
On a Foundation Model for Operating Systems

Divyanshu Saxena, Nihal Sharma, Donghyun Kim, Rohit Dwivedula, Jiayi Chen
Chenxi Yang, Sriram Ravula, Zichao Hu, Aditya Akella, Joydeep Biswas

Swarat Chaudhuri, Isil Dillig, Alex Dimakis, Daehyeok Kim, Chris Rossbach
The University of Texas at Austin

Abstract

This paper lays down the research agenda for a domain-specific foundation model
for operating systems (OSes). Our case for a foundation model revolves around
the observations that several OS components such as CPU, memory, and network
subsystems are interrelated and that OS traces offer the ideal dataset for a foundation
model to grasp the intricacies of diverse OS components and their behavior in
varying environments and workloads. We discuss a wide range of possibilities that
then arise, from employing foundation models as policy agents to utilizing them as
generators and predictors to assist traditional OS control algorithms. Our hope is
that this paper spurs further research into OS foundation models and creating the
next generation of operating systems for the evolving computing landscape.

1 Introduction
Applica�on
Workloads

Hardware
Counters

Kernel Data
Structures

Hardware
Specifica�on

FM4OS
Founda�on

Model

As a Policy Agent

As a Genera�ve
Model

As a Predic�ve
Model

Pretraining

Fine-tuning

CPU and
Accelerators

Memory
Management

Network
Manager

File System
and Storage

Data Modali�es

OS Components

Process
Sta�s�cs

Decisions and
Configura�ons OS

Traces

Figure 1: FM4OS: a foundation model for operating systems.

The Operating System (OS) is the cen-
tral pillar of modern computing sys-
tems, overseeing hardware and soft-
ware resources and enabling applica-
tions ranging from assistive robotics
to cloud services. OSes serve vital
tasks such as scheduling processes;
managing CPU, network, and memory resources, and interfacing with devices. To make good
decisions, OS policies must account for complex system dynamics such as hardware variances and
environment responses, which is challenging for two reasons. First, OSes can be deployed atop
a variety of hardware, and amidst diverse workloads and environments. Second, the OS does not
have full visibility of the environment (e.g., network performance) or the workload (e.g., application
request patterns), making the state space uncertain.

Conventional OS policies, reliant on manual algorithms or heuristics, lack adaptability across hard-
ware, environments, and workloads, and often require manual tuning. Recent proposals for using
machine learning (ML) models in OS components such as the network manager [1, 23], memory man-
ager [26, 28, 40, 53] and CPU scheduler [9], while being good starting points in bringing data-driven
decisions, are still far from ideal as they only optimize for individual components. Furthermore, they
neither integrate well together nor generalize well for diverse environments.

Inspired by the recent successes of large unsupervised “foundation” models in NLP and vision tasks,
we argue that it is time for the OS to eschew such task-specific solutions in favor of foundation models.
Our insight is that OS traces consisting of hardware metrics, system event logs, and application
arrivals and requests, can capture all the information on the workings of various OS components and
the impact of their decisions on each other. Further, OS traces collected on diverse hardware and
application workloads can also capture the intricate relationship between OS decisions, hardware
features, and application workloads. We argue that a foundation model trained on such traces,
FM4OS, is plausible and can be used for several downstream tasks (as shown in Figure 1).

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



2 Background
In this section, we first provide background on OS decision-making: what makes it difficult and why
adaptive decisions are needed, and then we give a brief background on foundation models.

Desiderata for operating systems. Operating systems oversee hardware and software resources,
including CPU, memory, storage, and network (Table 1 in appendix). In general, OS tasks can be
considered sequential decision-making processes where past actions and states of the OS instruct the
action at any time. However, these can be very complex because:
• OSes can be deployed on diverse hardware with differing performance profiles. Further, they can

run different workloads (e.g., microservice [29] vs. ML workloads [50]) with varying objectives
(e.g., prioritize power efficiency for robots vs. optimize performance for cloud servers).

• Access to fine-grained metrics (like the ones shown in Table 1: System State column) from
hardware devices or the OS kernel, may be limited.

• System dynamics, i.e., the interplay of policies between OS components, also plays a role in
decision-making because the actions of one component can impact the future states of other com-
ponents. Capturing these intricate dynamics is difficult due to the myriad OS policy combinations.

Thus, in the OS setting, there is an inherent uncertainty and partial observability in the state.

Existing methods: Prior research has proposed learned and data-driven approaches to address these
challenges. Some have employed DNNs to learn policies for specific OS components [2, 9, 22,
30, 56, 57] while others have tackled state uncertainty by modeling OS tasks as MDPs [1, 31,
34, 48, 53]. Additionally, statistical and deep learning methods have been explored to generate
realistic workloads [3, 20, 21, 27, 55] that can help inform conventional policies. However, these
approaches remain point solutions that model individual OS components, leading to a diverse bag of
policies, operating independently of others. Consequently, they fall short in optimizing end-to-end OS
performance and decision-making. Ideally, if we could learn how an OS task is impacted by other OS
components, application workloads, and hardware specifications, we can devise methods to optimize
OS decisions for desired objectives. These existing approaches also struggle with generalization
beyond their training distribution, as shown in prior research [17, 41]. Therefore, we need techniques
that generalize well to unseen inputs.

Foundation models. This is a catch-all term for ML models trained on a large and diverse dataset to
understand the general structure of the data and then fine-tuned (with much less data) for specific
tasks. While they have been touted as useful in myriad settings [4, 54], these models have shown
tremendous empirical success in sequence modeling problems in natural language [5, 10, 15],
finance [51], computer vision [38], biomedical imaging [44] and climate modeling [32] to name
a few. At the core of these successes is efficient use of the transformer architecture [45], which
learns long-term (spatial and/or) temporal correlations between input sequences, and the principles of
transfer learning [42], that enable learning for different tasks, domains, and modalities.

