisk platform, the CDF (labeled as “New App”) shows a 9.9× increase in median APE. When
testing the trained model (using data from cloud vendor A) on the same applications but running on
vendor B or C, the CDF (labeled as “New Env”) shows a 16× increase in median APE. Fig. 5 (c)
shows an example of misprediction when testing on an unseen application (i.e., Airline Booking). As
we can see, using different base memory configurations, the prediction can be under-/over-estimated,
leading to either application performance degradation or unnecessarily higher deployment costs.

Fig. 6(a) shows the per-episode reward degradation of FIRM’s RL agents when encountering new
applications (36.8% lower in median reward) or application updates (15.8% lower in median reward).
We then further investigated the degradation regarding container CPU utilization and the 99th
percentile application end-to-end latency. Fig. 6(b) and (c) show that the RL reward degradation comes
from both (1) over-allocation which leads to low utilization (e.g., median utilization when serving
new applications is 39% compared to the FIRM baseline’s 64%) and (2) under-allocation which leads
to SLO violations (e.g., more than 25% agents have at least 5.8× higher 99th percentile end-to-end
latency than the FIRM baseline). The degradation is primarily due to workloads’ heterogeneous
impacts on CPU utilizations and varying performance sensitivity to resource allocations [38]. The
learned mapping between RL states and optimal actions is no longer valid and thus requires retraining.

Key Takeaway: The characterization results highlight significant performance degradation when
applying either supervised learning or RL approaches to new applications and environments, which
emphasizes the need for innovative approaches to address the adaptability and efficiency of cloud

6

100 125 150 175 200

Per Episode Reward

0.00

0.25

0.50

0.75

1.00

C
D

F

Better

FIRM

Patches

New App

(a) Reward degradation.

0.2 0.4 0.6 0.8 1.0

CPU Utilization

0.00

0.25

0.50

0.75

1.00

C
D

F

FIRM

Patches

New App

(b) CPU utilization degradation.

2 4 6 8

Normalized End-to-end Latency

0.00

0.25

0.50

0.75

1.00

C
D

F

FIRM

Patches

New App

(c) SLO preservation.
Figure 6: Performance of trained FIRM model [38] on unseen applications or application updates.

systems management models. To avoid high (re-)training costs and enable fast adaptation, a promising
direction is to leverage the emerging “pretrain-finetune” paradigm introduced by FMs. Rather than
developing and training one model per task for a specific application and cloud environment setup, we
aim to pre-train an FM that provides (1) fast model adaptation to new applications and environments,
and (2) a common basis upon which many task-specific models are built via adaptation.

A.3 Details of Case Study on Sizeless

Sizeless Model. Sizeless [11] uses a fully connected neural network as the predictor for the regression
task of resource configuration search. The label and features used in the Sizeless model are shown in
Table 2, which are consistent with the original paper [11]. Sizeless predicts the serverless function
execution time given a memory size allocated to the function without using CPU allocation because
CPU allocation is proportional to the allocated memory in AWS Lambda. After a grid search to tune
the hyperparameters of the model (as shown in Table 3), the final model uses the Adam optimizer, a
MAPE loss function, 200 epochs, an L2 regularization of 10−2, and four layers.

Table 2: Features and labels in Sizeless (Ap-
pendix A.2).

Features (X)
Base memory, Execution time under the base memory,
Heap used, User CPU time, System CPU time, Voluntary
context switches, Bytes written to the file system, and
Bytes received over the network, Target memory

Label (y)
Execution time under the target memory size

Table 3: Sizeless training hyperparameters.
Parameter Parameter Range Selected
Optimizer SGD, Adam, Adagrad Adam
Loss MSE, MAE, MAPE MAPE
Epochs 200, 500, 1000 200
Neurons 64, 128, 256 256
L2 0, 0.0001, 0.001, 0.01 0.01
Layers 2, 3, 4, 5 4

Applications and Sizeless Dataset. We adopted the 16 representative production cloud workloads
selected in Sizeless [11] based on a survey of 89 industry use cases of serverless computing appli-
cations [12]. The selected production workloads include CPU-intensive tasks (e.g., floating-point
number computation), image manipulation, text processing, data compression, web serving, ML
model serving, and I/O services (e.g., read, write, and streaming). The Sizeless dataset is collected by
running 2000 synthetic AWS Lambda applications generated by combining the 16 selected represen-
tative production application segments based on random sampling with replacement from the segment
pool. Each segment represents the smallest granularity of common workloads in cloud datacenters. In
addition, each segment has to be associated with its own inputs to simplify load generation (e.g., the
image manipulation workloads come with random images). The generator also comes with setup and
tear-down scripts for all external services each segment uses (e.g., databases or messaging queues) on
AWS (for better integration with AWS Lambda).

