
ComPile: A Large IR Dataset from Production Sources

Aiden Grossman1∗ Ludger Paehler2 Konstantinos Parasyris3 Tal Ben-Nun3

Jacob Hegna4 William Moses5 Jose M Monsalve Diaz6 Mircea Trofin7

Johannes Doerfert3
1UC Davis 2Technical University of Munich 3Lawrence Livermore National Laboratory

4University of Minnesota 5University of Illinois Urbana Champaign
6 Argonne National Laboratory 7 Google, Inc.

amgrossman@ucdavis.edu ludger.paehler@tum.de
{parasyris1,talbn,jdoerfert}@llnl.gov jacobhegna@gmail.com

wsmoses@illinois.edu jmonsalvediaz@anl.gov mtrofin@google.com

Abstract

Code is increasingly becoming a core data modality of modern machine learning
research impacting not only the way we write code with conversational agents like
OpenAI’s ChatGPT, Google’s Bard, or Anthropic’s Claude, the way we translate
code from one language into another, but also the compiler infrastructure underly-
ing the language. While modeling approaches may vary and representations differ,
the targeted tasks often remain the same within the individual classes of models.
Relying solely on the ability of modern models to extract information from un-
structured code does not take advantage of 70 years of programming language and
compiler development by not utilizing the structure inherent to programs in the data
collection. This detracts from the performance of models working over a tokenized
representation of input code and precludes the use of these models in the compiler
itself. To work towards better intermediate representation (IR) based models, we
fully utilize the LLVM compiler infrastructure, shared by a number of languages,
to generate a 182B token dataset of LLVM IR. We generated this dataset from
programming languages built on the shared LLVM infrastructure, including Rust,
Swift, Julia, and C/C++, by hooking into LLVM code generation either through
the language’s package manager or the compiler directly to extract the dataset of
intermediate representations from production grade programs. Our dataset shows
great promise for large language model training, and machine-learned compiler
components.

1 Introduction

In several pieces of previous work (8; 14), the transformative potential of machine learning was
harnessed, machine-learned heuristic replacements developed, and in some cases (21) the heuristics
were upstreamed to the main LLVM codebase, improving all code run through LLVM when the ML
heuristics are enabled. Orthogonal to the replacement of heuristics with machine learning, a large
number of people have explored the ordering of compiler passes (4; 10). While the learning of
pass orderings was initially held back by the lack of easy-to-access, high-performance reinforcement
learning environments to validate new reinforcement learning strategies, this has by now been
addressed with the introduction of CompilerGym (4). In contrast, the learning of entirely new
heuristics, optimization passes, and other compiler components with large language models (22; 3)
to realize the transformative potential of this model class is held back partially by the lack of large
datasets of high-quality code to train such models properly. Models are only trained on smaller

∗Corresponding author

Machine Learning for Systems Workshop at 37th NeurIPS Conference, 2023, New Orleans, LA, USA.



ComPile

Rust (482 GB) Julia (197 GB)

Spack (87 GB)
Individual (14 GB)

Swift (5 GB)

