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Abstract

Generative AI has seen remarkable growth over the past few years, with diffusion
models being state-of-the-art for image generation. This study investigates the use
of diffusion models in generating artificial data generation for electronic circuits
for enhancing the accuracy of subsequent machine learning models in tasks such as
performance assessment, design, and testing when training data is usually known
to be very limited. We utilize simulations in the HSPICE design environment
with 22nm CMOS technology nodes to obtain representative real training data
for our proposed diffusion model. Our results demonstrate the close resemblance
of synthetic data using diffusion model to real data. We validate the quality of
generated data, and demonstrate that data augmentation certainly effective in
predictive analysis of VLSI design for digital circuits.

1 Introduction

In recent times, generative AI has experienced remarkable growth, propelled by advances in machine
learning (ML) models like Generative Adversarial Networks (GANs) [1, 2], Variational Autoencoders
(VAEs) [3], and the most recent addition, Denoising Diffusion Probabilistic Models (DDPM) [4].
These models excel at crafting realistic, high-quality data, gaining traction across domains like image
synthesis, text generation, and music composition. This surge in generative AI holds immense poten-
tial to reshape ML in diverse fields, including VLSI design, testing, and optimization, particularly in
data-sparse scenarios. Diffusion models have demonstrated excellence in computer vision, natural
language processing, and interdisciplinary realms such as medical image reconstruction. Precise
diffusion models generating high-quality artificial circuit data can revolutionize ML-driven VLSI
tasks—performance assessment, design, and testing [5, 6, 7, 8, 9, 10, 11, 12]. An effective data
augmentation approach will help addresses concerns such as privacy, proprietary data access, com-
putation costs, and data acquisition constraints. Our study focuses on practical application of VLSI
circuit design. We study the effectiveness of synthetic data generation method for VLSI circuit data
using Denoising Diffusion Probabilistic Model (DDPM). We show that diffusion models can generate
high-quality samples even for circuit data. We present a detailed analysis of their performance over
delay estimation of twelve fundamental 22nm CMOS technology-based digital cells, see Table 5.

2 Related Works

Data scarcity is a universal issue which affects the deployment of AI/ML in multiple domains as
discussed in [13]. Many of the proposed AI/ML applications in VLSI design domain [8, 10, 12] rely
on a large amount of training data. In [12] and [14], authors have achieved precise training with 15K
and 50K samples respectively. However, obtaining such a substantial volume of training data may
not always be feasible for various applications. Hence in VLSI domain, scarcity of training data due
to cost, time, and quality constraints poses a challenge which needs to be addressed. Many studies
have proposed synthetic data generation [15, 16, 17, 18, 19, 20, 21, 22, 23]. Generative models such
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as VAE [3], GAN [1], and Diffusion Probabilistic models [4] are known to produce large and diverse
synthetic data for image datasets. Diffusion models have been observed to have an edge over other
generative models in terms of quality for image data generation [24].

3 Synthetic circuit-data generation using Diffusion Models

Parametric data from VLSI designs is continuous data that holds valuable insights for ML-driven
automation of VLSI performance assessment, design, and testing. As mentioned before, this paper
aims to apply denoising diffusion probabilistic models for generating synthetic data for VLSI designs,
enhancing the training of ML models in data-scarce scenarios. This indirectly advances automation
in VLSI design tasks. Our work illustrates the development of an accurate diffusion model-based
synthetic data generation method for delay estimations in various 22nm CMOS technology-based
digital VLSI circuits. The details on the dataset can be found in appendix (Section 7.1). The
methodology can be divided broadly into the following steps:

3.1 Formulation of a Denoising Diffusion Probabilistic Model tailored for VLSI circuit-data

Diffusion models define a Markov chain of diffusion steps to slowly add random noise to data and
then learn to reverse the diffusion process to construct desired data samples from the noise. Diffusion
models have two processes to follow:

Forward Process - Here, random noise is incrementally added to data over multiple time steps. This
sequential noise introduction is mathematically characterized as follows: xt =

√
1− βt·xt−1+

√
βt·ϵ.

Where xt represents the data at time step t, where 0 < t < T and T are the total number of steps. This
process starts with the original data x0 and iteratively adds noise over T steps, with βt controlling
the amount of noise added at each step. The variance schedule βt determines the trade-off between
introducing noise and maintaining data fidelity. As t increases, the noise contribution becomes more
significant due to the increasing value of βt.

Reverse process – This phase involves predicting the noise added to each data point during the
forward process. A neural network, denoted as fθ, predicts noise ϵt from noisy data xt as ϵt = fθ(xt)

Generating new data - New data samples are generated by performing the reverse process on
random noise samples ϵt drawn from N(0, I). The reverse process reconstructs data by iteratively
removing predicted noise contributions: xt−1 = xt−

√
βt·ϵt√

1−βt
. The number of steps T controls the

balance between data fidelity and noise injection, influencing the quality of generated samples.
Existing models deal with very complex data modalities such as images. For image generation a
UNET architecture with residual connections was proposed. Since our target dataset is relatively less
complex than images, we propose a simple encoder-decoder architecture [25] instead of a UNET for
reverse denoising process.