The original Sizeless dataset includes measurements on the execution time and resource consumption
metrics (see [11] for a full table of dataset columns) for all applications across six different memory
sizes (128 MB, 256 MB, 512 MB, 1024 MB, 2048 MB, 3008 MB) for ten minutes each at 30
requests per second with an exponentially distributed inter-arrival time. In the future, the number of
implemented segments can easily be extended if specific workload profiles are missing.

To study the model prediction accuracy degradation when encountering new applications or compute
platform changes, we constructed two new datasets, OpenWhisk and CloudBandit.

• OpenWhisk Dataset. We implemented a synthetic application generator based on the open-sourced
generator from Sizeless. Overall, we generated 1000 unique applications that are deployable on
both OpenWhisk (for evaluation of the resource configuration search task) and Kubernetes (for
evaluation of the workload autoscaling task described in Appendix A.4). Following the same dataset
collection methodology as Sizeless [11], we deployed all applications on a 50-VM OpenWhisk
cluster setup on IBM Cloud. In addition to function container memory size, we also consider CPU

7

allocation (i.e., cpu.shares used in OpenWhisk) as another resource configuration. Collected
metrics remain the same as the Sizeless dataset.

• CloudBandit Dataset. The CloudBandit dataset [23] covers application resource configuration (i.e.,
number of nodes, CPU family type, number of vCPUs, and VM type), performance metrics, and
system metrics on three different public cloud platforms. The CloudBandit dataset was originally
collected by running 30 production workloads on a variety of different resource configurations
across three different cloud providers: Amazon Web Services, Microsoft Azure, and Google
Cloud Platform. We preprocessed the dataset to align it with the Sizeless model training dataset by
replacing the target memory size (used in the Sizeless dataset) with the target resource configurations
such as the VM type and vCPU count (used in the CloudBandit dataset).

Datasets OpenWhisk and CloudBandit are used to evaluate the ML model’s generalizability across dif-
ferent applications, while the dataset CloudBandit is also used to evaluate the model’s generalizability
across different cloud computing infrastructures.

A.4 Details of Case Study on FIRM

FIRM Model. In the task of multi-dimensional workload autoscaling, FIRM [38] uses an actor-critic
RL algorithm, DDPG [27]. The RL agent monitors the system- and application-specific measurements
and learns how to scale the allocated resources vertically and horizontally. Table 4 shows the model’s
state and action spaces. Table 5 shows the model hyperparameters.

The goal of the RL agent is to achieve high resource utilization (RU) while maintaining application
SLOs (if there are any). SLO preservation (SP) is defined as the ratio between the SLO metric
and the measured metric. If no SLO is defined for the workload (e.g., best-effort jobs) or the
measured metric is smaller than the SLO metric, SP = 1. The reward function is then defined as
rt = α · SPt · |R|+ (1− α) ·

∑
i∈R RUi, where R is the set of resources (i.e., container CPU limit

and memory capacity in our case). The RL algorithm is trained in an episodic setting. In each episode,
the agent manages the autoscaling of the application workload for a fixed period of time (100 RL
time steps in our experiments).

Table 4: RL formulation in FIRM (Ap-
pendix A.2).

State Space (st)
Resource Limits (CPU, RAM), Resource Utilization
(CPU, Memory), SLO Preservation Ratio (Latency,
Throughput), Observed Load Changes

Action Space (at)
Resource Limits (CPU, RAM), Number of Replicas

Reward Function (rt)
rt = α · SPt + (1− α) · (RUcpu +RUmemory)/2

Table 5: FIRM training hyperparameters.
Parameter Value
Time Steps per Episode 100 × 64 mini-batches
Replay Buffer Size 106

Learning Rate Actor (3× 10−4), Critic (3× 10−3)
Discount Factor 0.99
Soft Update Coefficient 3× 10−3

Random Noise µ (0), σ (0.2)
Exploration Factor ϵ (1.0), ϵ-decay (10−6)

Applications and Traces. As mentioned in Appendix A.3, we generated 1000 synthetic applications
(deployable on both OpenWhisk and Kubernetes) using the selected 16 representative production
cloud serverless workloads as application segments. We reused these application segments in the task
of workload autoscaling as well because serverless workloads are highly dynamic (and thus require
autoscaling) and rely on the provider to manage the resources. For RL agent training and inference,
we used real-world datacenter traces [68] released by Microsoft Azure, collected over two weeks in
2021. Next, we deployed the selected workloads as Deployments in a five-node Kubernetes cluster
on IBM Cloud Virtual Private Cloud (VPC) and ran an RL-based multi-dimensional autoscaler with
each Deployment, controlling both the number of replicas (horizontal scaling) and the container sizes
(vertical scaling). All nodes run Ubuntu 18.04 with four cores, 16 GB memory, and a 200 GB disk.