Small Rust projects (256.06 GB). 18845 MB 11328 MB 7895 MB 7746 MB

3933 MB 3339 MB
2084 MB 2076 MB 1929 MB 1897 MB 1844 MB 1806 MB

1581 MB 1544 MB 1510 MB 1502 MB 1468 MB 1332 MB 1299 MB 1298 MB 1284 MB 1140 MB

1098 MB

1097 MB

1076 MB

933 MB

917 MB

896 MB

888 MB

870 MB

820 MB

820 MB

819 MB

818 MB

806 MB

799 MB 786 MB 741 MB 729 MB 728 MB 700 MB 695 MB 690 MB 688 MB 660 MB 655 MB 652 MB

643 MB 631 MB 631 MB 627 MB 607 MB 595 MB 589 MB 589 MB 588 MB 586 MB 583 MB 571 MB 570 MB 568 MB 566 MB

566 MB

566 MB

562 MB

560 MB

560 MB

560 MB

560 MB

559 MB

556 MB

551 MB

550 MB

534 MB

525 MB

525 MB

524 MB 522 MB 514 MB 512 MB 511 MB 506 MB 496 MB 488 MB 487 MB 486 MB 485 MB 477 MB 476 MB 472 MB 462 MB

458 MB

458 MB

457 MB

450 MB

442 MB

439 MB

439 MB

438 MB

437 MB

433 MB

431 MB

429 MB

428 MB

420 MB

419 MB

419 MB

414 MB

413 MB

398 MB

397 MB

397 MB

397 MB

396 MB

394 MB

390 MB

382 MB

381 MB

381 MB

380 MB

375 MB

370 MB

369 MB 368 MB 368 MB 368 MB 367 MB 360 MB 352 MB 350 MB 350 MB 348 MB 346 MB 346 MB 344 MB 343 MB 341 MB

341 MB 340 MB 340 MB 340 MB 339 MB 335 MB 335 MB 333 MB 332 MB 332 MB 332 MB 329 MB 329 MB 327 MB 327 MB 326 MB

326 MB

325 MB

323 MB

322 MB

322 MB

319 MB

318 MB

316 MB

314 MB

313 MB

313 MB

309 MB

306 MB

304 MB

304 MB

303 MB 302 MB 296 MB 295 MB 294 MB 290 MB 287 MB 286 MB 286 MB 285 MB 284 MB 282 MB 279 MB 279 MB 278 MB 277 MB

270 MB

268 MB

268 MB

266 MB

266 MB

266 MB

265 MB

265 MB

262 MB

262 MB

260 MB

257 MB

257 MB

257 MB

255 MB

254 MB

254 MB

253 MB

252 MB

252 MB

251 MB

251 MB

251 MB

250 MB

248 MB

247 MB

247 MB

240 MB

240 MB

240 MB

240 MB

238 MB

238 MB 238 MB 238 MB 238 MB 237 MB 236 MB 236 MB 236 MB 235 MB 235 MB 235 MB 234 MB 233 MB 232 MB 232 MB 232 MB

232 MB

232 MB

230 MB

230 MB

226 MB

225 MB

225 MB

224 MB

224 MB

223 MB

222 MB

222 MB

221 MB

221 MB

220 MB

220 MB

219 MB 218 MB 218 MB 217 MB 216 MB 216 MB 216 MB 215 MB 215 MB 215 MB 214 MB 214 MB 214 MB 211 MB 209 MB

208 MB 207 MB 207 MB 206 MB 205 MB

143 MB

142 MB

142 MB

142 MB

142 MB

141 MB

141 MB

141 MB

141 MB

141 MB

140 MB

140 MB

140 MB

140 MB 139 MB 139 MB 139 MB 139 MB 139 MB 138 MB 138 MB 138 MB 137 MB 137 MB 137 MB 137 MB

136 MB

136 MB

136 MB

136 MB

136 MB

136 MB

136 MB

135 MB

135 MB

135 MB

135 MB

135 MB

135 MB

134 MB 134 MB 134 MB 133 MB 133 MB 133 MB 133 MB 133 MB 132 MB 132 MB 132 MB 132 MB

132 MB

131 MB

131 MB

131 MB

131 MB

131 MB

130 MB

130 MB

130 MB

130 MB

130 MB

130 MB

130 MB 130 MB 129 MB 128 MB 128 MB 128 MB 127 MB 127 MB 127 MB 126 MB 126 MB

126 MB

126 MB

126 MB

126 MB

125 MB

125 MB

125 MB

125 MB

125 MB

125 MB

124 MB

124 MB 124 MB 124 MB 124 MB 124 MB 124 MB 124 MB 123 MB 123 MB 123 MB

123 MB 123 MB 122 MB 122 MB 122 MB 122 MB 122 MB 122 MB 121 MB 120 MB

120 MB

119 MB

119 MB

119 MB

119 MB

118 MB

118 MB

118 MB

118 MB

118 MB

118 MB 118 MB 118 MB 118 MB 118 MB 117 MB 117 MB 117 MB 117 MB 117 MB

117 MB

116 MB

116 MB

116 MB

116 MB

116 MB

116 MB

115 MB

114 MB

114 MB 114 MB 114 MB 114 MB 114 MB 114 MB 114 MB 114 MB 114 MB

113 MB

113 MB

