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Abstract
As system complexity, workload diversity, and cloud computing adoption continue
to grow, both operators and developers are turning to machine learning (ML) based
approaches for optimizing systems.ML based approaches typically perform mea-
surements to evaluate candidate system configurations to discover the most optimal
configuration. However, it is widely recognized that cloud systems can be effected
by "cloud weather", i.e., shifts in performance due to hardware heterogeneity,
interference from co-located workloads, virtualization overheads, etc. Given these
two trends, in this work we ask: how much can performance variability during
training affect ML approaches applied to systems?
Using DBMS knob configuration tuning as a case study, we present two mea-
surement studies that show how ML based optimizers can be affected by noise.
This leads to four main observable problems: (1) there exist of very sensitive
configurations, the performance of which do not transfer across machines of the
same type, (2) unstable configurations during training significantly impact configu-
ration transferability, (3) tuning in an environment with non-representative noise
degrades final performance in the deployment environment, (4) sampling noise
causes a convergence slowdown. Finally, we propose a set of methods to mitigate
the challenges in measurements for training ML based system components.

1 Introduction
The application of machine learning (ML) to problems in systems has been a hot topic for the last
decade because of significant performance improvements over traditional methods [25, 29, 28,
5, 26, 27, 18, 34, 15]. A common aspect in many of these ML-based approaches is the need for
representative, accurate, and comparable performance data of a target components, such that an ML
model can perform meaningful optimization [4, 15, 18, 29, 26, 27, 25, 34, 7, 32, 20].

However, a number of prior measurement studies have shown that various levels of the system
stack have high levels of performance variability [23, 2, 24]. These problems are exacerbated
from several sources on shared infrastructure. Common reasons for performance variation on such
infrastructure include virtualization overheads and noisy neighbors [21, 22]. Other studies have also
shown performance variance between identical virtual machine (VM) configurations [9, 30].

Most existing approaches to mitigate noisy performance measurements involve taking many samples
to infer the mean and coefficient of variation (CoV). This can be problematic in practice for two
reasons. Firstly, Maricq et. al. [19] found that even modest increases in hardware CoV (above 4%),
increase the requirement to hundreds of measurements. Second, we find that the degree of variability
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depends on the configuration and workload used. This makes it prohibitively expensive to profile the
performance of a large system [16], let alone collect enough data for training an ML model [12].

A combination of requiring representative data measurements for ML, and the inherent noise in
shared infrastructure environments raises the following questions: How much does performance
variability during tuning impact the transferability (i.e., the ability for a configuration to be run on
another host with similar performance) of learned configurations across machines? How much does
this same performance variability affect the convergence of ML methods used to optimize systems?

To answer the above questions we perform two case studies tuning PostgreSQL knob configurations
using SMAC [13], a popular Bayesian Optimizer (BO). We use clusters of systems from Cloudlab [8]
and Azure to highlight the differences between the two infrastructures. Our key findings include:

• Noise from inherent hardware variability or collocated processes disproportionately affect a signifi-
cant portion configurations leading to a new phenomenon of non-transferable configurations having
up to, 60.8% throughput degradation when transferred to near identical bare-metal hardware.

• The existence of unstable configurations (i.e., configurations which perform inconsistently even on
a single machine), significantly degrade the transferability of the best learned configuration.

• Performing tuning in the presence of noise is necessary to achieve good performance in noisy
environments. For example, for a deployment with 25% background CPU noise, training in a
similar setup can lead to 18% improvement over training in a noise-free environment.

• However, performance tuning in the presence of noise slows the rate of convergence by up to 64%.

Based on our findings, we propose new directions for systems and ML researchers to mitigate the
effect of noisy performance data. While some ML methods that can handle noisy data [10, 17, 11],
these require more samples, and/or oracle information about the variance of a sample. We instead
propose techniques to modify sampling to improve data quality or use previously unused metrics.

2 Case Studies
In this section, we perform measurement based case studies to understand how noise, that arises
from variability in hardware and shared computing environments [22], can affect ML methods. In
particular, we focus on understanding two aspects of ML-based auto-tuning. First, we study how well
configurations found using ML transfer across machines, which is crucial for cases where training
is first performed in an offline setting in order to avoid negative impact to production workloads,
a frequent concern. Following that, we study how noise can affect the convergence of ML-based
optimizers both in terms of the number of iterations and the quality of the best configuration found.