Application Updates/Patches. We introduced, in total, seven scenarios to investigate model perfor-
mance degradation when facing application patches, service payload size changes, and load pattern
variations. The several scenarios that we consider in this case study are: (1) For I/O services to a
backend file system (e.g., AWS S3) and the compression/decompression services, the size of files
being read, written, or streaming was changed from [128 KB, 256 KB, 384 KB] to [512 KB, 768 KB,
1024 KB]. (2) For database services, the size of the table being scanned was changed from 1024 items
to 10240 items. (3) For floating-point number calculation, the number of operations was changed
from 108 to 208. (4) For image manipulations, the dimension was changed from 40×40 to 160×160.
(5) For text processing, the JSON file size was changed from [250 B, 500 B, 1 KB] to [2 KB, 3 KB, 5
KB]. (6) For ML model serving, we changed the matrix multiplication dimension from 50 to 150. (7)

8

For load pattern changes, we divided the Azure workload traces into two parts, one half with a higher
daily load (> 105 per day) and the other half with a lower daily load (≤ 105 per day).

A.5 Meta-Learner Design

As the core component of FLASH, the meta-learner is designed to explicitly model the individuality
and the commonality of applications and environments in an ML-managed system. Specifically,
FLASH learns a shared model/policy to characterize the task commonality (across applications and
environments) and simultaneously trains a meta-learner to abstract the individuality to adapt the shared
policy to specific ⟨app, env⟩ pairs (in the base-learner). Instead of meta-learning the architectural
or algorithmic level configurations (e.g., parameter initialization, learning rate, or neural network
architecture), FLASH’s meta-learner learns to generate an embedding that projects the application-
and environment-specific characteristics to a vector space. On this projected vector space, ⟨app,
env⟩ pairs with similar characteristics are projected to neighboring locations, while those with quite
different characteristics are projected to locations far from each other. As mentioned in §2, the
meta-learner samples labeled data points (in SL) or RL trajectories and generates an embedding that
accurately represents the application running in the environment. The embedding is then fed to the
base-learner (as part of its feature vector or state vector) to adapt (fine-tune) its model or policy by
differentiating heterogeneous applications and cloud environment changes.

Agent Trajectories
from Episode Buffer

GRU GRU GRU … GRU

GRU GRU GRU … GRU

…

…

𝑋! 𝑋" 𝑋# 𝑋$

𝑆!(1)
𝐴!(1)
𝑅!(1)

𝑆#(1)
𝐴#(1)
𝑅#(1)

𝑆$(1)
𝐴$(1)
𝑅$(1)

𝑆!(𝑀)
𝐴!(𝑀)
𝑅!(𝑀)

𝑆"(1)
𝐴"(1)
𝑅"(1)

𝑆"(𝑀)
𝐴"(𝑀)
𝑅"(𝑀)

𝑆#(𝑀)
𝐴#(𝑀)
𝑅#(𝑀)

𝑆$(𝑀)
𝐴$(𝑀)
𝑅$(𝑀)

… … … …

…

…

Input Layer

Forward Hidden Layer

Backward Hidden Layer

Fully Connected Layer

Output Embedding

Time Step 𝑡 ∈ 1, 𝑇
Trajectory 𝑚 ∈ [1,𝑀]

Figure 7: Neural network architecture of FLASH’s RNN-based meta-learner for embedding genera-
tion. Each variable Xt in the input layer corresponds to a vector of indexed training data samples.
In supervised learning (not shown in the figure), Xt = [xt, yt] where xt is the feature vector and yt
is the label. In RL, Xt = [st(i), at(i), rt(i)], i ∈ {1..M} where M is the number of trajectories in
the selected episodes buffer. In supervised learning (not shown in the figure), Xt = [xt, yt] where xt

and yt are features and predictions for the t-th sample in an T -step trajectory, respectively.

Network Architecture. As shown in Fig. 7, the network architecture of FLASH’s meta-learner
consists of an input layer, a recurrent neural network (RNN) layer, and a fully connected neural
network (FCNN) layer (i.e., the embedding layer).

• Input Layer: The input layer selects what kind of information FLASH can use to learn such a
low-dimensional space to generate embeddings. Based on the insight that the datasets used for
base-learner model training already contain spatial and temporal characteristics that the managed
system manifests, labeled data points (in SL) and trajectories (in RL) are used as inputs to the
meta-learner. However, for RL, simply using all episodes is computationally intensive in practice.
As the goal is to learn a discriminative embedding to characterize the environment, the episodes
with low rewards are unhelpful or even harmful. Intuitively, those lower-reward trajectories are
generated with a random policy or a poorly trained policy, so they are not representative of the
workloads. Therefore, we chose the top M trajectories that have resulted in the highest rewards.