113 MB

113 MB

113 MB

113 MB

112 MB

112 MB

112 MB 112 MB 112 MB 111 MB 111 MB 111 MB 111 MB 111 MB

110 MB

110 MB

110 MB

110 MB

110 MB

110 MB

110 MB

109 MB 109 MB 109 MB 108 MB 107 MB 107 MB 107 MB

107 MB

107 MB

106 MB

106 MB

105 MB

105 MB

105 MB 105 MB 105 MB 104 MB 104 MB 104 MB

104 MB

103 MB

103 MB

103 MB

103 MB

103 MB 103 MB 103 MB 103 MB 103 MB

102 MB

102 MB

102 MB

102 MB

102 MB 102 MB 102 MB 102 MB

102 MB

101 MB

101 MB

101 MB 101 MB 101 MB

101 MB

101 MB

101 MB 101 MB

100 MB

Small Julia projects (149.16 GB).
299 MB 264 MB 250 MB 242 MB 240 MB 237 MB

212 MB 208 MB

153 MB 152 MB 151 MB 150 MB 150 MB 150 MB 150 MB 148 MB 148 MB 148 MB

148 MB 148 MB 148 MB 148 MB 147 MB 147 MB 147 MB 147 MB 146 MB 146 MB

146 MB 146 MB 146 MB 146 MB 146 MB 145 MB 144 MB 144 MB 144 MB 144 MB 143 MB

143 MB 143 MB 143 MB 143 MB 142 MB 142 MB 142 MB 142 MB 141 MB 141 MB 141 MB

140 MB 140 MB 140 MB 140 MB 139 MB 139 MB 139 MB 138 MB 138 MB 138 MB 138 MB

137 MB 137 MB 137 MB 136 MB 136 MB 136 MB 135 MB 135 MB 135 MB 135 MB 135 MB

135 MB 135 MB 134 MB 134 MB 134 MB 133 MB 133 MB 132 MB 132 MB 132 MB 132 MB

132 MB 132 MB 132 MB 132 MB 131 MB 131 MB 131 MB 129 MB 129 MB 128 MB 128 MB

128 MB 128 MB 128 MB 128 MB 127 MB 126 MB 126 MB 126 MB 126 MB 126 MB 125 MB

125 MB 125 MB 125 MB 125 MB 125 MB 124 MB 124 MB 124 MB 123 MB 123 MB 123 MB

123 MB 123 MB 123 MB 123 MB 123 MB 122 MB 122 MB 122 MB 122 MB 121 MB 121 MB

121 MB 121 MB 121 MB 121 MB 121 MB 121 MB 120 MB 120 MB 120 MB 120 MB 120 MB 120 MB

119 MB 119 MB 119 MB 119 MB 119 MB 119 MB 118 MB 118 MB 118 MB 118 MB 118 MB 118 MB

117 MB

117 MB

117 MB

117 MB

117 MB

117 MB

117 MB

117 MB

117 MB

117 MB

117 MB

117 MB 116 MB 116 MB 116 MB 116 MB 116 MB 116 MB 116 MB 116 MB 116 MB 115 MB

115 MB

115 MB

115 MB

114 MB

114 MB

114 MB

114 MB

113 MB

113 MB

113 MB

113 MB 113 MB 113 MB 113 MB 113 MB 113 MB 112 MB 112 MB 112 MB 112 MB

112 MB

111 MB

111 MB

111 MB

111 MB

111 MB

111 MB

110 MB

110 MB

110 MB 110 MB 109 MB 109 MB 109 MB 109 MB 109 MB 109 MB 108 MB

108 MB

108 MB

108 MB

108 MB

107 MB

107 MB

106 MB

106 MB

106 MB

106 MB 106 MB 106 MB 106 MB 106 MB 106 MB 106 MB 106 MB

106 MB

106 MB

106 MB

106 MB

106 MB

106 MB

106 MB

105 MB

105 MB 105 MB 105 MB 105 MB 105 MB 105 MB 104 MB

104 MB

104 MB

104 MB

104 MB

104 MB

104 MB

104 MB

104 MB 104 MB 104 MB 104 MB 104 MB 104 MB

103 MB

103 MB

103 MB

103 MB

103 MB

103 MB

103 MB 103 MB 103 MB 103 MB 103 MB

103 MB

103 MB

103 MB

102 MB

102 MB

102 MB 102 MB 102 MB 102 MB

102 MB

102 MB

102 MB

101 MB

101 MB 101 MB 101 MB

101 MB

101 MB

101 MB

101 MB 101 MB

101 MB

101 MB

101 MB

100 MB

Small Spack projects (20.91 GB).
2933 MB

2933 MB

2757 MB

2597 MB

2594 MB

2594 MB

2594 MB

2594 MB

2359 MB

2236 MB

2157 MB

1661 MB

1174 MB 1163 MB 1158 MB 1081 MB 950 MB 901 MB

900 MB

900 MB

786 MB

786 MB

717 MB

625 MB

583 MB

539 MB

530 MB

526 MB

515 MB

501 MB

469 MB 453 MB 451 MB 415 MB 415 MB 402 MB 385 MB

363 MB 360 MB 344 MB 342 MB 342 MB 342 MB 327 MB

327 MB

327 MB

324 MB

315 MB

300 MB

298 MB

291 MB