Several OS tasks also fall into this broad category of sequential modeling with the important caveat
that the cadence with which decisions are made and the amount (time) and explicit form (states) of
past observations vary widely between tasks (see Table 1 in Appendix B).

3 FM4OS: A Foundation Model for the OS
We propose the development of FM4OS, a foundation model that understands the “natural behavior”
of the OS and can be fine-tuned for several classes of downstream tasks - all of which either replace
or aid the existing policies in the OS. We begin by describing the data sources available that can be
used to train such a model.

Data Sources. Today’s OSes, along with associated monitoring and data collection infrastructures,
provide data in several forms (as shown in Figure 1), including logs from OS components, hardware
metrics, and application workloads. We elaborate on these sources in Appendix A.

We will use the term “OS trace” to refer to the union of the data corresponding to a single machine
drawn from the sources above, represented as a single (time-annotated) sequence. Such traces can be
collected from systems with varying hardware specs (CPU, Cache, RAM, NIC, file system, etc.) and
under various deployments (cloud, robots, and edge). Below, we describe two OS tasks that operate
on different parts of the system, both of which can be trained from the OS traces.

An example use case. Consider the OS scheduling task SCH and cache replacement task CACHE
(descriptions as given in Table 1). As shown in the table, optimal decision-making for the SCH task

2



requires process states, process completion times, hardware state, and process arrival workloads while
the CACHE task requires cache size, state, and cache access workloads. All of these are captured in
the OS traces. For SCH, the process states and completion times are captured in the logs, process
arrival workloads and hardware aspects are captured by the application workloads and environment
metadata, respectively. Similarly, for CACHE, the cache state is captured by the resource metrics,
cache size by environment metadata, and cache access patterns by application workloads.

The OS traces also capture the relationships between the two tasks. For example, the process
completion times would depend on the hardware specs of resources other than CPUs, such as the
cache. This is because processes may access resources other than CPUs during their execution. For
the same reason, OS decisions relating to CACHE would also impact the process completion times.
Since our OS traces record features that cover the input space of both tasks SCH and CACHE, they
can be used to train one model that can orchestrate both. This model can then be used for several
downstream tasks, including: (i) directly making good-quality decisions for the SCH and CACHE
tasks, (ii) predicting the completion time of a newly arrived process, or (iii) generating traces for
CACHE tasks that can be used to improve conventional data-driven or ML-based algorithms.

When trained on diverse OS traces, the model learns how scheduler and cache behaviors relate
to hardware and workloads, enabling generalization to predict program performance on new CPU
specifications and cache sizes.

Foundation Model for the OS. The OS traces used above not only encode information for SCH and
CACHE tasks but also that corresponding to the decision-making in several other OS components,
e.g., I/O prefetching, packet scheduling, congestion control policies, etc. Referring back to Table 1,
we make two observations to support this argument. Firstly, several of the OS tasks have shared
state space components. For example, both PREFETCH and CACHE tasks need the cache state,
both PREFETCH and PAGE tasks require process instructions, etc. Secondly, these tasks are not
entirely independent, as shown in the above SCH task example, where the process completion times
(needed for SCH) depend on the policies adopted in the CACHE task. This inter-dependence of one
component on others is a widely seen and natural phenomenon in the operating system. These two
observations lead us to posit that, using OS traces collected across many machines, one can therefore
build a foundation model – FM4OS, that knows the ‘natural behavior’ of the OS. A prospective
pretaining regime for FM4OS is discussed in Appendix C.

4 Downstream Tasks for FM4OS
We are now ready to discuss the fine-tuning of FM4OS. We present key downstream tasks and
categorize them into three broad use cases: as a policy agent, a generative model, and a predictive
model. We discuss these individually below and highlight challenges unique to the OS setting that
require novel research on training and using foundation models, in Appendix D.

4.1 FM4OS as a Policy Agent

As discussed in §2, several OS tasks can be modeled as a sequential decision-making process where
the state of the OS evolves according to the actions a policy makes. Prior works [1, 9, 22, 34] have
used handcrafted features based on heuristics in order to model complex system dynamics.

The key challenge for any solution addressing multiple tasks in the OS is the diversity in state
and action spaces of tasks and the different lengths of temporal history deemed relevant for each
task (see Table 1). Foundation models have been shown to solve precisely this issue of varying
lengths of temporal history due to their ability to summarize inputs of arbitrary lengths in a common
representation space. Further, they have also shown evidence of being capable of handling multi-
modal input data [43], which suits the various forms of information captured in OS traces (see §3).
By engineering the size of these representations for pre-training and specifying the objective during
fine-tuning, we expect that FM4OS can be used to suggest optimal actions.

Making low-level decisions: With the pre-training of FM4OS over OS traces, we expect it to
understand the semantic space for OS decision-making. Then, we can use FM4OS to take low-level
actions for OS tasks, such as setting the congestion window for the CC task and choosing processes
for the SCH task. Fine-tuning to make these decisions requires examples of historical traces labeled
with optimal actions.

Policy selection: Current inference times for transformer-based models do not match the pace at
which some OS tasks require actions (every few ns). Accelerating inference [13, 52], especially

3



for operation in the OS [19] is an ongoing research area. In the meantime, FM4OS can address
the relatively simpler task of selecting from existing policies (over longer time frames) instead of
specifying actions explicitly. For each task, there exist policies optimized for specific environments
and workloads. For instance, for the CACHE task, Least Recently Used (LRU) policy is favored
when access patterns follow locality trends, while Least Frequently Used (LFU) policy is more
suitable for random accesses with consistent popular requests [37, 49].

