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Abstract

Content Delivery Networks carry the majority of Internet traffic, and the increasing
demand for video content as a major IP traffic across the Internet highlights the
importance of caching and prefetching optimization algorithms. Prefetching aims
to make data available in the cache before the requester places its request to reduce
access time and improve Quality of Experience on the user side. Prefetching is well
investigated in operating systems, compiler instructions, in-memory cache, local
storage systems, high-speed networks, and cloud systems. Traditional prefetching
techniques are well adapted to a particular access pattern, but fail to adapt to sudden
variations or randomization in workloads. This paper explores the use of reinforce-
ment learning to tackle the changes in user access patterns and automatically adapt
over time. To this end, we propose, DEEPREF, a Deep Reinforcement Learning
agent for online video content prefetching in Content Delivery Networks. DEEP-
REF is a prefetcher implemented on edge networks and is agnostic to hardware
design, operating systems, and applications. Our results show that DeePref DRQN,
using a real-world dataset, achieves a 17% increase in prefetching accuracy and a
28% increase in prefetching coverage on average compared to baseline approaches
that use video content popularity as a building block to statically or dynamically
make prefetching decisions. We also study possible transfer learning of statistical
models from one edge network into another, where unseen user requests from
unknown distribution are observed. In terms of transfer learning, the increase in
prefetching accuracy and prefetching coverage are [30%, 10%], respectively.

1 Introduction and Motivation

Recently, Multi-access Edge Computing (MEC) enabled caching and prefetching techniques to
be implemented at edge networks, enhancing Quality of Experience (QoE) at the user-side while
benefiting cloud server at the core layer in CDNs. Video streaming applications can utilize MEC
environments to prefetch video segments to end users at edge networks, allowing multi-users that are,
possibly, close geographically to benefit from the prefetched segments. SPACE [2] is a prefetching
and caching framework that utilizes MEC to prefetch video segments to edge networks in cellular
networks (i.e., 5G). Behravesh et al. [4] proposed a segment prefetching algorithm based on bit rate
prediction of client segment requests using a near-optimal machine learning approach. MVP [9] is
a video segment prefetching technique implemented at edge networks for 4K Videos On Demand
(VoD) applications. MVP achieves seamless playback in realistic LTE-A network infrastructure.

To this end, we hypothesize that prefetching an entire video content with high quality has its
advantages over segment prefetching in CDNs where the bottleneck is the upstream network between
edge networks and cloud networks. First, prefetching video content as a bulk saves resources in
the upstream network, however, segment prefetching is still subject to fluctuations in the upstream
network since a continuous Transmission Control Protocol (TCP) session needs to be maintained
throughout watching the video content. Second, Round Trip Time (RTT) of edge-cloud network is
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much larger than access-edge network due to the propagation delay, therefore, prefetching an entire
video content eliminates any propagation delay of future requests. Third, QoE is guaranteed in bulk
prefetching, and it is only subject to Adaptive Bit Rate (ABR) algorithms of the end user network
(i.e., access networks).

In this work, we utilize both Deep Q-networks (DQN) [18] and Deep Recurrent Q-Networks (DRQN)
[18] designs as building blocks to tackle the prefetching problem by modeling video content prefetch-
ing as POMDP. We propose, DEEPREF, a prefetcher which is implemented on edge networks and
takes only the request ID to decide what to prefetch, hence, DEEPREF is agnostic to hardware design,
operating system, and application. We also study possible transfer learning of RL models from one
edge network into another. We discuss the results for transfer learning in Sec.3.2.

Our results show that DEEPREF DRQN, using a real-world dataset, achieves 17% increase in prefetch-
ing accuracy and 28% increase in prefetching coverage on average compared to baseline approaches
that use video content popularity as a building block to statically or dynamically make prefetching
decisions. In terms of transfer learning, the increase of prefetching accuracy and prefetching coverage
are [30%, 10%], respectively. We discuss the experimental design and results in Sec. 3.

