
Reinforcement Learning for FPGA Placement

Shang Wang1, Deepak Ranganatha Sastry Mamillapalli1, Qianxi Li1,
Tianpei Yang1, and Matthew E. Taylor1,2

1University of Alberta, Canada
2Alberta Machine Intelligence Institute (Amii), Canada

{shang8,mamillap,qianxi,tianpei.yang,matthew.e.taylor}@ualberta.ca

Abstract

This paper introduces the problem of learning to place blocks in Field-
Programmable Gate Arrays (FPGAs) and a preliminary learning-based method.
In contrast to previous FPGA placement algorithms, we depart from simulated
annealing techniques and instead employ deep reinforcement learning (deep RL)
for the placement task with the objective of minimizing wirelength. To facilitate the
agent’s decision-making, we design unique state representations including the chip-
board observations and interconnections between different blocks. Additionally,
we ground representation learning in the supervised task of predicting placement
quality to enhance the RL policy’s generalization capabilities. To the best of our
knowledge, we are the first to introduce a deep RL agent for FPGA placement,
with preliminary results to suggest the feasibility of our approach. We hope that
this paper will attract more attention to using RL in FPGAs by electronic design
automation engineers.

1 Introduction

The rapid growth in the scale of integrated circuits has heightened interest in electronic design
automation. Chip placement, a crucial yet time-consuming step in design, involves mapping netlist
components onto the chipboard. Recently, AI has gained traction for accelerating chip design, as seen
in Mirhoseini et al.’s RL-based ASIC macro placement [7] and DeepPlace’s reinforcement learning
success [2]. However, these advances have mainly focused on ASICs, while FPGA design deserves
greater attention, as FPGA placement represents a more constrained problem than ASIC placement.
Simulated annealing has traditionally been a backbone algorithm in FPGA placement methods due to
its natural handling of placement constraints and routing delays. Notably, RLplace [3], the current
state-of-the-art approach, enhances the efficiency of simulated annealing by allowing an RL agent
to choose from multiple types of directed move, such as random move or directed perturbation.
However, RLplace still relies on simulated annealing, which can be slow to converge, particularly for
complex FPGA designs. Its probabilistic search process is influenced by factors such as the cooling
schedule, and the bandit formulation assumes that the rewards are based solely on intrinsic properties,
lacking contextual information.

Solving large-scale sophisticated placement problems is likely to be NP-hard (i.e., are unlikely
to be solvable in polynomial time) [6]. We believe that RL offers advantages in tackling FPGA
placement problems by providing approximate solutions, adaptability to changing environments, and
generalization to similar instances, ideally outperforming traditional placement methods.

2 Methodology

The FPGA placement problem seeks to arrange logic elements on a chip’s canvas to optimize
performance while meeting various constraints, including the constraint that various block types

Machine Learning for Systems Workshop at 37th NeurIPS Conference, 2023, New Orleans, LA, USA.



can only be placed within pre-fabricated locations (see Figure 1). Traditional algorithms, including
RLplace, define the decision space on a chipboard that includes the complete placement of all blocks.
But, as in prior work [2, 7], we have chosen to formulate the problem as a sequential Markov decision
process (MDP). Our MDP consists of four key elements: 1) States represent the possible situations
the agent can encounter. Our state consists of the netlist graph, the current block to be placed, and the
placement status of the current board. 2) Actions are available decisions an agent can execute. We
define actions as locations where a given block can be placed without violating hard constraints (e.g.,
capacity or block type limits). 3) Rewards are numerical values that the agent receives as feedback
after taking actions. Intermediate steps receive a reward of 0 until the full placement is completed,
at which point the final reward is based on the true wirelength generated by VTR after routing. We
use Verilog-to-Routing (VTR) [9] as our simulator. VTR is an open-source CAD tool that provides a
complete suite of tools for FPGA design, which covers various stages of FPGA design, including
synthesis, mapping, placement, routing, and timing analysis. 4) State transitions define how the
state changes after an action (i.e., the new board layout after placing a block in a location).

Figure 1: The FPGA
board is 11 × 11 units
in size and incorporates
DSP, CLB, IO, and RAM
blocks, with IO locations
having a capacity of 2.

We define the state to be an image composed of four channels based
on the current state of the board and information from the netlist graph
about the block to be placed. The four channels are matrices of the same
size as the chipboard: 1) the remaining capacity of each grid cell, 2) the
number of times the placed block serves as a source/input in all nets,
3) the number of times the placed block serves as a sink/output in all
nets, and 4) the total Half-Perimeter Wirelength (HPWL) contributed by
each block placed on the grid to the relevant nets. HPWL [14] is defined
as the half-perimeter of the bounding boxes for all nodes in the netlist,
where xy and yb in Equation (1) are the coordinates of the endpoints of
net i. In addition to the board observations, the netlist graph represents a
directed graph that encodes the connections between various blocks and
the nets that link them. To extract valuable information from this netlist
graph, we generate a vector representation for each node by concatenating
node-specific features, which encompass the node’s type, index, and x
and y coordinates.