4.2 FM4OS as a Generative Model
Content generated by ML models offers new opportunities for OSes, similar to benefits observed from
using generative models in other domains [3, 38]. Synthetically generated data can help add diversity
to existing training data used by data-driven solutions, help with the availability and sharing of
proprietary or confidential data, and testing models under settings that occur infrequently in practice.

Generating traces: The lack of (diverse) training data is a major hurdle in most data-driven and
learned approaches for OS tasks. Even if such data were available, storing and maintaining such a
large corpus of data collected under different hardware configurations and workloads be challenging.
For example, for the CACHE task, traces are needed for different memory specifications and for
different types of workloads (small objects, large objects, mixed sizes, etc.). By training FM4OS
using auto-regressive tasks like Next Token Prediction, we could train the model to learn to generate
OS traces that can be used in a variety of ways.

Fine-tuning it with specially designed prompts could lead to traces that adhere to specific constraints
(e.g., setting hardware configurations, limiting network bandwidth, etc). These can be used to
supplement the training data collected on specific configurations. Further, the foundation model can
also be fine-tuned to obfuscate confidential information from the traces while keeping the important
relationships of the traces intact (prior works [27, 55] show feasibility of such obfuscation in network
traces). Another opportunity that we identify here is that FM4OS can also be used to generate
pathological corner cases. Specifically, we posit that by appropriately querying the foundation model,
we can use it to generate pathological corner cases that would have been otherwise difficult to get.

4.3 FM4OS as a Predictive Model
Foundation models have been shown to exhibit good performance on downstream prediction tasks [5,
32]. In the OS setting, we can use FM4OS as an encoder of the state, and then use linear probing
to predict various things about the system’s response, future utilization. This can lead to efficient
placement, scheduling, performance, and anomaly detection.

System response prediction: Understanding how the environment of the OS evolves with application-
level decisions made by the OS are crucial to improve decision quality. For example, predicting the
time to completion of a process would allow the kernel to reorder its CPU work queue based on
completion times leading to an optimal schedule for minimum waiting time of jobs. Since FM4OS is
pre-trained to understand precisely the needed semantic relationships between OS subsystems, it can
be used to closely predict system responses.

Application behavior prediction: Predicting the behavior of an application can help the OS prepare
in advance for additional resources the application might need and minimize competition for shared
hardware. For example, if the OS can predict that an application’s execution will be memory-intensive
in the near future based on its recent memory allocation calls and nature of inputs received, it can
both provision more memory for the application and avoid scheduling another memory-intensive
application on the same node.

Anomaly Detection: Using the state encoding of the OS or any of its components, and given a
trace, one can ask if the current state is normal, or if there is some anomaly or failure issue. Such
predictions can be used to identify and kill anomalous applications, thereby improving the security of
the OS kernel.

5 Summary
In conclusion, we argue that the OS decision-making tasks provide a rich arena for a domain-specific
foundation model to be built for the OS. We discuss the shortcomings of existing methods of data-
driven decision-making and posit that rich OS traces can provide the necessary data to train such a
foundation model, FM4OS, which can understand the ‘natural behavior’ of the OS. We then provide a
systematic analysis of the various ways in which FM4OS can be used and the various key challenges
that remain open research questions.

4



References
[1] Soheil Abbasloo, Chen-Yu Yen, and H. Jonathan Chao. Classic meets modern: A pragmatic

learning-based congestion control for the internet. In Proceedings of the Annual Conference of
the ACM Special Interest Group on Data Communication on the Applications, Technologies,
Architectures, and Protocols for Computer Communication, SIGCOMM ’20, page 632–647,
New York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450379557. doi:
10.1145/3387514.3405892. URL https://doi.org/10.1145/3387514.3405892.

[2] Ibrahim Umit Akgun, Ali Selman Aydin, Aadil Shaikh, Lukas Velikov, and Erez Zadok. A
machine learning framework to improve storage system performance. In Proceedings of the
13th ACM Workshop on Hot Topics in Storage and File Systems, pages 94–102, 2021. URL
https://dl.acm.org/doi/10.1145/3465332.3470875.

[3] Shane Bergsma, Timothy Zeyl, Arik Senderovich, and J. Christopher Beck. Generating complex,
realistic cloud workloads using recurrent neural networks. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles, SOSP ’21, page 376–391, New York, NY,
USA, 2021. Association for Computing Machinery. ISBN 9781450387095. doi: 10.1145/
3477132.3483590. URL https://doi.org/10.1145/3477132.3483590.

[4] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson,
Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen, Kathleen Creel,
Jared Quincy Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano
Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren
Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto,
Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas
Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling,
Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark Krass, Ranjay Krishna, Rohith Kuditipudi,
Ananya Kumar, Faisal Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa
Li, Xuechen Li, Tengyu Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric
Mitchell, Zanele Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman,
Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan, Julian Nyarko, Giray Ogut, Laurel Orr,
Isabel Papadimitriou, Joon Sung Park, Chris Piech, Eva Portelance, Christopher Potts, Aditi
Raghunathan, Rob Reich, Hongyu Ren, Frieda Rong, Yusuf Roohani, Camilo Ruiz, Jack
Ryan, Christopher Ré, Dorsa Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishnan
Srinivasan, Alex Tamkin, Rohan Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang,
William Wang, Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga,
Jiaxuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia
Zheng, Kaitlyn Zhou, and Percy Liang. On the opportunities and risks of foundation models,
2022. URL https://arxiv.org/abs/2108.07258.

[5] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

[6] Nicholas Carlini, Florian Tramèr, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Kather-
ine Lee, Adam Roberts, Tom Brown, Dawn Song, Úlfar Erlingsson, Alina Oprea, and Colin
Raffel. Extracting training data from large language models. In 30th USENIX Security Sym-
posium (USENIX Security 21), pages 2633–2650. USENIX Association, August 2021. ISBN
978-1-939133-24-3. URL https://www.usenix.org/conference/usenixsecurity21/
presentation/carlini-extracting.