2.1 Case Study 1: Poor Configuration Transfer
We first study how ML-based autotuners are impacted by hardware and cloud performance variability
in the context of configuration transferability. For our experiments we tune DBMS configurations
and use a state-of-the-art Bayesian Optimization (BO) based optimizer, SMAC [13]. In the context
of DBMS tuning, SMAC has been shown to outperform alternatives [35], especially when the
configuration search space is high-dimensional and heterogeneous (i.e., consists of both numerical
and categorical knobs). For all experiments we tune PostgreSQL using SMAC for 100 iterations with
10 identical but random initialization points (similar to prior works [35, 15]).

2.1.1 Transferability of Learned Configurations on Bare-metal Hardware
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Figure 1: Empirical CDF of the DBMS rel-
ative performance standard deviation for the
best-performing configurations found during
the 109 tuning trials on 15 nodes.

To study how implicit variance in hardware perfor-
mance can affect the ML optimizer, we run 109 tun-
ing trials across 60 isolated bare metal machines on
CloudlLab [8]. This results in 109 best-performing
configurations, as discovered by SMAC. We then
measure the performance of each such configuration,
by running them across 15 different Cloudlab nodes.
Finally, we compute the standard deviation across
all 15 runs, to test how transferable best-performing
configurations are.

Figure 1 shows the empirical CDF of relative standard
deviation from every best-performing configuration.
Surprisingly, we find that more than half (i.e., 54%)
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of these configurations have high variance and are non-transferable. This high variance is caused by
the fact that the "best" learned configurations perform worse on 4 out of 15 machines, degrading on
average by 39.6% and up to 60.8% when used on a new machine. Examining system performance
metrics, such as disk throughput and CPU performance via micro-benchmarks, revealed (1) no obvious
correlations and (2) that the new machines were performing within the small bounds expected of
hardware variance. Thus, we hypothesize that there exist non-transferable configurations where even
the presence of minor variances can significantly impact performance.

Finally, it is worth noting that in this set of 109 best-performing configurations, the median through-
put of all transferable configurations is only 4.4% worse than the median of all non-transferable
configurations found, implying stability does not incur a significant performance cost. The perfor-
mance improvement for non-transferable configurations may be the result of the auto-tuning model
overfitting to some aspect of the specific machine instance.

2.1.2 Tuning in the Cloud
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Figure 2: Clustering of stable and unstable
configurations when transferring best learned
configurations to all nodes in the cluster.

To study the impacts of tuning the cloud,
we ran 50 trials, evenly distributed across 10
Standard_D8d_v5 [14] Azure VMs: a general pur-
pose, non-bursting VM with non-bursting ephemeral
disks (i.e., local SSDs). The choice of this particu-
lar VMs, was to remove bursting and remote disks
as sources of performance variance seen in some
other VM configuration offerings. We also ran micro-
benchmarks on all the VMs and found no significant
difference in their variance, or average performance.
The question we wish to answer here is: are modern
tuning processes resilient to sample performance variance, and in turn always able to generate a
usable configuration?

The first thing that we notice from this experiment is 4 of the 10 initial configurations show a very
large performance variance across VMs, as well as within the same VM across trials. The performance
seen was very bimodal once degrading nearly 95%; e.g., one configuration got approximately 2030
TPS on some trials and 132 TPS on other trials, on the same VM. Similar results are seen in in all 4
of the initial unstable configurations. We term these configurations unstable, as they are distinct from
non-transferable configurations because of the inherent cloud-originated intra-VM variance.

Interestingly, we find that on tuning trials where the these unstable configurations perform well,
they perform significantly better than other configurations. This influences the optimizer in such
that when it perform well on an unstable configuration during bootstrapping, the final configuration
generated is also non-transferable. Figure 2 shows this effect clearly showing that any best-performing
configuration that performed far above the median during training, degraded significantly during
deployment. Thus, the existence of unstable configurations in the cloud, and their impact on tuning,
motivates the need for methods to collect representative samples, and detect anomalous configurations.

2.1.3 Using Configurations Autotuned with Noise.
Next, we consider how noise simulated with collocated processes present during tuning can affect the
final performance of the best-performing configuration in settings with different levels of demand.
We use stress-ng [1] restricted to a certain CPU utilization level as our collocated process. In
particular, this experiment is useful to understand if using a noisy cloud VM with noisy neighbors for
tuning, but deploying the final configuration in a noise-free machine is tenable (or vice-versa).