• RNN Layer: We use a bidirectional GRU (a special class of RNN) [48, 15, 46] that maintains a high-
dimensional hidden state with nonlinear dynamics to acquire, process, and memorize knowledge
about the current environment. In an RNN, hidden layers are recurrently used for computation.
Compared to memory-less models such as autoregressive models and feed-forward neural networks,
RNNs store information in hidden states for a long time. Hence, they are effective in capturing both
spatial and temporal patterns. In addition, a unidirectional RNN has the limitation that it processes
inputs in strict temporal order, so the current input has the context of previous inputs but not the
future. Bidirectional RNNs, on the other hand, duplicate the RNN processing chain so that the

9

inputs are processed in both forward and backward orders to enable looking into future contexts as
well. GRU, compared to vanilla RNNs, combines an update gate and a reset gate to enable retaining
relevant information from long sequences and discarding irrelevant or outdated information.

• Embedding (FCNN) layer: The output from the bidirectional RNN of the meta-learner is fed to a
fully connected neural network layer to generate an embedding (i.e., a vector of fixed size) that is
used to fingerprint/represent the ⟨app, env⟩ pair with which the base-learner is dealing with. As
shown in Fig. 3, the generated embedding is finally concatenated by the base-learner as part of the
SL feature vector or RL state vector at each time step.

Embedding Generation with a Bi-directional RNN. FLASH uses a bidirectional RNN [46] that
maintains a high-dimensional hidden state with nonlinear dynamics to acquire, process, and memorize
knowledge about the current ⟨app, env⟩ pair. An RNN is a type of neural network that is specialized
for processing a sequence of data X1, X2, ..., XT where each indexed element Xt corresponds to one
pre-processed variable in the input layer. In particular, we applied a multi-layer, bidirectional gated
recurrent unit (GRU) RNN [37] to the input sequences. Two unidirectional RNN hidden layers are
chained together in opposite directions and acting on the same input (as shown in Fig. 7). For the
forward RNN hidden layer, the first input is X1 and the last input is XT , but for the backward RNN
hidden layer, the first input is XT and the last input is X1. The output of the bidirectional RNN layer
is generated by concatenating together the corresponding outputs (i.e., the hidden states) of the two
underlying unidirectional RNN hidden layers. Mathematically, given M input sequences (i.e., RL
trajectories), we have the output OM = 1

M

∑M
m=1 H(Im) where H(.) is the encoder (i.e., the RNN

layer) which maps the input sequence Im to a low-dimension vector.

Table 6: FLASH training hyperparameters.
Parameter Value
Trajectory Buffer Size 32
Trajectory Expiration Time 300 time steps
Learning Rate 3× 10−4

RNN Input Size 256
RNN Hidden Layers 2
RNN Hidden Layer Size 256
Dropout 0.05
Embedding Size 32

We do not explicitly use the popular memory augmentation technique [45] for the meta learner as
the features of our application workloads are not as high-dimensional as those of computer vision
tasks [45] and the RNN hidden states suffice to provide good representations in our experiments.
We also leave the usage of more advanced sequence models such as long short-term memory
(LSTM) [53, 16] and attention-based techniques (e.g., transformers [55]) to our future research.

The output from the bidirectional RNN layer (i.e., OM) is fed to a fully connected neural network
(FCNN) layer to generate an embedding that is used to fingerprint/represent the ⟨application,
environment⟩ pair with which the base learner is dealing with. The input size is equal to the size of
the hidden RNN layer, and the output size is equal to d, which is the embedding size. ReLU is used
as the activation function. The generated embedding from the FCNN layer will be concatenated by
the base learner as part of the SL feature vector or RL state vector at each time step. We implemented
FLASH’s meta-learner with PyTorch, and the hyperparameters are shown in Table 6.

References
[1] S. Banerjee, S. Jha, Z. T. Kalbarczyk, and R. K. Iyer. Inductive-bias-driven reinforcement learn-

ing for efficient scheduling in heterogeneous clusters. In Proceedings of the 37th International
Conference on Machine Learning (ICML 2020), pages 629–641, Cambridge, MA, USA, 2020.
PMLR.

[2] R. Bianchini, M. Fontoura, E. Cortez, A. Bonde, A. Muzio, A.-M. Constantin, T. Moscibroda,
G. Magalhaes, G. Bablani, and M. Russinovich. Toward ML-centric cloud platforms. Commu-
nications of the ACM, 63(2):50–59, jan 2020. ISSN 0001-0782. doi: 10.1145/3364684. URL
https://doi.org/10.1145/3364684.

[3] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein,
J. Bohg, A. Bosselut, E. Brunskill, et al. On the opportunities and risks of foundation models.
arXiv preprint arXiv:2108.07258, 2021.

10

https://doi.org/10.1145/3364684

[4] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. In Proceedings of the 34th
International Conference on Neural Information Processing Systems (NeurIPS 2020), pages
1877–1901, Red Hook, NY, USA, 2020. Curran Associates Inc.