[7] Nicolas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag, Florian Tramer,
Borja Balle, Daphne Ippolito, and Eric Wallace. Extracting training data from diffusion models.
In 32nd USENIX Security Symposium (USENIX Security 23), pages 5253–5270, 2023.

5

https://doi.org/10.1145/3387514.3405892
https://dl.acm.org/doi/10.1145/3465332.3470875
https://doi.org/10.1145/3477132.3483590
https://arxiv.org/abs/2108.07258
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting


[8] Jiayi Chen, Nihal Sharma, Tarannum Khan, Shu Liu, Brian Chang, Aditya Akella, Sanjay
Shakkottai, and Ramesh Sitaraman. Darwin: Flexible learning-based cdn caching. In Proceed-
ings of the 2023 ACM SIGCOMM 2023 Conference, 2023. URL https://dl.acm.org/doi/
pdf/10.1145/3603269.3604863.

[9] Jingde Chen, Subho S. Banerjee, Zbigniew T. Kalbarczyk, and Ravishankar K. Iyer. Machine
learning for load balancing in the linux kernel. In Proceedings of the 11th ACM SIGOPS Asia-
Pacific Workshop on Systems, APSys ’20, page 67–74, New York, NY, USA, 2020. Association
for Computing Machinery. ISBN 9781450380690. doi: 10.1145/3409963.3410492. URL
https://doi.org/10.1145/3409963.3410492.

[10] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker
Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes,
Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson,
Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier
Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David
Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani
Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat,
Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei
Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei,
Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling
language modeling with pathways, 2022. URL https://arxiv.org/abs/2204.02311.

[11] Jürgen Cito, Isil Dillig, Seohyun Kim, Vijayaraghavan Murali, and Satish Chandra. Explaining
mispredictions of machine learning models using rule induction. In Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2021, page 716–727, New York, NY, USA,
2021. Association for Computing Machinery. ISBN 9781450385626. doi: 10.1145/3468264.
3468614. URL https://doi.org/10.1145/3468264.3468614.

[12] Jürgen Cito, Isil Dillig, Vijayaraghavan Murali, and Satish Chandra. Counterfactual explanations
for models of code. In 2022 IEEE/ACM 44th International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), pages 125–134, 2022. doi: 10.1145/3510457.
3513081.

[13] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and
memory-efficient exact attention with IO-awareness. In Advances in Neural Information Pro-
cessing Systems, 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[15] Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar,
Pierre Sermanet, Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc
Toussaint, Klaus Greff, Andy Zeng, Igor Mordatch, and Pete Florence. Palm-e: An embodied
multimodal language model, 2023. URL https://arxiv.org/abs/2303.03378.

[16] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In Proceedings of the Third Conference on Theory of
Cryptography, TCC’06, page 265–284, Berlin, Heidelberg, 2006. Springer-Verlag. ISBN
3540327312. doi: 10.1007/11681878_14. URL https://doi.org/10.1007/11681878_14.

[17] Tomer Eliyahu, Yafim Kazak, Guy Katz, and Michael Schapira. Verifying learning-augmented
systems. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference, SIGCOMM ’21,
page 305–318, New York, NY, USA, 2021. Association for Computing Machinery. ISBN
9781450383837. doi: 10.1145/3452296.3472936. URL https://doi.org/10.1145/
3452296.3472936.

6

https://dl.acm.org/doi/pdf/10.1145/3603269.3604863
https://dl.acm.org/doi/pdf/10.1145/3603269.3604863
https://doi.org/10.1145/3409963.3410492
https://arxiv.org/abs/2204.02311
https://doi.org/10.1145/3468264.3468614
https://proceedings.neurips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
https://arxiv.org/abs/2303.03378
https://doi.org/10.1007/11681878_14
https://doi.org/10.1145/3452296.3472936
https://doi.org/10.1145/3452296.3472936


[18] Todd Evans, William L. Barth, James C. Browne, Robert L. DeLeon, Thomas R. Furlani,
Steven M. Gallo, Matthew D. Jones, and Abani K. Patra. Comprehensive resource use monitor-
ing for hpc systems with tacc stats. In 2014 First International Workshop on HPC User Support
Tools, pages 13–21, 2014. doi: 10.1109/HUST.2014.7.

[19] Henrique Fingler, Isha Tarte, Hangchen Yu, Ariel Szekely, Bodun Hu, Aditya Akella, and
Christopher J. Rossbach. Towards a machine learning-assisted kernel with lake. In Pro-
ceedings of the 28th ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Volume 2, ASPLOS 2023, page 846–861, New
York, NY, USA, 2023. Association for Computing Machinery. ISBN 9781450399166. doi:
10.1145/3575693.3575697. URL https://doi.org/10.1145/3575693.3575697.

[20] Jiajun Gong, Wuqi Zhang, Charles Zhang, and Tao Wang. Surakav: Generating realistic
traces for a strong website fingerprinting defense. In 2022 IEEE Symposium on Security
and Privacy (SP), pages 1558–1573, 2022. doi: 10.1109/SP46214.2022.9833722. URL
https://ieeexplore.ieee.org/document/9833722.

[21] Raúl Gracia-Tinedo, Danny Harnik, Dalit Naor, Dmitry Sotnikov, Sivan Toledo, and Aviad Zuck.
SDGen: Mimicking datasets for content generation in storage benchmarks. In 13th USENIX
Conference on File and Storage Technologies (FAST 15), pages 317–330, Santa Clara, CA,
February 2015. USENIX Association. ISBN 978-1-931971-201. URL https://www.usenix.
org/conference/fast15/technical-sessions/presentation/gracia-tinedo.

