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Abstract

Energy efficiency is pressing in today’s cloud datacenters. Various power manage-
ment strategies, such as oversubscription, power capping, and dynamic voltage
and frequency scaling, have been proposed and are in use by datacenter operators
to better control power consumption at any management unit (e.g., node-level or
rack-level) without breaking power budgets. This paper systematically investigates
the impact of power capping on both latency-critical datacenter workloads and
learning-based resource management solutions (i.e., reinforcement learning or
RL). We show that even a 20% reduction in power limit (power capping) leads
to an 18% degradation in resource management effectiveness (i.e., defined by
an RL reward function) which causes 50% higher application latency. We then
propose PARM, an adaptive resource allocation framework that provides graceful
performance-preserving transition under power capping for latency-critical work-
loads. Evaluation results show that PARM achieves 10.2–99.3% improvement in
service-level objective (SLO) preservation under power capping while improving
utilization by 3.1–5.8%.

1 Introduction
Over the past decade, the demand for datacenter computing and power has been growing at an
increasing rate, driven by the rise of web services and machine learning-related workloads [4]. To
improve efficiency (by achieving high levels of utilization), a variety of power capping solutions have
been leveraged to safely allow oversubscription of available power [5, 13, 35, 17]. Power capping is a
mechanism that enforces the power limits of a datacenter at any level via processor voltage/frequency
throttling. The capability of power capping also enables sustainability-aware optimization by shifting
compute demand to when and where the carbon intensity is the lowest [1, 25].

However, when power capping is enforced, application performance can be negatively impacted due
to processor frequency throttling. Workload-aware power capping is done either in a coarse-grained
manner or relies on accurate forecasting and careful workload placement. For instance, Meta’s
Dynamo [35] relies on predefined workload priority groups and throttles the whole server based on
the workload priority. For unknown workloads and their server placements, throttling at a coarse
granularity (the entire server) would impact latency-critical workloads (e.g., user-facing web services).
Microsoft proposes per-VM capping [17] but suffers from misprediction (due to dynamic workload
patterns) and requires changes to the cluster job placement scheduler.

In addition, numerous learning-based resource management solutions [19, 20, 22, 33, 28, 36, 38, 10,
24] have been proposed and are used in cloud datacenters for performance-aware resource allocation
(e.g., Sizeless [10]) and autoscaling (e.g., AutoPilot [28] and DeepScaling [33]). Unfortunately,
without coordination with datacenter power management systems, such ML/RL-based approaches
suffer from suboptimal decisions (worse performance due to frequency throttling) or even cascading
degradation due to scaling out and thus a need for further reducing power demand (more throttling).

Our Contribution. We present a measurement study on the impact of datacenter power capping on
both application performance and an RL-based autoscaler (in both training and policy-serving). We
then introduce PARM, an adaptive resource allocation framework that provides graceful transitions
for latency-critical workloads under power capping. Evaluation results show that PARM achieves
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10.2–99.3% improvement in service-level objective (SLO) preservation for latency-critical workloads
under power capping while improving CPU utilization by 3.1–5.8% (compared to a vanilla RL-based
autoscaler from FIRM [20]).

2 Background and Motivation
2.1 RL-based Resource Management

Due to the sequential nature of the decision-making process, RL is well-suited for learning resource
management policies by providing a tight feedback loop for exploring the state-action space and
generating optimal policies without relying on inaccurate assumptions (i.e., heuristics or rules) [19, 33,
20]. In addition, since the decisions made for workloads are highly repetitive, an abundance of data
is generated to train such RL algorithms even with deep neural networks. By directly learning from
the actual workload and operating conditions to understand how the allocation of resources affects
application performance, the RL agent can optimize for a specific workload and adapt to varying
conditions in the learning environment. RL has been shown to automate resource management and
outperform heuristics-based approaches in terms of meeting workload SLOs and achieving higher
resource utilization [20, 16, 37, 22, 33, 27, 24, 23].