Train
Noise Free 25% CPU 50% CPU

D
ep

lo
y Noise Free 3467± 5.0% 3285± 13.7% 3237± 13.8%

25% CPU 2316± 16.0% 2699± 5.4% 2288± 15.5%
50% CPU 1769± 11.2% 1772± 11.2% 2018± 7.1%

Table 1: Throughput (txts/sec) achieved (on deployment system) by the best configuration found by
the optimizer during a tuning trial (performed on train system).

In Table 1, we see that with a state-of-the-art optimizer (i.e., SMAC), training in an environment with
noisy neighbors representative of the deployment environment leads to the best performance (i.e.,
the diagonal entries in the table). This is because having resource contention in the system during
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tuning leads the tuner to find configurations that under/over utilize the available system resources
during deployment. Given that it is hard to control for similar levels of contention during training and
deployment, especially in dynamic cloud computing environments, these results highlight the need
for new techniques to address this gap.

2.2 Case Study 2: Effects of Sampling Noise on Auto-Tuning
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Figure 3: Convergence curves for DBMS auto
tuning with injected artificial Gaussian noise.
Configurations to the left of the dotted line
are identical bootstrap configurations.

Finally, we investigate how DBMS auto-tuner conver-
gence is affected when we inject artificial Gaussian
noise during sampling. Convergence is an important
area of study for DBMS auto-tuning because of the
high cost of measuring a single sample, often tak-
ing at least 15 minutes [33, 15]. We use the same
experimental tuning setup as Section 2.1.1, using 10
bare-metal nodes on CloudLab, evenly distributed
across 5 levels of noise. We also ensure that all the
nodes perform similarly on non-transferable config-
urations to make the results more comparable.

To inject noise, as before, we run the optimizer sug-
gested configuration on PostgreSQL measuring its
performance. Then, we emulate noise by degrading the measured performance (i.e., throughput)
using a Gaussian prior. In particular, if P represents the measured performance, σ represents our
chosen relative standard deviation, then P ∗ = P × (1 − |∆|), where ∆ ∼ N (0, σ2). Finally, we
inform the optimizer that the performance of the suggested configuration is P ∗. Here, we considered
five levels of noise in [0%, 50%].

The results of this experiment are shown in Figure 3. We observe that noise degrades convergence of
the underlying optimizer (i.e., SMAC). We can quantify this in terms of time-to-accuracy, the rate
at which it takes the baseline optimizer to reach the same performance of a noisy sample optimizer.
For the noisy samples with 5%, 10%, 25%, and 50% relative standard deviation, we see convergence
slowdown of 52.3%, 61.0%, 38.0%, 64.0% from the baseline respectively. While these samples are
not strictly decreasing, this can be explained by our small sample size, and an outlier run in the 25%
noise level. The convergence slowdown is because many configurations which were high performers
are degraded significantly, which not only wastes the sample, but also influences the acquisition
function in the optimizer. As dynamic noise is an inherent issue in cloud-native environments, this
further motivates the need for methods to address noise during ML-based optimization.

3 Discussion and Future Work
Previously, we observed that the types of noise we studied can mislead an ML-based optimizer into
finding sub-optimal configurations. This is because existing ML-based optimizers lack additional
context regarding the execution environment, which prevents them from adapting to a multitude of
constraints that exist in complex cloud deployments. These findings motivate the need for designing
a noise-aware tuning system that can handle multiple objectives: to identify optimal configurations
that are resilient to noise, while also performing well (enough) in its absence.

We propose three research directions, which we envision can be used independently, or combined, to
build such a system in the future. Firstly, one direct approach is to evaluate configurations across a
set of nodes to ensure stability across the set. While this can seamlessly be parallelized, it increases
the cost of tuning significantly. Secondly, we plan to study if we can measure the amount of noise
that the system is experiencing using side-channel techniques [31, 6]. This can be used to derive an
accurate prediction of noise-free performance and fed to the optimizer as an additional input. Finally,
we also plan to study if we can calculate relative performance compared to a baseline by running
the candidate configurations collocated with a baseline configuration [3]. This will help mitigate the
impacts of noise as both instances will be subject to the same noise.

4 Conclusion
In this paper we studied the significance of performance variance when tuning database systems.
We analyzed the noise on these systems from the perspective of hardware variance, as well as the
impact of noisy neighbors. We found that both can lead to significant impact on the tuning process.
To mitigate these issues, we proposed new directions that can lead to the discovery of noise resilient
configurations in the future.
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