[22] Mingzhe Hao, Levent Toksoz, Nanqinqin Li, Edward Edberg Halim, Henry Hoffmann, and
Haryadi S Gunawi. {LinnOS}: Predictability on unpredictable flash storage with a light neural
network. In 14th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20), pages 173–190, 2020. URL https://www.usenix.org/conference/osdi20/
presentation/hao.

[23] Nathan Jay, Noga Rotman, Brighten Godfrey, Michael Schapira, and Aviv Tamar. A deep
reinforcement learning perspective on internet congestion control. In International Conference
on Machine Learning, pages 3050–3059. PMLR, 2019. URL https://proceedings.mlr.
press/v97/jay19a.html.

[24] Hwajung Kim and Heon Y. Yeom. Lpr: Learning-based page replacement scheme for scientific
applications. In Proceedings of the 23rd International Middleware Conference Industrial
Track, Middleware Industrial Track ’22, page 36–42, New York, NY, USA, 2022. Association
for Computing Machinery. ISBN 9781450399173. doi: 10.1145/3564695.3564777. URL
https://doi.org/10.1145/3564695.3564777.

[25] Seyeon Kim, Kyungmin Bin, Sangtae Ha, Kyunghan Lee, and Song Chong. Ztt: Learning-based
dvfs with zero thermal throttling for mobile devices. In Proceedings of the 19th Annual Interna-
tional Conference on Mobile Systems, Applications, and Services, MobiSys ’21, page 41–53,
New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450384438. doi:
10.1145/3458864.3468161. URL https://doi.org/10.1145/3458864.3468161.

[26] Yu Liang, Riwei Pan, Tianyu Ren, Yufei Cui, Rachata Ausavarungnirun, Xianzhang Chen,
Changlong Li, Tei-Wei Kuo, and Chun Jason Xue. {CacheSifter}: Sifting cache files for boosted
mobile performance and lifetime. In 20th USENIX Conference on File and Storage Technologies
(FAST 22), pages 445–459, 2022. URL https://www.usenix.org/conference/fast22/
presentation/liang.

[27] Zinan Lin, Alankar Jain, Chen Wang, Giulia Fanti, and Vyas Sekar. Using gans for sharing
networked time series data: Challenges, initial promise, and open questions. In Proceedings of
the ACM Internet Measurement Conference, pages 464–483, 2020. URL https://dl.acm.
org/doi/10.1145/3419394.3423643.

[28] Evan Liu, Milad Hashemi, Kevin Swersky, Parthasarathy Ranganathan, and Junwhan Ahn. An
imitation learning approach for cache replacement. In International Conference on Machine
Learning, pages 6237–6247. PMLR, 2020. URL https://dl.acm.org/doi/abs/10.5555/
3524938.3525517.

7

https://doi.org/10.1145/3575693.3575697
https://ieeexplore.ieee.org/document/9833722
https://www.usenix.org/conference/fast15/technical-sessions/presentation/gracia-tinedo
https://www.usenix.org/conference/fast15/technical-sessions/presentation/gracia-tinedo
https://www.usenix.org/conference/osdi20/presentation/hao
https://www.usenix.org/conference/osdi20/presentation/hao
https://proceedings.mlr.press/v97/jay19a.html
https://proceedings.mlr.press/v97/jay19a.html
https://doi.org/10.1145/3564695.3564777
https://doi.org/10.1145/3458864.3468161
https://www.usenix.org/conference/fast22/presentation/liang
https://www.usenix.org/conference/fast22/presentation/liang
https://dl.acm.org/doi/10.1145/3419394.3423643
https://dl.acm.org/doi/10.1145/3419394.3423643
https://dl.acm.org/doi/abs/10.5555/3524938.3525517
https://dl.acm.org/doi/abs/10.5555/3524938.3525517


[29] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping Zhang, Yu Ding, Jian He,
and Chengzhong Xu. Characterizing microservice dependency and performance: Alibaba trace
analysis. In Proceedings of the ACM Symposium on Cloud Computing, SoCC ’21, page 412–426,
New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450386388. doi:
10.1145/3472883.3487003. URL https://doi.org/10.1145/3472883.3487003.

[30] Martin Maas, David G. Andersen, Michael Isard, Mohammad Mahdi Javanmard, Kathryn S.
McKinley, and Colin Raffel. Learning-based memory allocation for c++ server workloads.
In Proceedings of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’20, page 541–556, New York,
NY, USA, 2020. Association for Computing Machinery. ISBN 9781450371025. doi: 10.1145/
3373376.3378525. URL https://doi.org/10.1145/3373376.3378525.

[31] Hongzi Mao, Parimarjan Negi, Akshay Narayan, Hanrui Wang, Jiacheng Yang, Haonan Wang,
Ryan Marcus, ravichandra addanki, Mehrdad Khani Shirkoohi, Songtao He, Vikram Nathan,
Frank Cangialosi, Shaileshh Venkatakrishnan, Wei-Hung Weng, Song Han, Tim Kraska, and
Dr.Mohammad Alizadeh. Park: An open platform for learning-augmented computer systems.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, ed-
itors, Advances in Neural Information Processing Systems, volume 32. Curran Associates,
Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/
f69e505b08403ad2298b9f262659929a-Paper.pdf.

[32] Tung Nguyen, Johannes Brandstetter, Ashish Kapoor, Jayesh K. Gupta, and Aditya Grover.
Climax: A foundation model for weather and climate. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, International
Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA,
volume 202 of Proceedings of Machine Learning Research, pages 25904–25938. PMLR, 2023.
URL https://proceedings.mlr.press/v202/nguyen23a.html.