Table 1: RL state-action space of FIRM [20].
State Space (st)

Resource Limits (CPU, RAM), Resource Utilization
(CPU, Memory, I/O, Network), SLO Preservation Ratio
(Latency, Throughput), Observed Load Changes

Action Space (at)
Resource Limits (CPU, RAM), Number of Replicas

Specifically, we took the open-source implemen-
tation of an RL-based workload autoscaler from
FIRM [20], which is a state-of-the-art RL-based
autoscaling solution on container orchestration
platforms such as Kubernetes [24] and Open-
Whisk [22]. FIRM uses an actor-critic RL algo-
rithm called DDPG [18]. The RL agent monitors
the system- and application-specific measure-
ments and learns how to scale the allocated resources horizontally (by adjusting the number of
containers) and vertically (by adjusting the resource limits). Table 1 shows the model’s state and
action spaces. The goal is to achieve high resource utilization (RU ) while maintaining application
SLOs (if there are any). SLO preservation (SP ) is defined as the ratio between the SLO metric 1

and the measured metric. If no SLO is defined for the workload (e.g., best-effort jobs) or the mea-
sured metric is smaller than the SLO metric, SP = 1. The reward function is then defined as
rt = α ·SPt · |R|+(1−α) ·∑i∈R RUi, where R is the set of resource types and α = 0.7 in all our
experiments. The reward represents the loss/gain when transitioning to the current state, and thus the
agent’s goal is to optimize its policy so as to maximize the expected cumulative reward in controlling
the resource autoscaling.

2.2 Impact of Power Capping

Power capping is a mechanism that ensures the power drawn by a datacenter at any level (e.g.,
server-level or rack-level) stays below a predefined power budget (i.e., a limit) [5, 13, 35, 17]. Power
capping has been mainly leveraged by datacenter operators to safely oversubscribe available power [5,
13, 35, 17] or carbon footprint optimization (by load and compute/power demand shifting) [1, 25].
At the core of power capping is a monitoring loop, which takes in power readings, computes the
amount of power capping needed (i.e., a power limit), and then enforces the capping in a variety
of techniques depending on the scale and type of the hardware component. From the intra-server
perspective, capping is enforced by throttling processors (e.g., Intel RAPL [34] uses voltage/frequency
down-scaling to limit power consumption on a server node).
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Figure 1: Performance degradation analysis under power capping and core frequency reduction.
Latency for frequency reduction to 1.0–2.5 GHz is normalized to the frequency of 3.0 GHz

Setup. We generated 1000 synthetic applications based on the open-source application generator,
using production serverless function segments in Sizeless [10] as inputs. We focus on serverless

1An SLO metric can be either request serving latency (e.g., the 99th percentile of the requests are completed
in 100ms) or throughput (e.g., request processing rate is no less than 100/s).
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workloads as an example because they are highly dynamic and thus require autoscaling. The
16 representative function segments are based on a survey of 89 industry use cases of serverless
computing applications [11], including CPU-intensive tasks (e.g., floating-point number computation),
image manipulation, text processing, data compression, web serving, ML model serving, and I/O
services (e.g., read, write, and streaming). For RL agent training and inference, we used real-world
datacenter traces [29] released by Microsoft Azure, collected over two weeks in 2021. All applications
were deployed on a five-node OpenWhisk [12] cluster on a local rack with five physical nodes, each
of which contains an Intel x86 Xeon E5 processor 2.0 GHz (maximum 3.0 GHz) with 56 CPU cores
and 500 GB RAM. We deployed FIRM (i.e., the RL agent for autoscaling on OpenWhisk) on a
separate node in the same cluster by following [22].

Impact on Workload Performance. There is a linear relationship between the power consumption
of a server power and the core frequency f (i.e., power ∝ fV 2) at any voltage V [5, 26]. We run
workloads at different frequencies starting from the base frequency to the Turbo frequency that the
server supports (i.e., 1.0 to 3.0 GHz). We then measure the end-to-end latency of each application
under the default resource allocation in OpenWhisk (i.e., 256 millicpu and 256 MB RAM). As shown
in Fig. 1(a), the average latency increase across different applications is 1.1–2.4× for frequency
reduced to 1.0–2.5 GHz. The 99th percentile latency degradation is 1.3–4×. CPU-intensive workloads
are more sensitive to core frequency reduction under power capping, as shown in Fig. 1(b). For
instance, the degradation for CPU-intensive workloads is 2.2× worse than that of I/O-intensive
workloads at 2.0 GHz. In addition, performance degradation exists at all CPU allocation levels and
workloads with higher CPU allocations tend to experience slightly worse degradation under power
capping. For instance, the median degradation increases from 1.1 to 1.3× for applications with CPU
allocation varying from 128 to 2048 millicpus at frequency 2.0 GHz (as shown in Fig. 1(c)).