2 System Architecture

We design, DeePref, such that a prefetching decision is made at edge networks every time a user
request is received from access networks. Consequently, the prefetching requests are synchronous to
user requests. Our results show that DeePref is more moderate compared to baselines, as discussed in
Sec.3.2. Moreover, we assume that the cloud network periodically updates the edge network with
newly added video content to accommodate for prefetching new/unseen items.

2.1 Reward Design

In DEEPREF, we simplify the reward design as much as possible to entail all aspects of prefetching
in numerical values ranging between [−2, 2] based on normalized latency, [0, 1] where the agent
receives one of the following rewards each time step, as described below:

• 2 if there is a cache hit and the agent decided not to prefetch. This indicates that the item
already resides at edge and had been prefetched before.

• 2− li if there is a cache hit and the agent decided to prefetch an item i with latency li.
• −1 if there is a cache miss and the agent decided not to prefetch.
• −1− li if there is a cache miss and the agent decided to prefetch an item i with latency li.

DQN architecture does not capture the inter-sample dependencies across user requests since the
input of DQN is a concatenation of user requests mimicking request history, which only captures
spatial dependencies across samples. Therefore, we utilize Deep Recurrent Q-Network (DRQN)
which uses Recurrent Neural Networks (RNNs) such as Long Short-Term Memory (LSTM) [11] and
Gated Recurrent Unit (GRU) [6] to counter the partial observability of the received user requests and
to account for inter-sample dependencies across user requests. Further, we append to the one hot
encoded user request a binary indicator vector representing items at edge network. Afterward, the
input is fed to a linear body as an input layer of size 512 followed by LSTM which is connected to an
output layer where each neuron on the output layer represents the Q(s, a) of each possible action
a being in state s. DEEPREF DRQN architecture is shown in Fig. ??. Moreover, DRQNS suffer
from slowness during training when dealing with large sequences (i.e., large time-steps); therefore,
we used Truncated Back Propagation Through Time (TBPTT) with k1 = k2 = 300 where k1 is the
number of forward-pass time-steps between LSTM updates, and k2 is the number of time-steps to
which we apply Back Propagation Through Time (BPTT).

3 Experiment Design

3.1 Dataset

We used the benchmark dataset MovieLens-100K (ml-100k) [10] which contains users’ information
such as age, gender, occupation, and zip code. We extract the longitude and latitude of each zip code
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Figure 1: Average episodic reward during training phase

from the US Census dataset and used k-means clustering to categorize user requests geographically
into clusters, where each cluster represents an edge network. We used the elbow method with
silhouette analysis to determine the number of clusters. We chose k = 3 as it has one of the lowest
silhouette scores.

We calculate the latency of each content to be prefetched from the cloud network based on the content
size. We assign content size randomly, and to calculate the throughput = 8×CWND

RTT (RFC 6349
[8]), We assume Round Trip Time (RTT) to be 100 ms and the receiver TCP window size (CWND)
of 65536 B.

Figure 2: Test results for edge ID = 1

3.2 Results

We trained two agents (ID = 0, ID = 1) using DEEPREF DQN and DEEPREF DRQN architectures
and compared our testing and transferring results to the following baseline prefetching algorithms:

• Belady-Prefetch: Prefetch the item that will requested next in case of a cache miss. Belady
eviction algorithm [5] will be used to evict the item in which its occurrence happens the
furthest. This approach will serve as an oracle in our experiments.

• Top-k Popularity: Prefetch Top-k popular video content that is known to the cloud network.
• Top-k Size: The edge network will prefetch Top-k largest video content that is known to the

cloud network.
• Popularity Recent: Using on-edge prefetching, the agent (i.e., edge network) will prefetch

the most popular content using a sliding time window of 24 hours.
• Popularity All: Using on-edge prefetching, the agent (i.e., edge network) will prefetch the

most popular item that has been seen so far since the beginning of the experiment.
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Edge Capacity EC = 10 EC = 50 EC = 100

Metric Acc. Cov. Timeliness Aggr. Acc. Cov. Timeliness Aggr. Acc. Cov. Timeliness Aggr.