[33] Liang Niu, Shujaat Mirza, Zayd Maradni, and Christina Pöpper. CodexLeaks: Privacy leaks
from code generation language models in GitHub copilot. In 32nd USENIX Security Sym-
posium (USENIX Security 23), pages 2133–2150, Anaheim, CA, August 2023. USENIX
Association. ISBN 978-1-939133-37-3. URL https://www.usenix.org/conference/
usenixsecurity23/presentation/niu.

[34] Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbigniew T. Kalbarczyk, and Ravishankar K.
Iyer. FIRM: An intelligent fine-grained resource management framework for SLO-Oriented
microservices. In 14th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20), pages 805–825. USENIX Association, November 2020. ISBN 978-1-939133-19-9.
URL https://www.usenix.org/conference/osdi20/presentation/qiu.

[35] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language
understanding by generative pre-training. 2018.

[36] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should I trust you?": Explaining
the predictions of any classifier. CoRR, abs/1602.04938, 2016. URL http://arxiv.org/
abs/1602.04938.

[37] Liana V Rodriguez, Farzana Yusuf, Steven Lyons, Eysler Paz, Raju Rangaswami, Jason Liu,
Ming Zhao, and Giri Narasimhan. Learning cache replacement with {CACHEUS}. In 19th
USENIX Conference on File and Storage Technologies (FAST 21), pages 341–354, 2021.

[38] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
High-resolution image synthesis with latent diffusion models. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 10684–10695,
2022. URL https://openaccess.thecvf.com/content/CVPR2022/papers/Rombach_
High-Resolution_Image_Synthesis_With_Latent_Diffusion_Models_CVPR_2022_
paper.pdf.

[39] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry, Paul Batum, Ja-
son Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and Ricardo Bian-
chini. Serverless in the wild: Characterizing and optimizing the serverless workload at

8

https://doi.org/10.1145/3472883.3487003
https://doi.org/10.1145/3373376.3378525
https://proceedings.neurips.cc/paper_files/paper/2019/file/f69e505b08403ad2298b9f262659929a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/f69e505b08403ad2298b9f262659929a-Paper.pdf
https://proceedings.mlr.press/v202/nguyen23a.html
https://www.usenix.org/conference/usenixsecurity23/presentation/niu
https://www.usenix.org/conference/usenixsecurity23/presentation/niu
https://www.usenix.org/conference/osdi20/presentation/qiu
http://arxiv.org/abs/1602.04938
http://arxiv.org/abs/1602.04938
https://openaccess.thecvf.com/content/CVPR2022/papers/Rombach_High-Resolution_Image_Synthesis_With_Latent_Diffusion_Models_CVPR_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Rombach_High-Resolution_Image_Synthesis_With_Latent_Diffusion_Models_CVPR_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Rombach_High-Resolution_Image_Synthesis_With_Latent_Diffusion_Models_CVPR_2022_paper.pdf


a large cloud provider. In 2020 USENIX Annual Technical Conference (USENIX ATC
20), pages 205–218. USENIX Association, July 2020. ISBN 978-1-939133-14-4. URL
https://www.usenix.org/conference/atc20/presentation/shahrad.

[40] Zhenyu Song, Daniel S Berger, Kai Li, Anees Shaikh, Wyatt Lloyd, Soudeh Ghorbani,
Changhoon Kim, Aditya Akella, Arvind Krishnamurthy, Emmett Witchel, et al. Learning
relaxed belady for content distribution network caching. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 20), pages 529–544, 2020. URL
https://www.usenix.org/conference/nsdi20/presentation/song.

[41] Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Carlini, Benjamin Recht, and Ludwig
Schmidt. Measuring robustness to natural distribution shifts in image classification, 2020.

[42] Sebastian Thrun and Lorien Pratt, editors. Learning to Learn. Kluwer Academic Publishers,
USA, 1998. ISBN 0792380479.

[43] Maria Tsimpoukelli, Jacob Menick, Serkan Cabi, S. M. Ali Eslami, Oriol Vinyals, and Felix
Hill. Multimodal few-shot learning with frozen language models, 2021.

[44] Tao Tu, Shekoofeh Azizi, Danny Driess, Mike Schaekermann, Mohamed Amin, Pi-Chuan
Chang, Andrew Carroll, Chuck Lau, Ryutaro Tanno, Ira Ktena, Basil Mustafa, Aakanksha
Chowdhery, Yun Liu, Simon Kornblith, David Fleet, Philip Mansfield, Sushant Prakash, Renee
Wong, Sunny Virmani, Christopher Semturs, S Sara Mahdavi, Bradley Green, Ewa Dominowska,
Blaise Aguera y Arcas, Joelle Barral, Dale Webster, Greg S. Corrado, Yossi Matias, Karan
Singhal, Pete Florence, Alan Karthikesalingam, and Vivek Natarajan. Towards generalist
biomedical ai, 2023. URL https://arxiv.org/abs/2307.14334.

[45] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[46] Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaudhuri.
Programmatically interpretable reinforcement learning. In Jennifer Dy and Andreas Krause,
editors, Proceedings of the 35th International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pages 5045–5054. PMLR, 10–15 Jul 2018. URL
https://proceedings.mlr.press/v80/verma18a.html.

[47] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppenheimer, Eric Tune,
and John Wilkes. Large-scale cluster management at Google with Borg. In Proceedings of
the European Conference on Computer Systems (EuroSys), Bordeaux, France, 2015. URL
https://dl.acm.org/doi/10.1145/2741948.2741964.

[48] Giuseppe Vietri, Liana V. Rodriguez, Wendy A. Martinez, Steven Lyons, Jason Liu, Raju
Rangaswami, Ming Zhao, and Giri Narasimhan. Driving cache replacement with ML-based
LeCaR. In 10th USENIX Workshop on Hot Topics in Storage and File Systems (HotStor-
age 18), Boston, MA, July 2018. USENIX Association. URL https://www.usenix.org/
conference/hotstorage18/presentation/vietri.