[5] J. Chen, S. S. Banerjee, Z. T. Kalbarczyk, and R. K. Iyer. Machine learning for load balancing in
the Linux kernel. In Proceedings of the 11th ACM SIGOPS Asia-Pacific Workshop on Systems
(ApSys 2020), pages 67–74, New York, NY, USA, 2020. Association for Computing Machinery.

[6] Z. Chen and D. Marculescu. Distributed reinforcement learning for power limited many-core
system performance optimization. In Proceedings of the 2015 Design, Automation and Test in
Europe Conference and Exhibition (DATE 2015), pages 1521–1526, 2015.

[7] K. W. Church, Z. Chen, and Y. Ma. Emerging trends: A gentle introduction to fine-tuning.
Natural Language Engineering, 27(6):763–778, 2021.

[8] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and R. Bianchini. Resource
Central: Understanding and predicting workloads for improved resource management in large
cloud platforms. In Proceedings of the 26th Symposium on Operating Systems Principles (SOSP
2017), page 153–167, New York, NY, USA, 2017. Association for Computing Machinery.
ISBN 9781450350853. doi: 10.1145/3132747.3132772. URL https://doi.org/10.1145/
3132747.3132772.

[9] Y. Dang, Q. Lin, and P. Huang. AIOps: Real-world challenges and research innovations. In 2019
IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings
(ICSE-Companion), pages 4–5. IEEE, 2019.

[10] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[11] S. Eismann, L. Bui, J. Grohmann, C. Abad, N. Herbst, and S. Kounev. Sizeless: Predicting
the optimal size of serverless functions. In Proceedings of the 22nd International Middleware
Conference (Middleware 2021), page 248–259, New York, NY, USA, 2021. Association for
Computing Machinery. ISBN 9781450385343. doi: 10.1145/3464298.3493398. URL https:
//doi.org/10.1145/3464298.3493398.

[12] S. Eismann, J. Scheuner, E. van Eyk, M. Schwinger, J. Grohmann, N. Herbst, C. L. Abad, and
A. Iosup. Serverless applications: Why, when, and how? IEEE Software, 38(1):32–39, 2021.
doi: 10.1109/MS.2020.3023302.

[13] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In Proceedings of the 34th International Conference on Machine Learning (ICML
2017), pages 1126–1135. JMLR.org, 2017.

[14] J. Gao. Machine learning applications for data center optimization, 2014.

[15] A. Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.

[16] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, nov 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735.

[17] T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey. Meta-learning in neural networks: A
survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(09):5149–5169,
2022.

[18] F. M. M. u. Islam and M. Lin. Hybrid DVFS scheduling for real-time systems based on
reinforcement learning. IEEE Systems Journal, 11(2):931–940, 2017. doi: 10.1109/JSYST.
2015.2446205.

[19] N. Jay, N. H. Rotman, P. Godfrey, M. Schapira, and A. Tamar. A deep reinforcement learning
perspective on internet congestion control. In Proceedings of the 36th International Conference
on Machine Learning (ICML 2019). PMLR, 2019.

[20] S. Kardani-Moghaddam, R. Buyya, and K. Ramamohanarao. ADRL: A hybrid anomaly-aware
deep reinforcement learning-based resource scaling in clouds. IEEE Transactions on Parallel
and Distributed Systems (TPDS 2020), 32(3):514–526, 2020.

11

https://doi.org/10.1145/3132747.3132772
https://doi.org/10.1145/3132747.3132772
https://doi.org/10.1145/3464298.3493398
https://doi.org/10.1145/3464298.3493398

[21] A. Karthikeyan, N. Natarajan, G. Somashekar, L. Zhao, R. Bhagwan, R. Fonseca, T. Racheva,
and Y. Bansal. SelfTune: Tuning cluster managers. In Proceedings of the 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 2023), pages 1097–1114,
Boston, MA, Apr. 2023. USENIX Association. ISBN 978-1-939133-33-5.

[22] A. Klimovic, H. Litz, and C. Kozyrakis. Selecta: Heterogeneous cloud storage configura-
tion for data analytics. In Proceedings of the 2018 USENIX Conference on Usenix Annual
Technical Conference (ATC 2018), page 759–773, USA, 2018. USENIX Association. ISBN
9781931971447.

[23] M. Lazuka, T. Parnell, A. Anghel, and H. Pozidis. Search-based methods for multi-cloud
configuration. In 2022 IEEE 15th International Conference on Cloud Computing (CLOUD
2022), pages 438–448, 2022. doi: 10.1109/CLOUD55607.2022.00067.

[24] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, 2015.

[25] X. Li, F. Tang, J. Liu, L. T. Yang, L. Fu, and L. Chen. AUTO: Adaptive congestion control
based on multi-objective reinforcement learning for the satellite-ground integrated network. In
Proceedings of the 2021 USENIX Annual Technical Conference (ATC 2021), pages 611–624.
USENIX Association, 2021.