Belady-Prefetch 0.99 0.99 0.03± 0.19 0.99 0.99 0.99 20.39± 39.54 0.99 0.99 0.99 44.21± 60.79 0.99
Top-k Popularity 0.3 0.085 127.1± 61.74 0.05 0.5 0.27 108.64± 47.24 0.25 0.72 0.46 83.83± 24.97 0.5
Top-k Size 0.2 0.01 183.25± 35.55 0.05 0.22 0.05 175.35± 38.98 0.25 0.27 0.13 155.43± 43.07 0.5
Popularity Recent 0.1 0.1 8.28± 3.25 1.0 0.26 0.26 28.18± 19.3 0.99 0.52 0.5 33.16± 23.77 0.97
Popularity All 0.1 0.1 8.08± 3.39 0.97 0.23 0.23 31.59± 18.95 0.99 0.48 0.46 35.86± 27.48 0.96

DeePref DQN 0.42 0.15 98.0± 56.21 0.71 0.56 0.27 80.11± 47.37 0.73 0.76 0.56 66.81± 38.88 0.76
DeePref DRQN 0.67 0.37 69± 54.56 0.5 0.76 0.58 83.3± 50.9 0.67 0.89 0.74 70.64± 38.37 0.82

Table 1: Testing Results on Edge ID = 1

Edge Capacity EC = 10 EC = 50 EC = 100

Metric Acc. Cov. Timeliness Aggr. Acc. Cov. Timeliness Aggr. Acc. Cov. Timeliness Aggr.

Belady-Prefetch 0.99 0.99 0.04± 0.21 0.99 0.99 0.99 0.17± 0.37 0.89 0.99 0.99 0.27± 0.44 0.99
Top-k Popularity 0.23 0.05 150.2± 50.95 0.05 0.36 0.2 131.76± 41.67 0.25 0.42 0.34 108.99± 32.86 0.5
Top-k Size 0.0 0.0 200± 0.0 0.05 0.28 0.07 160.53± 53.99 0.25 0.29 0.15 150.19± 43.96 0.5
Popularity Recent 0.12 0.12 7.48± 3.39 0.95 0.23 0.25 29.52± 19.53 0.99 0.43 0.51 34.55± 27.46 0.93
Popularity All 0.08 0.07 8.67± 3.92 0.85 0.21 0.22 31.41± 19.0 0.99 0.41 0.48 36.31± 28.87 0.93

DeePref DQN 0.32 0.2 102.92± 66.88 0.23 0.42 0.37 84.54± 50.04 0.44 0.65 0.46 70.27± 40.36 0.32
DeePref DRQN 0.56 0.34 85.32± 49.59 0.25 0.66 0.48 74.55± 47.15 0.42 0.72 0.58 72± 50.36 0.23

Table 2: Transfer results of edge ID = 1 to edge ID = 2

As shown in Fig. 1, DEEPREF DRQN model clearly outperforms DEEPREF DQN model during
the training phase in terms of average episodic reward. We design the replay memory of DEEPREF
DRQN using both LSTMs and GRUs where both show comparative results. Moreover, the replay
memory is random instead of sequential since user requests are coming from heterogeneous networks
that are in nature represent a non i.i.d distribution.

As shown in Table 1 and depicted in Fig. 2, the testing results show that both DEEPREF DQN and
DEEPREF DRQN architectures outperform traditional prefetching schemes such as Top-k Popularity
and Popularity Recent in terms of prefetching accuracy and prefetching coverage. DEEPREF DRQN
outperforms baseline approaches with an increase of at least [17%, 28%] in terms of prefetching
accuracy and coverage, respectively. As presented in Table 1, our results show that more aggressive
algorithms tend to have better prefetching accuracy and coverage since some prefetching algorithms
such as Top-k Size may decide not to prefetch at all, missing 100% of the chances of observing a
prefetch hit. Furthermore, Fig.2 shows that the increase in the Edge Capacity (EC) increases both
prefetching accuracy and coverage.