277 MB 268 MB 267 MB 259 MB 248 MB 248 MB 246 MB

239 MB

238 MB

228 MB

228 MB

226 MB

211 MB
157 MB

154 MB

152 MB 150 MB 148 MB 146 MB 146 MB 146 MB

143 MB 143 MB 142 MB 142 MB 142 MB 142 MB

142 MB

142 MB

139 MB

132 MB

131 MB

129 MB

127 MB 126 MB 125 MB 121 MB 120 MB 119 MB

118 MB

116 MB

116 MB

116 MB

114 MB

114 MB 114 MB 113 MB 112 MB 110 MB

109 MB

109 MB

109 MB

107 MB

106 MB 106 MB 106 MB 105 MB

105 MB

104 MB

104 MB

103 MB

103 MB

103 MB

103 MB 103 MB 101 MB

101 MB

101 MB

101 MB 101 MB

101 MB 101 MB

7448 MB

4055 MB
2141 MB

Small Swift projects (2.47 GB).

624 MB 618 MB
271 MB

182 MB

Figure 1: Size distribution of LLVM intermediate representation (IR) bitcode within ComPile before
de-duplication within and among languages. Projects that we considered small and pooled had less
than 100MB of bitcode.

datasets, such as Anghabench (5), Exebench (2), and HPCORPUS (11), or sometimes rely on
synthetic benchmarks. Small datasets ultimately lead to smaller, worse-performing models (9).

1.1 Contributions

Focussing on the paradigm of taking a pre-trained basic building block, a “foundation model”, we
pose the question "What does a modern, large code training dataset for compilers actually look
like?" and construct a high-quality dataset of a similar scale to existing LLM datasets solely at the
level of LLVM-IR. Within this context, we associate quality with the usage of code, with code being
used more often being of higher quality for our purposes. Correctly being able to reason about very
widespread code in production systems is incredibly important for compiler work. In the short term,
we believe our dataset will enable the training of larger language models for compilers useful for an
ever broader array of downstream tasks after fine-tuning, and in the long-term enable use-cases such
as direct performance prediction to obtain a reliable runtime estimate without ever running a single
line of code. To these goals, our work makes the following contributions:

• The introduction of a 2.4TB dataset of textual LLVM-IR from Rust, Julia, Swift, and C/C++
with {182B, 119B, 102B, 87B} tokens at a vocabulary size of {10k, 50k, 100k, 200k }
respectively. The pre-deduplication size distribution is shown in Figure 1.

• Open-sourcing of our workflow and compiler tooling to construct massive-scale IR datasets.

2 Background

Building upon package ecosystems as sources of intermediate representation is ideal due to the
large amount of packaged code and the abstraction over the build systems of individual projects. In
addition, package ecosystems act as a filter. Only code that gets used in production systems will get
packaged. The build system abstraction is due to a common build wrapper that builds recipes which
often specify exact build steps, including an exact specification of dependencies. Modifying these
build processes allows us to take advantage of this existing infrastructure. In this work, we choose to
specifically focus on utilizing package managers that explicitly allow setting compiler flags, such as
the from-source package manager Spack (6) that is focused on high-performance computing (HPC).