[26] C.-J. M. Liang, H. Xue, M. Yang, L. Zhou, L. Zhu, Z. L. Li, Z. Wang, Q. Chen, Q. Zhang,
C. Liu, and W. Dai. AutoSys: The design and operation of learning-augmented systems. In
Proceedings of the 2020 USENIX Conference on Usenix Annual Technical Conference (ATC
2020), USA, 2020. USENIX Association. ISBN 978-1-939133-14-4.

[27] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. In Y. Bengio and Y. LeCun, editors,
Proceedings of the 4th International Conference on Learning Representations (ICLR 2016),
2016. https://arxiv.org/abs/1509.02971.

[28] Y. Ma, H. Tian, X. Liao, J. Zhang, W. Wang, K. Chen, and X. Jin. Multi-objective congestion
control. In Proceedings of the 17th European Conference on Computer Systems (EuroSys 2022),
pages 218–235, New York, NY, USA, 2022. Association for Computing Machinery.

[29] M. Maas. A taxonomy of ML for systems problems. IEEE Micro, 40(5):8–16, 2020. doi:
10.1109/MM.2020.3012883.

[30] H. Mao, M. Alizadeh, I. Menache, and S. Kandula. Resource management with deep reinforce-
ment learning. In Proceedings of the 15th ACM Workshop on Hot Topics in Networks (HotNet
2016), pages 50–56, New York, NY, USA, 2016. Association for Computing Machinery.

[31] H. Mao, P. Negi, A. Narayan, H. Wang, J. Yang, H. Wang, R. Marcus, M. Khani Shirkoohi,
S. He, V. Nathan, et al. Park: An open platform for learning-augmented computer systems.
Advances in Neural Information Processing Systems (NeurIPS 2019), 32, 2019. https://
proceedings.neurips.cc/paper/2019.

[32] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Alizadeh. Learning
scheduling algorithms for data processing clusters. In Proceedings of the ACM Special Interest
Group on Data Communication (SIGCOMM 2019), pages 270–288, New York, NY, USA, 2019.
Association for Computing Machinery.

[33] G. Mariani, A. Anghel, R. Jongerius, and G. Dittmann. Predicting cloud performance for
hpc applications before deployment. Future Generation Computer Systems, 87:618–628,
2018. ISSN 0167-739X. doi: https://doi.org/10.1016/j.future.2017.10.048. URL https:
//www.sciencedirect.com/science/article/pii/S0167739X17312542.

[34] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed representations of words
and phrases and their compositionality. In Proceedings of the 26th International Conference
on Neural Information Processing Systems (NeurIPS 2013), pages 3111–3119, Red Hook, NY,
USA, 2013. Curran Associates Inc.

[35] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel. A simple neural attentive meta-learner.
In Proceedings of the 6th International Conference on Learning Representations (ICLR 2018),
2018. https://openreview.net/forum?id=B1DmUzWAW.

12

https://arxiv.org/abs/1509.02971
https://proceedings.neurips.cc/paper/2019
https://proceedings.neurips.cc/paper/2019
https://www.sciencedirect.com/science/article/pii/S0167739X17312542
https://www.sciencedirect.com/science/article/pii/S0167739X17312542
https://openreview.net/forum?id=B1DmUzWAW

[36] A. Nichol, J. Achiam, and J. Schulman. On first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999, 2018.

[37] PyTorch. Gated Recurrent Unit Documentation. https://pytorch.org/docs/stable/
generated/torch.nn.GRU.html, 2023. Accessed: 2023-03-29.

[38] H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk, and R. K. Iyer. FIRM: An intelligent fine-
grained resource management framework for SLO-oriented microservices. In Proceedings of
the 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2020),
pages 805–825, Berkeley, CA, USA, Nov. 2020. USENIX Association.

[39] H. Qiu, S. Jha, S. S. Banerjee, A. Patke, C. Wang, F. Hubertus, Z. T. Kalbarczyk, and R. K. Iyer.
Is function-as-a-service a good fit for latency-critical services? In Proceedings of the Seventh
International Workshop on Serverless Computing (WoSC7) 2021, WoSC ’21, page 1–8, New
York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450391726. doi:
10.1145/3493651.3493666. URL https://doi.org/10.1145/3493651.3493666.

[40] H. Qiu, W. Mao, A. Patke, C. Wang, H. Franke, Z. T. Kalbarczyk, T. Başar, and R. K. Iyer.
SIMPPO: A scalable and incremental online learning framework for serverless resource man-
agement. In Proceedings of the 13th Symposium on Cloud Computing (SoCC 2022), pages
306–322, New York, NY, USA, 2022. Association for Computing Machinery.