When transferring DEEPREF DRQN model from the trained edge (e.g., EdgeID = 1) to an entirely
new edge network (e.g., EdgeID = 2) which represents a different statistical distribution, our results
show similar improvements compared to baseline approaches. As shown in Table 2, DEEPREF DRQN
improves both prefetching accuracy and prefetching coverage compared to baseline approaches with
an increase of [30%,10%], respectively.

4 Concluding Remarks

We proposed DEEPREF, a prefetcher for video prefetching in CDNs. DEEPREF is a Deep Reinforce-
ment Learning agent that utilizes the network latency in terms of punishments and rewards to make
prefetching decisions online. DEEPREF is a prefetcher that is implemented at edge networks and
is agnostic to hardware design, operating system, and application. Our results show that DEEPREF
DRQN outperforms baseline approaches in terms of prefetching accuracy and prefetching coverage.
Furhter, DEEPREF is an auto-aggressive prefetcher in the sense that it adapts to user requests online
without any changes in the model architecture or system design. Our results also show that aggressive
approaches tend to have better prefetching accuracy and coverage.
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A Appendix

A.1 Background

In recent years, we have witnessed an exponential growth in Internet traffic. Mainly, this is due to
the explosion of Big Data [16], the increased usage of social media [13], the emergence of cloud
computing [17] and edge computing [23]. This rapid growth has accelerated the implementation
and design of CDNs. Cisco [7] had predicted that around 64% of the entire Internet traffic will
cross CDNs in 2020, up from 45% in 2015. Video streaming service providers such as Netflix 1

and Hulu 2 rely heavily on CDNs to distribute their video content to end users [1]. For example,
Akamai Technologies 3 is the market leader (80% of the overall CDN market) in providing content
delivery services where it owns more than 12,000 servers over 1,000 networks in 62 countries [19].
Furthermore, There exists an increased trend in the popularity of video content as a major internet
traffic. According to Cisco [7], global Internet video traffic (business and consumer, combined) will
grow 4-fold from 2015 to 2020, a compound annual growth rate of 31%. Internet video traffic will be
79% of all Internet traffic in 2020, up from 63% in 2015. In addition, Internet video traffic will reach
127.8 Exabytes per month in 2020, up from 33.7 Exabytes per month in 2015, and Ultra HD and HD

1https://www.netflix.com
2https://www.hulu.com
3https://www.akamai.com
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video content will be 15.7% of Internet video traffic in 2020, up from 2.3% in 2015. This recent trend
of video popularity highlights the importance of video content prefetching from cloud networks to
fog networks in CDNs. Further, prefetching can be implemented in various nodes from end users to
cloud servers in CDNs, as illustrated in Fig.3. Recently, Hu et al. [12] proposed a Reinforcement
Learning (RL) approach to prefetch successive episodes of video series to access points that are
shipped with large storage capacity and close to end users, the assumption is that the end user is
more likely to watch more than one episode without skipping. IPAC [15] integrates prefetching with
caching to allow the video player at the end user side to generate prefetch requests for successive
video segments with the same bit-rates as the current request. IPAC requires a modification of the
underlying cache eviction algorithm, and it does not consider multi-user prefetching (inter-correlation
among user requests). Further, Alkassab et al. [3] addressed the advantages and the disadvantages
of video content prefetching across different layers (core, distribution, and access) in CDNs and
discussed the utilization of out-of-band bandwidth for prefetching in fog networks. Wu et al. [31]
proposed a prefetching scheme based on Bayesian Networks and Markov chains to prefetch video
files and designed a cache eviction algorithm which utilizes the content heat and re-access probability
such that the cached content with the least re-access weight is evicted. On the other hand, Sham et
al. [22] proposed an admission control system to place prefetching requests based on CPU, memory
and other resource parameters in hybrid edge-cloud networks. Such design of prefetching algorithms
require system-level and application-level information that may not be available at the prefetcher side,
limiting the applicability/implementation of such algorithms.
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Figure 3: Content Delivery Networks Architecture with possible prefetching implemented in
different nodes across different layers.