3.2 Qualitative evaluation of generated artificial data

The quality assessment of synthetic data involves evaluating measures like inception score, Frechet
inception distance, average log-likelihood, Parzen window estimates, and visual fidelity. However,
these metrics primarily cater to image data, making it unclear which measure is optimal for other
data modalities. Theis et al. [26] suggested that evaluation for generative models should align with
the intended application. Thus, we evaluate diffusion models for circuit data by directly comparing
them to the source of our data, which is the simulator. We extract specific features from the synthetic
dataset, designating them as input features( for example supply voltage, temperature, channel length,
transistor width, load capacitance etc.), while the rest are deemed output features( propagation
delays). Subsequently, we feed the input features into the simulator and compare the resulting output
feature values with the generated output feature values. Our evaluation metric in this study is the
mean absolute percentage error. Refer to Figure 2 for a visual representation of the comprehensive
evaluation procedure for the generated data. The diffusion model is trained using just 500 real data
samples. Subsequently, artificial samples are generated and used for performance evaluation. Training
continues through epochs until desired performance is reached, with hyperparameter adjustment for
subpar results.
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Figure 1: Performance of model with different learning rates w.r.t. HSPICE for delay in AND gate
dataset. It can be seen that learning rate of 0.0005 ensures low percentage errors across all features.

4 Experimental setup and model architecture

We use Python-3.8.16 and Google Colab for the training of Diffusion Denoising Probabilistic
models. Moreover, our implementation uses Keras-2.9.0 and Tensorflow-2.9.2. As discussed
in 3.1, a diffusion model is devised for each dataset, encompassing forward and reverse processes for
circuit data. Complete architectural details can be found in appendix (Section 7.2).

5 Results

As discussed in 3.2, the output feature values from the model and the simulator are compared to
get the right idea of performance i.e MAPE is calculated to evaluate how closely the model follows
the simulator. We start the hyper-parameter search by finding the optimal number of layers. Table
1 depicts the model’s performance across varying hidden layer counts. A five-layer architecture
emerges as the best choice for the NOT gate dataset featuring 17 attributes. This architecture also
holds well for datasets up to 19 attributes. It was observed that for datasets featuring 21 attributes, a
six-layered architecture boosts the learning capacity effectively. Our subsequent exploration involves
different learning rates. Figure 1 indicates that a learning rate near 0.0005 ensures consistently low
percentage errors across all features. The Table 3 provides the mean absolute percentage errors
(MAPE) attained for all datasets, it can be seen that low MAPE is obtained for the various datasets.
Additionally, Figure 2 showcases that density distribution of generated and original data for the NOT
dataset exhibit a high degree of proximity. Furthermore Table 4 shows a significant improvement in a
gradient-boosting regression (GBR) model using artificial data, to predict CMOS NOT gate delays.
Thus, validating the proposed approach’s efficacy in predicting parameters that concern digital circuit
design. For brevity, the data generation with other generative models such as GANs or VAEs were
not as effective, and hence not shown in results.

No. of layers E(%)

6 hidden layers 12.5
5 hidden layers 3.51
4 hidden layers 10.5

Table 1: Comparison of perfor-
mance of models with differ-
ent layers across all features. Table 2: Evaluation process for artificially generated data.
6 Conclusion

Achieving model accuracy hinges on high-quality training data, yet obtaining ample data for electronic
circuits can be expensive or practically difficult to obtain. Our study proposes a variant of diffusion
model for generating a) synthetic data, b) validation method, and c) subsequently predicting delay
estimations in 22nm CMOS technology-based digital VLSI circuits. More specifically, the training
data is obtained by various simulations in the HSPICE with 22nm CMOS technology nodes. The
technique’s efficacy is proven through extensive experiments on twelve essential digital circuit designs,
showcasing notably low mean absolute percentage errors with respect to HSPICE circuit simulator.
It is also observed that artificial data distribution closely resembles the original data distribution.
Improvement in a GBR’s performance using the proposed augmented data is also demonstrated.
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Table 3: Percentage error obtained for different digital circuit datasets used in this work. Here, the
error is calculated with respect to the HSPICE. Here A=delay lh node a, B=delay hl node a, C=delay
lh node b, D=delay hl node b, E=delay lh node c, F=delay hl node c.