Impact on RL-based autoscaling agents is deferred to Appendix A.2 due to page limit.

Key Takeaway. Datacenter power capping has a negative impact on both the workloads running
on the core-frequency-throttled servers and the learning-based resource management solutions. A
new design is needed to adaptively capture the impacts of power capping and augment existing
learning-based resource managers in providing latency-critical workloads with seamless transitions
to continuously operate and meet SLOs under power capping.

3 PARM
We introduce PARM, an adaptive resource allocation framework that monitors power capping and
provides graceful (SLO-preserving) transitions for latency-critical workloads by actively re-scaling
the resource allocation. We propose two designs (alternative design in Appendix A.3), depending on
whether core frequencies are measurable and accessible for the application deployment (i.e., in con-
tainers/VMs). We then integrate, implement, and evaluate both designs of PARM on OpenWhisk [12],
a production-grade open-source serverless platform (as described in §2.2). Fig. 2 shows an overview
of the architecture and adaptive resource allocation workflow in PARM under power capping.
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Figure 2: Overview of the adaptive resource allocation workflow in PARM.

In the first design, we assume that core frequency measurements are not available because, in shared
cloud platforms, VM/container-to-core assignments can be dynamic and non-dedicated (time-sharing).
PARM serves as a co-agent that runs together with the original RL agent (e.g., from FIRM [20]) that
is designed and trained for autoscaling. PARM consists of two main components: (1) a Degradation
Predictor that is trained based on the application profile builder, and (2) a Resource Re-allocator that
adjusts the scaling action from the RL agent to continuously meet application SLOs. We name the
first design the “frequency-agnostic” design, which does not require any changes to the RL agent.

Degradation Predictor. We formulate a Multi-target Regression Modeling problem to predict the
degradation of application performance under power capping. The degradation predictor outputs a
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trained degradation model that can predict the latency changes and CPU utilization changes (both in
percentage) compared to no power capping. We start with a simple fully-connected neural network
with three layers of 64 neurons (with ReLU as the activation function) trained for 80 epochs. The
inputs to the predictor include the power capping percentage (from Power Capping module in Fig. 2),
CPU allocation, memory allocation, CPU utilization, and latency while the outputs are the predicted
CPU utilization and latency if there were no power capping. The degradation predictor training is on
application profiles by setting different power limits from [10%, 100%) using a step size of 5%.

Resource Re-allocator. Based on the what-if predictions (i.e., the predicted CPU utilization and
latency if there were no power capping) from the degradation predictor, the resource re-allocator
replaces the CPU utilization and latency variable in the RL state vector at the current step and queries
the RL policy network. The output resource scaling action then represents the corrected action
assuming that there is no power capping. The corrected scaling action is then applied to the horizontal
and vertical resource scaler in OpenWhisk for actuation.

4 Evaluation
Our evaluation addresses the following main questions: (a) Can the degradation predictor in PARM’s
frequency-agnostic design achieve high accuracy regarding latency and utilization prediction? (See
Appendix A.5) (b) Can PARM provide adaptive and performance-preserving resource allocation based
on the degradation prediction? (c) Can PARM’s alternative design converge with the RL policy now
conditioning on the measured core frequency? (d) How does the alternative design compare with the
frequency-agnostic design in terms of both SLO preservation and resource utilization?
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Figure 3: Training convergence
analysis of different RL agents.
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10% 20% 30% 40%

Power Capping Percentage

0

20

40

60

80

100

C
P

U
U

ti
liz

at
io

n
(%

)

PARM

PARM (freq)

No PARM

Figure 5: Utilization compari-
son under power capping.

We evaluate PARM’s effectiveness in workload autoscaling when handling different extents of power
capping during policy training and serving stages. Fig. 3 shows the training convergence analysis.
Both the RL agent of PARM with measured core frequency (i.e., the alternative design, labeled as
“PARM (freq)”) and the RL agent of PARM in the frequency-agnostic design can converge. However,
the RL agent of PARM (freq) has slower convergence compared to that of PARM (frequency-agnostic)
by around 90 episodes because PARM (freq) essentially learns a policy that is conditioning on the
current frequency in the state vector while PARM (frequency-agnostic) does not require changes
to the RL states and its training is under no power capping. A larger state-action space leads to
slower convergence behavior. The vanilla RL agent (FIRM [20], labeled as “No PARM”) is unable to
converge due to environment non-stationarity since the agent is unaware of power capping or core
frequency reduction. Especially when there is a power capping change in the RL environment, there
can be up to 300% reward drop, which indicates that the learned policy cannot be transferred to an
environment with a different level of power capping.