[49] Giuseppe Vietri, Liana V Rodriguez, Wendy A Martinez, Steven Lyons, Jason Liu, Raju
Rangaswami, Ming Zhao, and Giri Narasimhan. Driving cache replacement with {ML-
based}{LeCaR}. In 10th USENIX Workshop on Hot Topics in Storage and File Systems
(HotStorage 18), 2018.

[50] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang, Cheng Wang, Jian He, Yong Li, Liping
Zhang, Wei Lin, and Yu Ding. MLaaS in the wild: Workload analysis and scheduling in
Large-Scale heterogeneous GPU clusters. In 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 22), pages 945–960, Renton, WA, April 2022. USENIX
Association. ISBN 978-1-939133-27-4. URL https://www.usenix.org/conference/
nsdi22/presentation/weng.

[51] Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski, Mark Dredze, Sebastian Gehrmann,
Prabhanjan Kambadur, David Rosenberg, and Gideon Mann. Bloomberggpt: A large language
model for finance, 2023. URL https://arxiv.org/abs/2303.17564.

9

https://www.usenix.org/conference/atc20/presentation/shahrad
https://www.usenix.org/conference/nsdi20/presentation/song
https://arxiv.org/abs/2307.14334
https://proceedings.mlr.press/v80/verma18a.html
https://dl.acm.org/doi/10.1145/2741948.2741964
https://www.usenix.org/conference/hotstorage18/presentation/vietri
https://www.usenix.org/conference/hotstorage18/presentation/vietri
https://www.usenix.org/conference/nsdi22/presentation/weng
https://www.usenix.org/conference/nsdi22/presentation/weng
https://arxiv.org/abs/2303.17564


[52] Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. DeeBERT: Dynamic early
exiting for accelerating BERT inference. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages 2246–2251, Online, July 2020. Association for
Computational Linguistics. URL https://www.aclweb.org/anthology/2020.acl-main.
204.

[53] Juncheng Yang, Ziming Mao, Yao Yue, and KV Rashmi. {GL-Cache}: Group-level learning for
efficient and high-performance caching. In 21st USENIX Conference on File and Storage Tech-
nologies (FAST 23), pages 115–134, 2023. URL https://www.usenix.org/conference/
fast23/presentation/yang-juncheng.

[54] Sherry Yang, Ofir Nachum, Yilun Du, Jason Wei, Pieter Abbeel, and Dale Schuurmans.
Foundation models for decision making: Problems, methods, and opportunities, 2023. URL
https://arxiv.org/abs/2303.04129.

[55] Yucheng Yin, Zinan Lin, Minhao Jin, Giulia Fanti, and Vyas Sekar. Practical gan-based
synthetic ip header trace generation using netshare. In Proceedings of the ACM SIGCOMM
2022 Conference, SIGCOMM ’22, page 458–472, New York, NY, USA, 2022. Association
for Computing Machinery. ISBN 9781450394208. doi: 10.1145/3544216.3544251. URL
https://doi.org/10.1145/3544216.3544251.

[56] Yanqi Zhang, Weizhe Hua, Zhuangzhuang Zhou, G. Edward Suh, and Christina Delimitrou.
Sinan: Ml-based and qos-aware resource management for cloud microservices. In Proceed-
ings of the 26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’21, page 167–181, New York, NY, USA, 2021.
Association for Computing Machinery. ISBN 9781450383172. doi: 10.1145/3445814.3446693.
URL https://doi.org/10.1145/3445814.3446693.

[57] Yiying Zhang and Yutong Huang. "learned": Operating systems. 53(1):40–45, jul 2019. ISSN
0163-5980. doi: 10.1145/3352020.3352027. URL https://doi.org/10.1145/3352020.
3352027.

A Data Sources for OS Traces
Below we list the various data sources that can be used to train FM4OS:

• Action logs from OS components: Kernel logs such as dmesg in Linux/MacOS and event logs in
Windows, capture kernel debugging data, hardware events (e.g., network link status), and system
events like interrupts, process restarts. These logs capture the actions taken by the OS components
and the system state used by OS tasks (System state and Actions columns in Table 1).

• Resource metrics and hardware counters: Hardware drivers record several quantities relating
to the resource’s state at a pre-configured frequency. These include CPU, memory, and disk
bandwidth utilization, NIC queue length, and hardware counters.

• Application workloads: Workload traces from productions [29, 39, 47], public infrastructures [18]
and synthetically generated ones offer detailed application-level information, such as application
type, request arrival rates, statistics of resource usage during execution.

B Decision Making Tasks in Operating Systems
Table 1 shows the various components in the OS and a representative subset of the tasks for these
components. It also shows the relevant system and environment states, action spaces, and the
objectives of these tasks. Each task description is also accompanied by an acronym that we use in the
paper to refer to the particular task, e.g. SCH for the CPU scheduling task.

C Pretraining Methodology for FM4OS
We envision FM4OS to be pre-trained using self-supervised methods on a large corpus of OS traces.
This pre-trained model would capture temporal relationships in the sequence of inputs it accepts and
build an understanding of the system dynamics of the OS. Existing literature (particularly in natural
language) has proposed several pre-training tasks that can be used to develop this basic understanding.
Notable among these are the Next Token Prediction [35], Masked Language Modeling, Next Sentence
Prediction [14]; each with their own pros and cons. While it seems intuitive to employ an auto-
regressive model, pre-trained with next token prediction to build FM4OS, the optimal pre-training
task is an open and interesting question in itself.