Delay dataset Mean Absolute Percentage Error
A B C D E F

NOT gate 3.9 3.12 - - - -
Two input NAND gate 4.41 6.3 4.54 7.52 - -
Two input AND gate 5.76 4.12 5.13 5.84 - -
Two input NOR gate 5.14 2.52 3.92 6.05 - -
Two input OR gate 3.77 3.5 5.57 4.42 - -
Two input XOR gate 0.34 3.44 4.04 2.94 - -
Three input AND-OR circuit 7.96 4.83 4.74 8.33 4.3 8.55
FULL ADDER 2.85 2.85 3.62 5.93 2.15 4.42
2:1 MULTIPLEXER 3.81 3.27 2.91 5.53 3.68 4.03
Three input NAND gate 7.73 4.66 6.15 5.404 7.37 3.26
Three input AND gate 4.04 4.64 5.33 2.92 3.91 3.02
Three input NOR gate 4.57 5.007 5.11 6.46 3.74 5.13

Figure 2: Distribution plots of artificially generated data and original data for delay dataset from NOT
gate showing close resemblance between two.

Table 4: Performance of a predictive gradient boosting regression model with and without artificial
data. (A higher R2 score denoted by ↑ and a lower MSE, RMSE, MAE and MAPE denoted by ↓ are
preferred.)

Metric Real data Real + Artificial data Improvement (%)
delay lh delay hl delay lh delay hl delay lh delay hl

R2 score 0.93 0.95 0.976 0.973 4.95 ↑ 2.42 ↑
MSE 4.58×10−25 2.22×10−25 2.25×10−25 1.38×10−25 50.87↓ 37.84↓
RMSE 6.77×10−13 4.71×10−13 4.75×10−13 3.72×10−13 29.84↓ 21.02 ↓
MAE 5.16×10−13 3.32×10−13 3.44×10−13 2.52×10−13 33.33↓ 24.10↓
MAPE 0.106 0.103 0.099 0.083 6.60↓ 19.42↓
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7 Appendix

7.1 The dataset

We gathered extensive datasets covering design, process, and performance parameters for twelve
core digital cells, see Table 5. These parameters are chosen to enable subsequent performance
assessment using a predictive ML model, validating the utility of dataset. For training, we employ
simulated data from Electronic Design Automation (EDA) tool HSPICE [27]. Training data for
Digital cells (Table 5) comprises vectors of random values, drawn from Gaussian distributions of
process parameters. We account for ±10% variations at 3σ in CMOS standard cells at 22nm High-K
MGK via Predictive Technology Models (PTM). Twelve process parameters (PMOS and NMOS) are
included. In addition to statistical distributions, temperature samples spanning −55◦C to 125◦C and
supply voltage deviations of ±10% from the nominal (0.8V) are integrated. Load capacitance varies
similarly to process parameters. We perform propagation delay estimations via HSPICE Monte-Carlo
simulations to obtain training data, encompassing PVT (Process, Voltage, Temperature) variations.

Table 5: List of digital circuit datasets used in this work.(Input parameters for evaluation: Sup-
ply voltage, Temperature, Channel length, Transistor width, Physical and electrical equivalent of
oxide thickness, Nominal gate oxide thickness, Source/Drain junction depth, and Channel doping
concentration, Load capacitance; Output parameters for evaluation: Propagation Delays)

Dataset Parameters Dataset Parameters

NOT gate delay 17 Three input AND-OR circuit delay 21
Two input NAND gate delay 19 Full adder delay 21
Two input AND gate delay 19 2:1 Multiplexer delay 21
Two input NOR gate delay 19 Three input NAND gate delay 21
Two input OR gate delay 19 Three input AND gate delay 21
Two input XOR gate delay 19 Three input NOR gate delay 21

7.2 Architecture Details

A diffusion model is devised for each dataset, encompassing forward and reverse processes for circuit
data.
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Forward process: We set T = 100 for all experiments. We adopt a variance of βt, transitioning
linearly from 0.001 to 0.02, following the approach by Ho et al. [4]. Thus the noised inputs are
created to feed the network representing reverse process.

Figure 3: Encoder-Decoder architecture of the network performing reverse process

Reverse process: To realize the reverse process a neural network is used. The network follows an
encoder-decoder structure [25] with several layers that progressively reduce and then increase the
number of units, culminating in the output layer that generates the denoised data. Since our target
dataset is relatively less complex than images, we propose a simple encoder-decoder architecture
instead of a UNET for reverse denoising process. The use of batch normalization and leaky ReLU
activation functions in the hidden layers aims to improve the network’s stability and facilitate better
learning and convergence during training. Figure 3 shows the reverse process architecture.

Training data undergoes noise addition through the forward process, gradually transforming to pure
noise, and the reverse process learns to de-noise and predict original distribution. After training the
diffusion model, the synthetic data is then generated by first sampling a pure random noise then using
trained reverse diffusion model to generate the desired sample.
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