A.2 Large State And Action Space

Definition A.1. Markov Decision Process or MDP is defined as a tuple M := (S,A, P,R, ρ0, γ).
Where S is the state space, A is the action space, and P is the transition function from state s to state
s
′

after taking an action a, that is (s a−→ s
′
). The reward function R : S ×A× S → R is a random

variable representing the reward after transitioning from one state to another and observing a reward
Rt = R(St, At, St+1), ρ0 is the initial state distribution, and γ ∈ [0, 1] is the discount factor that
trades off the instantaneous and future rewards.

In its most abstract setting, RL aims to find an optimal policy for an agent sequentially interacting
with an environment over a sequence of time-steps, t = 1 , 2 , 3 , ...,. The agent executes actions
and receives observations and rewards, and the aim is to maximize the future cumulative reward
[21]. Value-based approaches such as Q-learning [29] and policy-based ones (policy-gradient) such
as REINFORCE [30] constitute classification approaches to solve RL problems [24]. Value-based
approaches present many advantages such as seamless off-policy learning and better sampling
efficiency compared to policy-gradient methods, however, they are prone to learning instability when
mixed with function approximation [26]. Although policy convergence in value-based methods is
not well-studied, the emergence of deep learning [14] has empowered the recent success of many
value-based methods such as Deep Q-networks (DQN) [18] and DRQN [18].
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The goal of a single agent Reinforcement Learning (RL) is to solve the underlying MDP by finding a
policy π : S → ∆(A), a mapping from the state space S to a distribution over the action space A, so
that at ∼ π(·|st) and maximizing the return G. The return is the discounted accumulated reward,
that is, Gt =

∑∞
t=0 γ

tR(st, at, st+1). We can define a value function V (s) Eq. (1) or action-value
function Q(s, a) Eq. (2) under policy π as follows:

V (s) := E[Gt | St = s], (1)

Q(s, a) := E[Gt | St = s,At = a], (2)

In Reinforcement Learning (RL), we usually use methods of Dynamic Programming (DP) [20], to
maximize the return Gt by calculating a value function V (s) or the action-value function Q(s, a)
when using policy π. The computations carried in this procedure to approximate an optimal policy π∗

is called policy improvement and policy evaluation [25] where we typically use value-based methods
or policy-based methods such as Temporal Difference (TD) learning algorithms [27, 28, 25] which
have convergence guarantees under some conditions. For example, Q-learning [29] is an off-policy
TD learning algorithm that may converge to an optimal policy π∗ by performing the following update
rule

Qt+1(s, a)← (1− α)Qt(s, a) + α[r + γmax
a′

Q(s
′
, a

′
)], (3)

where α is the learning rate and r is the reward received upon taking action a from state s. We usually
derive a new policy π

′
which is greedy with respect to Qπ(s, a), that is, π

′ ∈ argmaxaQ
π(s, a).

The new policy pi
′

is guaranteed to be at least as good as policy π. Q-learning convergence and
performance guarantees leading to an optimal policy π∗ is studied in [29, 24].

If we decide to prefetch one video content naively from the cloud network to an edge network, the
problem of prefetching can be thought of as selecting one of the available video content among all
content residing on the cloud network. Thus, we can model the prefetching problem as a Markov
Decision Process (MDP) [20] as in Definition, A.1, which is a tuple (S,A, P,R, γ). Where S is the
state space, A is the action space, P is the transition function, R is the reward function, and γ is the
discount factor γ ∈ [0, 1]. Consequently, we can construct the underlying MDP as follows.

• State Space: Let S = {s1, s2, ..., st, ..., sT } denote the state space. Such that the current
state at time step t can be represented as: st = {m1,m2, . . . ,mi,mM} ∈ RCe where
mi ∈M , M is the total number of video content residing at the cloud network, and Ce is
the storage capacity at the edge node e.
Intuitively, the state dimensions/space can be expressed through the following equation:

| S |=
(
M

Ce

)
, (4)

• Action Space: Let A = {a1, a2, ..., at, ..., aT } denote the action space. Where at is the
prefetching action to be taken by the cloud device at time step t. The cloud device can make
the following possible prefetching decisions:

1. Prefetch one video content: The edge node will choose to prefetch one video content
among the available M video content located at the cloud.