10

https://www.aclweb.org/anthology/2020.acl-main.204
https://www.aclweb.org/anthology/2020.acl-main.204
https://www.usenix.org/conference/fast23/presentation/yang-juncheng
https://www.usenix.org/conference/fast23/presentation/yang-juncheng
https://arxiv.org/abs/2303.04129
https://doi.org/10.1145/3544216.3544251
https://doi.org/10.1145/3445814.3446693
https://doi.org/10.1145/3352020.3352027
https://doi.org/10.1145/3352020.3352027


Table 1: Various decision-making components in the OS.
Components Description and Acronym System State Environment Info Actions Objectives

CPU
Scheduling [SCH]: Choose next process to run

and which CPU to run it on [9]
Process state (niceness, prior-
ity, execution time), Hardware
state (CPU, RAM spec, etc.)

Arrival pattern and type
of processes (computation-
heavy vs. I/O-heavy)

Process to core as-
signment

Job completion
time, fairness

Voltage and
frequency
scaling

[DVFS]: Choosing CPU frequen-
cies dynamically to reduce power
consumptions [25]

CPU frequency buckets, Hard-
ware spec of the CPU

Process workloads, and
process instructions

Choose CPU fre-
quency

CPU perfor-
mance, power,
temperature

Memory
Subsystem

Page Allo-
cation

[ALLOC]: What page size to use
(e.g., huge pages vs normal pages)
and how to allocate memory [30]

Page table size, Hardware
spec (amount of memory, type,
etc.)

Memory access patterns of
running processes

Page Size, Alloca-
tion mechanism

Latency of mem-
ory accesses

Page Re-
placement

[PAGE]: Choose a page in the phys-
ical memory to replace with another
page in virtual memory [24]

Physical memory state, Hard-
ware spec (amount of memory,
type, etc.)

Program instructions, his-
torical data of page faults
for the processes

Choose the page
to replace

Number of page
faults

Network
Subsystem

Packet
Scheduling

[NETQUEUE]: Order packets to
send/process from the NIC queues

Queuing delays, NIC spec Application type (video
streaming, analytics, etc.)

Packet drop rate Throughput and
delay

Congestion
Control

[CC]: Set congestion window, pac-
ing rate for the connection [1, 23]

Network throughput, delay
and packet loss; NIC spec

Application type (video
streaming, analytics, etc.)

Congestion win-
dow, pacing rate

Throughput and
delay

Storage
Subsystem

I/O schedul-
ing

[IOSCH]: Deciding in which order
I/O requests should be submitted to
storage devices [22]

I/O metadata (block offset,
size), queue state, historical
I/O latencies

Application type informa-
tion (e.g., database, file sys-
tem, etc.)

Order of I/O re-
quests

I/O latencies

Prefetching [PREFETCH]: Predict which seg-
ments of memory to prefetch [2]

Cache size and state, Cache
and PCIe spec

Process workloads and pro-
cess instructions

Choose segment
to prefetch

Throughput of fu-
ture reads

Cache re-
placement

[CACHE]: Decide whether and
which object to replace in the cache
with the new object [8, 40, 53]

Cache size and state (occu-
pied, address, last access)

Cache workloads (object
sizes, frequency of access,
etc.)

Choose a set
of objects to
evict/admit

Cache hit ratio

D Open Challenges for FM4OS
D.1 Challenges in using FM4OS as a Policy Agent

End-to-end application performance depends on collective decisions made by OS components. Using
foundation models as policy agents brings two unique challenges: composability of actions from
various policy agents and end-to-end explanability of their decisions. The former arises because
decisions of one policy can affect the future states of other agents (as with the CACHE and SCH
example discussed in §2). Independently fine-tuned components in the OS may result in suboptimal
OS-wide decisions, that may affect both individual application and system-wide guarantees (e.g.
fairness and starvation-freedom). One possible approach here is to jointly fine-tune components (to
ensure concerted decisions) as well as to develop techniques that provide component-wise guarantees
(on performance, e.g., bounds on tail request completion times, or correctness, e.g., safety and
liveness properties [17]), and formally guaranteed composability of these actions to provide global
invariants for the entire OS.

Regarding the latter, ideally, we desire human users to understand the OS at some level to audit or
debug it. However, learned decisions from a black-box model may easily obscure the understanding
of overall behavior. We envision the use of approaches that describe what each learned policy did in
a given execution (similar to LIME [36]), what could have happened had a learned policy made a
different decision, and also produce human-comprehensible ‘summaries’ in the form of rules [11, 12],
or programs [46] of what the module will do ahead of time.

D.2 Challenges in using FM4OS as a Generative Model

As with any generative model, quantifying the quality of synthetic samples is a key challenge. At the
very least, these traces should maintain certain relationships between variables (e.g., total network
transmissions should be less than network bandwidth). They must also capture desired properties that
are difficult to obtain otherwise, such as ‘realism’, i.e., a specific sequence of requests in a generated
trace can actually arise in practice — this is an avenue for future research. Further, the generated
traces should also be diverse to be useful. For example, for a cache replacement algorithm, we would
want traces with diverse and realistic combinations of small and large object arrivals to effectively
stress-test the algorithm [8]. Another challenge is with leakage and memorization of sensitive data.
As shown in previous works [7, 33], carefully designed prompts can extract memorized training data
with sensitive information. Thus, integrating techniques such as filtering the memorized data [6] and
ideas from say, differential privacy [16], into FM4OS are necessary.

11


	Introduction
	Background
	FM4OS: A Foundation Model for the OS
	Downstream Tasks for FM4OS
	FM4OS as a Policy Agent
	FM4OS as a Generative Model
	FM4OS as a Predictive Model

	Summary
	Data Sources for OS Traces
	Decision Making Tasks in Operating Systems
	Pretraining Methodology for FM4OS
	Open Challenges for FM4OS
	Challenges in using FM4OS as a Policy Agent
	Challenges in using FM4OS as a Generative Model