[41] H. Qiu, W. Mao, A. Patke, C. Wang, H. Franke, Z. T. Kalbarczyk, T. Başar, and R. K. Iyer.
Reinforcement learning for resource management in multi-tenant serverless platforms. In
Proceedings of the 2nd European Workshop on Machine Learning and Systems, EuroMLSys
’22, page 20–28, New York, NY, USA, 2022. Association for Computing Machinery. ISBN
9781450392549.

[42] H. Qiu, W. Mao, C. Wang, H. Franke, A. Youssef, Z. T. Kalbarczyk, T. Başar, and R. K. Iyer.
AWARE: Automate workload autoscaling with reinforcement learning in production cloud
systems. In 2023 USENIX Annual Technical Conference (USENIX ATC 23), pages 387–402,
2023.

[43] F. Rossi, M. Nardelli, and V. Cardellini. Horizontal and vertical scaling of container-based
applications using reinforcement learning. In Proceedings of the 12th International Conference
on Cloud Computing (CLOUD 2019), pages 329–338, 2019.

[44] A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. Osindero, and R. Hadsell.
Meta-learning with latent embedding optimization. In Proceedings of the 7th International
Conference on Learning Representations (ICLR 2019), 2019. https://openreview.net/
pdf?id=BJgklhAcK7.

[45] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap. Meta-learning with
memory-augmented neural networks. In Proceedings of the 33rd International Conference on
International Conference on Machine Learning (ICML 2015), pages 1842–1850. JMLR.org,
2016.

[46] M. Schuster and K. K. Paliwal. Bidirectional recurrent neural networks. IEEE Transactions on
Signal Processing, 45(11):2673–2681, 1997.

[47] C. Sun, N. Azari, and C. Turakhia. Gallery: A machine learning model management system at
Uber. In International Conference on Extending Database Technology, 2020.

[48] I. Sutskever, J. Martens, and G. E. Hinton. Generating text with recurrent neural networks. In
Proceedings of the 28th International Conference on Machine Learning (ICML 2011), 2011.
https://icml.cc/2011/papers/524_icmlpaper.pdf.

[49] C. Tessler, Y. Shpigelman, G. Dalal, A. Mandelbaum, D. Haritan Kazakov, B. Fuhrer,
G. Chechik, and S. Mannor. Reinforcement learning for datacenter congestion control. Pro-
ceedings of the AAAI Conference on Artificial Intelligence (AAAI 2022), 36(11):12615–12621,
Jun. 2022.

[50] H. Tian, X. Liao, C. Zeng, J. Zhang, and K. Chen. Spine: An efficient DRL-based congestion
control with ultra-low overhead. In Proceedings of the 18th International Conference on
Emerging Networking EXperiments and Technologies (CoNext 2022), page 261–275, New
York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450395083. doi:
10.1145/3555050.3569125. URL https://doi.org/10.1145/3555050.3569125.

13

https://pytorch.org/docs/stable/generated/torch.nn.GRU.html
https://pytorch.org/docs/stable/generated/torch.nn.GRU.html
https://doi.org/10.1145/3493651.3493666
https://openreview.net/pdf?id=BJgklhAcK7
https://openreview.net/pdf?id=BJgklhAcK7
https://icml.cc/2011/papers/524_icmlpaper.pdf
https://doi.org/10.1145/3555050.3569125

[51] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,
E. Hambro, F. Azhar, et al. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971, 2023.

[52] J. Turian, L. Ratinov, and Y. Bengio. Word representations: A simple and general method
for semi-supervised learning. In Proceedings of the 48th Annual Meeting of the Associa-
tion for Computational Linguistics (ACL 2010), pages 384–394, USA, 2010. Association for
Computational Linguistics.

[53] G. Van Houdt, C. Mosquera, and G. Nápoles. A review on the long short-term memory model.
Artificial Intelligence Review, 53:5929–5955, 2020.

[54] M. Vartak and S. Madden. ModelDB: opportunities and challenges in managing machine learn-
ing models. Bulletin of the IEEE Computer Society Technical Committee on Data Engineering,
41(4):16–25, 2018. URL http://sites.computer.org/debull/A18dec/p16.pdf.

[55] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. In Proceedings of the 31st International Conference on
Neural Information Processing Systems (NIPS 2017), page 6000–6010, Red Hook, NY, USA,
2017. Curran Associates Inc. ISBN 9781510860964.

[56] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Stoica. Ernest: Efficient performance
prediction for large-scale advanced analytics. In Proceedings of the 13th USENIX Conference
on Networked Systems Design and Implementation (NSDI 2016), page 363–378, USA, 2016.
USENIX Association. ISBN 9781931971294.

[57] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni. Generalizing from a few examples: A survey
on few-shot learning. ACM Computing Survey, 53(3), jun 2020. ISSN 0360-0300. doi:
10.1145/3386252. URL https://doi.org/10.1145/3386252.