In addition to utilizing package managers, we also take advantage of several aspects of the LLVM
compilation infrastructure (16), particularly the Clang C/C++ frontend and LLVM-IR, the inter-
mediate representation LLVM uses. The full process of compilation, such as the one performed
by Clang with LLVM during the compilation of C/C++, is composed of three main stages: the
frontend, the middle-end, and the backend. A compiler frontend has the job of taking a piece of

2



Language C C++ Julia Rust Swift Total
Size (Bitcode) 13 GB 81 GB 197 GB 482 GB 5 GB 778 GB

Size (Text) 61 GB 334 GB 1292 GB 1868 GB 22 GB 3577 GB
Dedup. Size (Bitcode) 8 GB 67 GB 130 GB 310 GB 4 GB 518 GB

Dedup. Size (Text) 34 GB 266 GB 856 GB 1221 GB 19 GB 2395 GB
Table 1: Amount of IR contained within ComPile in textual and bitcode form before and after
deduplication.

source code, typically a single source file, sometimes called a translation unit, and generating a
module of intermediate representation that can then be processed by a compiler middle-end, such as
LLVM. A module typically contains multiple functions, referenced globals, and relevant metadata.
Compiler intermediate representations, or IRs, are designed to sit between the source programming
language and the compiler’s output, assembly. They are typically designed to be source-language
and target-agnostic. Within LLVM, the compiler middle-end operates over the IR produced by the
frontend through a series of grouped operations called passes. A pass is designed to perform a specific
task, such as removing dead code, simplifying the control flow graph, or combining instructions.
After optimization, the compiler backend takes over, performing the necessary tasks to transform
the (mostly) target-agnostic IR into target-specific machine code that can be executed on the target
machine. The backend typically performs tasks such as instruction selection, instruction scheduling,
and register allocation. We compose our dataset, ComPile, of LLVM-IR, as it gives a common
framework across programming languages and target platforms. These properties and more make
LLVM-IR a great modality for a compiler-centric dataset useful for compiler tasks such as program
analysis, optimization, and code generation.

3 Dataset Construction

To construct the IR dataset 2, we use a set of curated sources from five different languages. focusing
on code used in production systems. We include the majority of Spack (6), the Rust Crates Index, the
Julia Package Index, the Swift Package Index, and several large single projects. Individual project
sources are defined in .json files. While most projects are hosted in repositories on GitHub, we also
added sources consisting of archived compressed source codes such as tarball files. The builders then
ingest the information from the project on its build system, either through the manifest information,
which contains the information on the building mechanism and commands, or through an ecosystem
specific manifest processed by a script that is then processed into a complete package manifest. Next
in the workflow is the LLVM-IR extraction. Extracting IR depends on the way the IR is presented in
the source. A manifest that contains a list of LLVM bitcode modules extracted from the project is
then created. Leaning into the shared LLVM compiler infrastructure, we are able to take advantage of
existing LLVM tools and LLVM passes to obtain information about the LLVM-IR modules. After
building, IR extraction, and deduplication, the dataset is then ready for downstream usage in analysis
or training capacities. 3

The aim of our IR extraction approach is to extract IR immediately after the frontend, before any
LLVM optimization passes have run. To extract the bitcode into a structured corpus, we take
advantage of the ml-compiler-opt tooling from MLGO (21) as it allows for the extraction of IR
in a variety of cases. During IR extraction, we also collect some additional data, such as debug
information, as it is represented in the IR. We specifically collect bitcode rather than textual IR as
LLVM supports reading bitcode produced by older versions of LLVM but has no such support for
textual IR, which is also easily produced by running llvm-dis over the collected corpus.

Training dataset deduplication can be important for the performance of several key model character-
istics. (1; 12). To this end, We deduplicate the entire dataset presented in this paper at the module
level by computing a combined hash of all global variables and functions, deduplicating based on a
hashing implementation that only captures semantic details of the IR. We chose to deduplicate at the
module level as this ensures the majority of the duplicate code is removed from the dataset while
leaving all significant context within each module for performing module-level tasks.

2The entire dataset will be available on HuggingFace https://huggingface.co/datasets/llvm-ml/ComPile
3Scripts and builders to reproduce the entire dataset are available under the llvm-ir-dataset-utils

subdirectory under https://zenodo.org/doi/10.5281/zenodo.10155760

3

https://huggingface.co/datasets/llvm-ml/ComPile
https://zenodo.org/doi/10.5281/zenodo.10155760


Name of Dataset Tokens Size Languages
The Stack (13) - 2.9TB 358 Languages
ComPile (ours) 182B 1 2.4TB Rust, Swift, Julia, C/C++

Code Llama (20) 197B 2 859GB -
TransCoder (15) 163B 744GB C++, Java, Python
AlphaCode (17) - 715.1GB 4 12 Languages

LLM for Compiler Opt. (3) 373M 1GB C/C++

Table 2: Breakdown of Related Datasets.