2. No prefetching action required: The edge node E can decide not to prefetch at all.
Consequently, there will be no eviction of items taken at the edge node E.

Consequently, the action space can be expressed as follows.

| A |=
(
M

1

)
+ 1, (5)

• Transition Function: At time step t+ 1, the system state transitions to another state after
taking an action where the transition probability can be given by the following equation:

P (st+1 | st, at) = P (me
t+1 | mt

e, at), (6)
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Thus, the system’s state/action space can be expressed as follows:

| S | · | A |= (

(
M

1

)
+ 1) ·

(
M

Ce

)
, (7)

Where M is the total number of video content residing at the cloud network, and Ce is the
storage capacity at edge network, such that M ≫ Ce. The state space (e.g., how many possible
combinations of item that can reside at edge network is given by | S |=

(
M
Ce

)
, and the action space is

| A |=
(
M
1

)
+ 1 (e.g., selecting one video content to prefetch or decide not to prefetch at all).

Naturally, the prefetching problem suffers from large state space and action space and deriving an
optimal prefetching policy is tricky since the action space is non-stationary and items are continuously
added to the cloud network (e.g., continuous action space). Moreover, an optimal prefetching policy
differs from an optimal caching policy such that in prefetching the item selection is not constrained
to the set of items that had been previously seen (e.g., cached) by edge networks, rather, an optimal
prefetching policy needs to consider/predict any item to be requested despite how many times it had
been requested before. Unlike caching, where an optimal policy can be derived by selecting one
of the items that had been previously cached before, which reduces the action space and problem
dimensionality.

A.3 LSTM Equations

We list LSTM equations below for completeness:

it = σ(wi[ht−1, xt] + bi), (8)

ft = σ(wf [ht−1, xt] + bf ), (9)

ot = σ(wo[ht−1, xt] + bo), (10)

ĉt = tanh(wc[ht−1, xt] + bc), (11)

ct = ft ∗ ct−1 + it ∗ ĉt, (12)

ht = ot ∗ tanh(ct), (13)

Where xt is the input, ht−1 is the hidden state at time-step t− 1, it is the input gate, ft is the forget
gate, and ot is the output gate. The weights for the input gate it, forget gate ft, and the output gate
ot are noted as wi, wf , wo, respectively. Similarly, the biases for these gates are noted as bi, bf , bo,
respectively. Where ct is the cell state at time-step t, ĉt is the candidate cell state at time-step t, and
σ is the sigmoid activation function.

A.4 Evaluation Metrics

We use the following evaluation metrics to compare DeePref DQN and DRQN architectures with
baselines:

• Prefetching Accuracy (Precision Ratio): Prefetching Accuracy describes how precise the
prefetching decisions are in terms of sent prefetches. Prefetching accuracy is also referred
to as the precision ratio of prefetching, which is defined below:

Accuracy (Precision) =
#hits

#hits+#misses
=

#hits

#user requests
(14)

• Prefetching Coverage (Recall Ratio): Prefetching Coverage describes the usefulness of sent
prefetches. Prefetching coverage is also referred to as recall ratio, which is defined in the
following equation:

Coverage (Recall) =
#used prefetches

#sent prefetches
(15)
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• Prefetching Aggressiveness: Prefetching Aggressiveness describes how many prefetches
had been sent throughout the entire experiment. This metric is used to compare prefetching
algorithms when they are achieving similar prefetching accuracy and coverage and is defined
below:

Aggressiveness =
#sent prefetches

#hits+#misses
=

#sent prefetches

#user requests
(16)

• Prefetching Timeliness: Timeliness measures how long the item had been residing at
edge storage before it got evicted. If the item received a cache hit, its timeliness timer is
refreshed. This metric in correlation with prefetching aggressiveness is important since we
are decoupling prefetching algorithms from eviction algorithms, as stated previously.
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