For RL policy-serving, we evaluate the SLO preservation and the CPU utilization under power
capping, as the two are the direct factors specified in the reward function. As shown in Fig. 4,
PARM achieves 10.2–99.3% improvement in SLO preservation compared to the vanilla RL-based
autoscaler from FIRM [20] because of the resource re-allocation with degradation predictor (i.e.,
the only difference between PARM and the RL agent in FIRM). We also find that as the MSE of
degradation prediction increases to 0.21 for 40% capping (recall Fig. 8), the average SLO preservation
percentage drops to 87.5% (> 47.9% for “No PARM”, though). In the alternative design, PARM (freq)
achieves an additional 2.4–3.7% higher SLO preservation than PARM but has worse SLO preservation
in tail cases (PARM (freq) has 1.5–2.6× higher variance than PARM), especially at the transition
when power capping changes. As shown in Fig. 5, PARM improves 3.1–5.8% CPU utilization on
average but results in higher utilization variation (mainly due to degradation predictor’s over- or
under-prediction). The difference in utilization is not significant because the utilization increase (with
lower core frequencies) is offset by the utilization decrease with adjusted scaling (scaling out/up) in
reaction to power capping. Overall, we show that the frequency-agnostic design of PARM is preferred
to the alternative design because of faster convergence, more effective performance preservation at
the tail, and a more practical assumption about core frequency availability.
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A Appendices

A.1 Discussion and Future Work

This paper proposes and evaluates an adaptive performance-preserving solution under power capping
from the perspective of resource management but not from the power capping module itself (an
independent block in Fig. 2) in the cloud datacenter. While we show how power management affects
resource management in this paper, on the other hand, resource management can also influence
the decisions of power management. A holistic design that coordinates both resource and power
management is needed to achieve optimality in both performance and power.

Active Resource Management to Save Power. There has been a line of work focused on efficient
resource management for power consumption optimization [2, 3, 15, 8, 31, 7, 9, 21]. However, even
with the existing efforts, power capping is still needed for the purpose of safe over-subscription of
available power and carbon footprint optimization (by spatial/temporal load shifting). In contrast to
existing work to optimize power consumption, PARM adopts a learning-based resource re-scaling
solution for latency-critical workloads to preserve their performance SLOs under power capping.

Coordination with Power Management. Datacenter power management systems typically adopt a
top-down approach for efficiency. For instance, Dynamo [35] monitors the entire power hierarchy
and makes coordinated control decisions to provision power. Similarly, Azure’s power capping sets
a power budget for each chassis, where each server is then allocated its even share of the chassis
budget [17]. PARM re-provisions resources to latency-critical workloads under power capping (within
the power limit set for the server). However, we believe that a bottom-up approach should be explored
for both performance-aware and power-aware workload management. PARM’s degradation predictor
(using the what-if analysis) can be used to estimate server-specific power limits to guide power
capping and set heterogeneous power limits across the power management hierarchy.

Summary and Future Work. In this paper, we characterize the impact of power capping on both
workload performance and learning-based resource management solutions. We introduce PARM, an
adaptive resource allocation framework with RL that provides graceful (SLO-preserving) transitions
for latency-critical workloads by actively re-provisioning resources under power capping. Preliminary
results show that, compared to vanilla RL-based autoscaler (i.e., FIRM), PARM achieves 10.2–
99.3% improvement in SLO preservation while saving 3.1–5.8% CPU utilization. In the future, we
are evaluating the generalizability of PARM on larger-scale applications (e.g., microservices) and
real-world applications. In addition, we are working on extending PARM to co-design a holistic,
performance-aware power management and resource management framework that leverages the
spatial and temporal flexibility of best-effort workloads across the datacenter.