[58] Y. Wang, D. Crankshaw, N. J. Yadwadkar, D. Berger, C. Kozyrakis, and R. Bianchini. SOL: Safe
on-node learning in cloud platforms. In Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems (ASPLOS 2022),
pages 622–634, New York, NY, USA, 2022. Association for Computing Machinery.

[59] Z. Wang, S. Zhu, J. Li, W. Jiang, K. K. Ramakrishnan, Y. Zheng, M. Yan, X. Zhang, and A. X.
Liu. DeepScaling: Microservices autoscaling for stable cpu utilization in large scale cloud
systems. In Proceedings of the 13th Symposium on Cloud Computing (SoCC 2022), pages
16–30, New York, NY, USA, 2022. Association for Computing Machinery.

[60] Z. Xia, Y. Zhou, F. Y. Yan, and J. Jiang. Genet: Automatic curriculum generation for learning
adaptation in networking. In Proceedings of the ACM SIGCOMM 2022 Conference, pages
397–413, New York, NY, USA, 2022. Association for Computing Machinery.

[61] N. J. Yadwadkar, B. Hariharan, J. E. Gonzalez, B. Smith, and R. H. Katz. Selecting the
best VM across multiple public clouds: A data-driven performance modeling approach. In
Proceedings of the 2017 Symposium on Cloud Computing (SoCC 2017), page 452–465, New
York, NY, USA, 2017. Association for Computing Machinery. ISBN 9781450350280. doi:
10.1145/3127479.3131614. URL https://doi.org/10.1145/3127479.3131614.

[62] Z. Yang, P. Nguyen, H. Jin, and K. Nahrstedt. MIRAS: Model-based reinforcement learning
for microservice resource allocation over scientific workflows. In IEEE 39th International
Conference on Distributed Computing Systems (ICDCS 2019), pages 122–132, Washington,
DC, USA, 2019. IEEE Computer Society.

[63] A. Yeganeh-Khaksar, M. Ansari, S. Safari, S. Yari-Karin, and A. Ejlali. Ring-DVFS: Reliability-
aware reinforcement learning-based DVFS for real-time embedded systems. IEEE Embedded
Systems Letters, 13(3):146–149, 2021. doi: 10.1109/LES.2020.3033187.

[64] H. Yu, A. A. Irissappane, H. Wang, and W. J. Lloyd. FaaSRank: Learning to schedule functions
in serverless platforms. In Proceedings of the 2nd IEEE International Conference on Autonomic
Computing and Self-Organizing Systems (ACSOS 2021), pages 31–40, Washington, DC, USA,
2021. IEEE Computer Society.

14

http://sites.computer.org/debull/A18dec/p16.pdf
https://doi.org/10.1145/3386252
https://doi.org/10.1145/3127479.3131614

[65] K. Zhang, P. Wang, N. Gu, and T. D. Nguyen. GreenDRL: Managing green datacenters using
deep reinforcement learning. In Proceedings of the 13th Symposium on Cloud Computing (SoCC
2022), pages 445–460, New York, NY, USA, 2022. Association for Computing Machinery.

[66] R. Zhang, X. Hu, B. Li, S. Huang, H. Deng, Y. Qiao, P. Gao, and H. Li. Prompt, generate,
then cache: Cascade of foundation models makes strong few-shot learners. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2023), pages
15211–15222, 2023.

[67] Y. Zhang, F. Feng, X. He, T. Wei, C. Song, G. Ling, and Y. Zhang. Causal intervention for
leveraging popularity bias in recommendation. In Proceedings of the 44th International ACM
SIGIR Conference on Research and Development in Information Retrieval, page 11–20, New
York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450380379. doi:
10.1145/3404835.3462875. URL https://doi.org/10.1145/3404835.3462875.

[68] Y. Zhang, I. n. Goiri, G. I. Chaudhry, R. Fonseca, S. Elnikety, C. Delimitrou, and R. Bianchini.
Faster and cheaper serverless computing on harvested resources. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles (SOSP 2021), pages 724–739, New
York, NY, USA, 2021. Association for Computing Machinery.

[69] Y. Zhang, W. Hua, Z. Zhou, G. E. Suh, and C. Delimitrou. Sinan: ML-based and QoS-aware
resource management for cloud microservices. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS 2021), page 167–181, New York, NY, USA, 2021. Association for Computing
Machinery. ISBN 9781450383172. doi: 10.1145/3445814.3446693. URL https://doi.org/
10.1145/3445814.3446693.

15

https://doi.org/10.1145/3404835.3462875
https://doi.org/10.1145/3445814.3446693
https://doi.org/10.1145/3445814.3446693

	Introduction
	Flash: An Initial Approach to FM
	Evaluation
	Conclusion
	Appendices
	Discussion and Open Questions
	Case Studies and Motivation
	Details of Case Study on Sizeless
	Details of Case Study on FIRM
	Meta-Learner Design