HPWL(i) =

(
max
b∈i

{xb} −min
b∈i

{xb}+ 1

)
+

(
max
b∈i

{yb} −min
b∈i

{yb}+ 1

)
(1)

We employ Proximal Policy Optimization (PPO) [10] to train a neural network as a policy model,
guiding the RL agent through episodes to maximize cumulative rewards (see Figure 2). The board
layout information is processed by through ResNet [5], while the netlist graph is handled by the Graph
Attention Network (GAT) [13] to embed node representations. The board observation embedding
and the current block embedding vectors are then concatenated to form the state embedding. PPO
updates the policy by optimizing the clipped objective function (see Equation (2)), where rt is the
probability ratio of new policy to old policy and At is the estimated advantage at time step t.

LCLIP (θ) = Êt

[
min

(
rt(θ) · Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
(2)

To address limited exploration in a sequential placement setting, we employ the RND framework
[1], shown to significantly improve performance in ASIC placement [2]. Instead of traditional sparse
rewards, we introduce intrinsic rewards RT as RT = ∥f̂(st; θ)− f(st)∥2. These rewards are based
on the prediction error between two neural networks: a fixed, randomly initialized target network
f(st) and a predictor network f̂(st; θ) trained on state information st. During training, we minimize
the mean squared error (MSE) loss by adjusting the predictor’s parameters θ. As the predictor
network becomes better at approximating the target network, it reduces prediction errors, leading
to intrinsic rewards that drive the agent to explore new facets of the placement environment. For
extrinsic rewards, VTR processes the complete placement generated by our RL agent for routing and
provides the real wirelength of the routed board as the reward score, which we normalize to [0, 1].

To improve learning, we used a pretraining strategy to help the agent learn useful weights in the initial
components of the network, similar to how others [3] showed pretraining in ASIC can help an agent
converge to higher performance more quickly. We first created a set of 10,000 boards with all the

2



blocks placed. Each board was labeled with the true wirelengths. We then trained the network to
predict wirelengths, with the intuition that a representation capable of predicting wirelengths would
be useful for an RL agent learning a policy and a value function.

Figure 2: The network takes board observations, the netlist graph, and the current block index as
input. It outputs a probability distribution over available placement locations (the policy) and an
estimate of the expected reward for the current placement (the value function).

3 Experiments

This section evaluates our base RL agent and the two implemented extensions. We chose wirelength as
our primary metric because it aligns directly with our reward mechanism, simplifying our assessment
without the need to integrate multiple metrics. We employ the tseng.net netlist and EArch.xml
architecture files as benchmarks from VTR [11]. This set-up consists of 56 CLB and 174 IO blocks.
In our initial experiments, we found that the agent struggled to place all the blocks, yielding results
no better than random placement. As a result, we decided to simplify the experiments.

We start by using an optimal VTR-derived placement and place a subset of blocks, beginning with a
constraint of placing only 1 configurable logic block (CLB), while keeping other block placements
fixed. Subsequently, we incrementally increase the number of CLBs the agent is responsible for
placing in each experiment, with a special focus on the results of placing 15 CLBs. We compare our
RL agent’s placements to VTR’s, as it is the current state-of-the-art baseline in placement and routing
of FPGAs.

In analyzing our results for placements, we find that for the 15-block placement, our agent, averaging
over 5 seeds, delivers wirelengths comparable to 5 seeds of VTR (see Figure 3b). Moreover, in
specific instances, our agent even outperforms the placements of VTR, highlighting its potential (see
Figure 3a). Figure 3b shows that including RND is critical, which improves exploration and results

(a) One example of outperforming VTR (b) Average performance over 5 seeds

Figure 3: 15 blocks placement

3



in better placements compared to its counterpart, underscoring RND’s key role in avoiding local
optima. The difference in results between the runs including RND and excluding RND is statistically
significant (a student’s t-test reports that p < 0.03). Although pretraining does not seem to help much,
further experimentation is required to assess if it would help improve sample complexity.

Each run of 4000 episodes takes roughly 4 hours to run on an NVIDIA GeForce RTX 3070 Ti GPU.
Each episode takes roughly 4 seconds, which includes the time for: 1) the RL agent to finish a
placement, 2) VTR to route the given circuit, and 3) updating the RL agent’s policy.

4 Discussion and Future Work

An effective state representation captures the underlying structure of the environment and enables
generalization by identifying similarities between different states. While ASIC has large blocks that
can take on multiple shapes, FPGA placement has fixed (pre-fabricated) locations that can hold blocks
of various types. We used chipboard-based observations and supplemented them with a directed graph
to describe the netlist. Future work will consider how to introduce more features related to FPGA
placement problems. For example, features such as critical path delay and the internal encapsulation
logic of each block could be valuable additions. Compared to using stacked images as observations in
Atari games [8], and MuJoCo’s state-based observations [12], when only one block is placed at each
step, changes between states are quite small. The high similarity in states can lead to difficulties for
the policy to distinguish between different states, motivating future research on richer feature spaces.