A.2 Characterization Study

To study the impact of power capping on RL-based autoscaling agents, we quantify the RL agent
performance by the per-episode reward (recall §2.1). We divide the experiments into RL policy
training and policy-serving stages. For RL policy-serving evaluation, we train the RL agent with no
power capping (i.e., the baseline for comparison) and test the RL agent policy-serving performance
when managing the serverless function autoscaling in different power-capping environments. In
Fig. 6, we quantify and present (a) the per-episode RL reward drop percentage, (b) SLO preservation
ratio, and (c) CPU utilization change (as the Y axes) under power capping. We find that, with the
increase of power capping (i.e., a lower power limit and thus lower core frequency level), the reward
drop percentage increases, the SLO preservation ratio decreases, and the function container CPU
utilization variation (compared to the baseline) increases. For instance, for performance under core
frequency 1.5 GHz compared to 2.5 GHz, the median reward drop percentage increases from 8.6% to
27.9%, the median SLO preservation ratio reduced from 0.77 to 0.45, and the median CPU utilization
change increases from 2.6% to 16.4%. The reward drop increases close to linearly from 2.5 to 1.5
GHz but becomes 30% worse when reducing from 1.5 to 1.0 GHz. Despite the variation of utilization
change, the average utilization increases slightly with the decrease in core frequency (due to more
CPU time needed to complete the same amount of CPU cycles). We also find that the lower bound of
the utilization is the worst at lower frequencies because of overprovisioning decisions from the RL
agent in reaction to power capping.

For RL policy training evaluation, we train the RL agent with power capping (i.e., with different
extents of core frequency reduction from 1.0 to 3.0 GHz) and find that the RL policy is not able to
converge (as shown in Fig. 3) due to RL environment non-stationarity [22].
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Figure 6: RL policy-serving degradation analysis under power capping and core frequency reduction.

A.3 Alternative Design

Given the fact that physical cores are typically shared among VMs/containers, it is challenging for
cloud users to get an accurate measurement of the CPU frequency (especially for serverless platforms
where function containers are dynamically allocated to shared CPU cores) [32, 6, 30]. However, with
ML-assisted core frequency estimation (e.g., Kepler [14] for Kubernetes) or for cases when a fixed set
of cores is assigned to a VM/container, an alternative design is to include the measured core frequency
as part of the RL state vector (as shown in Table 1 with the dashed arrow) during both training and
policy-serving. The hypothesis is that the RL agent would be able to learn power-capping-specific
autoscaling policies, conditioning on the perceived core frequency. We implement the alternative
design in OpenWhisk (by pinning function containers to cores) and show evaluation results in §4.

A.4 Training

In the frequency-agnostic design, the training of the degradation predictor and the RL agent are
independent of each other. We train the vanilla RL agent (from FIRM [20]) from scratch with 700
out of 1000 synthetic applications (the remaining ones are used as the test dataset) on the setup as
described in §2.2 with no power capping. We train the degradation predictor (supervised learning)
using the application profiles from the same set of applications. In the alternative design, we train the
refined RL agent from scratch with the same setup as the vanilla RL agent under power capping (i.e.,
with power limits from [10%, 100%) using a step size of 5%).

A.5 Degradation Predictor Evaluation

We first evaluate the training cost and the prediction accuracy of the changes in latency and utilization
under varying power capping scenarios, compared to no power capping. The application pool is
split in 7:3 for training and testing. Fig. 7 shows the convergence analysis of the latency/utilization
degradation predictor during training. The prediction for utilization converges faster than that for
latency and both converge within around 40 epochs (< 2 minutes). Fig. 8 shows the prediction
MSE (mean square error) for various testing scenarios. Overall, PARM’s degradation predictor has
an average of 0.09 and 0.01 MSE for latency and utilization prediction. The prediction MSE for
utilization is less than 0.03 in all scenarios. For latency degradation prediction, PARM predicts more
accurately for I/O-intensive workloads compared to CPU-intensive workloads since I/O-intensive
workloads are less sensitive to power capping (less performance variation) (as shown in §2.2). We also
find that the prediction MSE increases as the power capping percentage increases (e.g., 0.21 for 40%
power capping), which is due to the fact that application performance has higher variability (especially
for tail latency) under higher capping percentages. More intensive power capping (throttling core
frequency to <1.0 GHz) leads to SLO violations that are unable to be mitigated with scaling up/out
and thus we stop at 40%. We next evaluate if such prediction accuracy is sufficient in the end-to-end
evaluation of PARM regarding SLO preservation and utilization.
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