Rewards in this MDP are particularly sparse, making it difficult to learn a policy, especially when the
board size and block size increase [4]. In addition to using RND, future work could change the MDP
so that actions swapped placed blocks, allowing the agent to receive the wirelength reward after every
action. This change may also help to better differentiate states after each action. Nevertheless, an
enormous discrete action space introduced by this MDP presents a significant challenge.1 A good
placement should not only optimize wirelength but also account for critical time delays, congestion,
and area utilization. Different applications and objectives can define a “good” placement uniquely,
often requiring a trade-off between various metrics. One could approach this by linearly combining
different metrics or formulating the problem as a multi-objective RL task to optimize multiple
conflicting objectives simultaneously.

Recognizing the balance between placement quality and processing time, our future work will
prioritize optimizing processing time. Furthermore, we plan to enhance the applicability of the
method by experimenting with diverse netlists, aiming for a more comprehensive understanding of its
effectiveness.

5 Conclusion

This paper formulated the FPGA placement problem as an MDP and made a dedicated effort to
leverage RL to learn a placement policy. To our knowledge, we are the first to introduce a deep RL
model for FPGA placement problems. Much of our effort focused on constructing an appropriate
state, as the state used for prior ASIC placement methods was not applicable. We employed two
extensions, intrinsic rewards and pretraining, to enhance the performance of the RL agent. While our
approach may not yet outperform VTR, we have achieved promising preliminary results. Our work
represents a significant step forward in leveraging RL for FPGA placement and we hope others will
contribute to further advancements in this exciting area.

Acknowledgments and Disclosure of Funding

This work has taken place in the Intelligent Robot Learning (IRL) Lab at the University of Alberta,
which is supported by research grants from the Alberta Machine Intelligence Institute (Amii); a
Canada CIFAR AI Chair, Amii; Compute Canada; Huawei; Mitacs; and NSERC.

1If a board is 11 × 11 units in size, the agent would need to select the first block from the 11 × 11 grid,
and then select the second block from 11× 11− 1 alternatives, for a total of 14,520 possible actions (without
considering placement constraints).

4



References
[1] Yuri Burda, Harrison Edwards, Amos J. Storkey, and Oleg Klimov. Exploration by random

network distillation. In 7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[2] Ruoyu Cheng and Junchi Yan. On joint learning for solving placement and routing in chip
design. Advances in Neural Information Processing Systems, 34:16508–16519, 2021.

[3] Mohamed A Elgammal, Kevin E Murray, and Vaughn Betz. Rlplace: Using reinforcement
learning and smart perturbations to optimize fpga placement. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 41(8):2532–2545, 2021.

[4] Jianye Hao, Tianpei Yang, Hongyao Tang, Chenjia Bai, Jinyi Liu, Zhaopeng Meng, Peng Liu,
and Zhen Wang. Exploration in deep reinforcement learning: From single-agent to multiagent
domain. IEEE Transactions on Neural Networks and Learning Systems, pages 1–21, 2023.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[6] Zhuolun He, Lu Zhang, Peiyu Liao, Yuzhe Ma, and Bei Yu. Reinforcement learning driven
physical synthesis. In 2020 IEEE 15th International Conference on Solid-State & Integrated
Circuit Technology (ICSICT), pages 1–4. IEEE, 2020.

[7] Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Jiang, Ebrahim Songhori, Shen Wang,
Young-Joon Lee, Eric Johnson, Omkar Pathak, Sungmin Bae, et al. Chip placement with deep
reinforcement learning. Nature 594, 207–212 (2021)., 2021.

[8] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[9] Kevin E Murray, Oleg Petelin, Sheng Zhong, Jia Min Wang, Mohamed Eldafrawy, Jean-
Philippe Legault, Eugene Sha, Aaron G Graham, Jean Wu, Matthew JP Walker, et al. Vtr 8:
High-performance cad and customizable fpga architecture modelling. ACM Transactions on
Reconfigurable Technology and Systems (TRETS), 13(2):1–55, 2020.

[10] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[11] Verilog to Routing (VTR) Project Team. Benchmarks. https://docs.verilogtorouting.
org/en/stable/vtr/benchmarks/?highlight=Benchmarks, 2022.

[12] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ international conference on intelligent robots and systems, pages
5026–5033. IEEE, 2012.

[13] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. CoRR, abs/1710.10903, 2017.

[14] Ming Xu, Gary Gréwal, Shawki Areibi, Charlie Obimbo, and D Banerji. Near-linear wirelength
estimation for fpga placement. Canadian Journal of Electrical and Computer Engineering,
34(3):125–132, 2009.

5

https://docs.verilogtorouting.org/en/stable/vtr/benchmarks/?highlight=Benchmarks
https://docs.verilogtorouting.org/en/stable/vtr/benchmarks/?highlight=Benchmarks

	Introduction
	Methodology
	Experiments
	Discussion and Future Work
	Conclusion