4 Related Work

Most pretraining datasets for large language models (17; 13; 18) contain large swaths of code,
scraping source code from hosting services like GitHub, and GitLab without taking the quality of
the included code into account. Datasets of this type also do not guarantee that any of the code is
compilable, and often contain auxiliary files such as documentation in Markdown. Complementary
to these large pretraining-scale datasets, there exist a number of smaller, more focused datasets
aimed at the fine-tuning of already pretrained large language models (23; 17; 19). These datasets are
primarily collected through data extraction from coding competitions (17; 19), or the scraping of
curated websites (23). This guarantees a higher level of quality in regards to buildability and structure
for the included code, hence making them more optimal for fine-tuning. However, the data collection
methodology implicitly introduces a lack of variety in the datasets, reducing model performance (7).
For example, coding competititon datasets might include a couple thousand coding exercises which
contain a great many solutions to the same exercises, but yet they are only solving the very same set
of coding problems.

Additionally, there exist a number of domain-specific datasets (11; 2; 5). Often beginning with the
web-scraping of large amounts of code, these approaches modify the resulting code in a number of
ways. Examples include the modification of arbitrary source files to make them compilable (5) or
executable (2). ComPile, while being able to fulfill similar dataset demands, offers a number of key
advantages. The code in our dataset, by means of our dataset construction methodology, consists
only of compilable code, using the same compilation toolchain as used for production deployments
without changing semantics. Collecting IR before optimization allows for IR at any stage of the
compilation pipeline to be easily generated. This allows ComPile to go significantly beyond the
capabilities of previous compiler-targeted datasets.

5 Conclusion

In this work, we presented ComPile, a novel dataset of LLVM-IR collected from a number of package
ecosystems consisting of large production-grade codebases. It is significantly larger than previous
finetuning-focussed, and compiler-focussed code datasets, albeit smaller than large language model-
focussed code pretraining datasets. ComPile’s increased size in combination with its quality-focused
construction methodology not only enables the systematic evaluation of previous work, but opens
up entirely new avenues of research for IR-centric machine learning, and most specifically machine-
learned compiler componentry for which the scale of this dataset paves the way to an entirely new
generation of machine learning models for compilers.

6 Acknowledgements

This work was in parts prepared by Lawrence Livermore National Laboratory under Contract DE-
AC52-07NA27344 (LLNL-CONF-855448).

We would like to thank Valentin Churavy, Todd Gamblin, Alec Scott, Harmen Stoppels, Massimiliano
Culpo, Nikita Popov, and Arthur Eubanks for their assistance with understanding the relevant
language-specific optimization pipelines and assistance with getting upstreamed patches through
code review.

4



References
[1] ALLAMANIS, M. The adverse effects of code duplication in machine learning models of

code. In Proceedings of the 2019 ACM SIGPLAN International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software (2019), pp. 143–153.

[2] ARMENGOL-ESTAPÉ, J., WOODRUFF, J., BRAUCKMANN, A., MAGALHÃES, J. W. D. S.,
AND O’BOYLE, M. F. P. Exebench: an ml-scale dataset of executable c functions. In
Proceedings of the 6th ACM SIGPLAN International Symposium on Machine Programming
(New York, NY, USA, Jun 2022), MAPS 2022, Association for Computing Machinery, p. 50–59.

[3] CUMMINS, C., SEEKER, V., GRUBISIC, D., ELHOUSHI, M., LIANG, Y., ROZIERE, B.,
GEHRING, J., GLOECKLE, F., HAZELWOOD, K., SYNNAEVE, G., AND LEATHER, H. Large
language models for compiler optimization. arXiv:2309.07062 [cs].

[4] CUMMINS, C., WASTI, B., GUO, J., CUI, B., ANSEL, J., GOMEZ, S., JAIN, S., LIU, J.,
TEYTAUD, O., STEINER, B., ET AL. Compilergym: Robust, performant compiler optimization
environments for ai research. In 2022 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO) (2022), IEEE, pp. 92–105.

[5] DA SILVA, A. F., KIND, B. C., DE SOUZA MAGALHÃES, J. W., ROCHA, J. N., FER-
REIRA GUIMARÃES, B. C., AND QUINÃO PEREIRA, F. M. Anghabench: A suite with one
million compilable c benchmarks for code-size reduction. In 2021 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO) (Feb 2021), p. 378–390.

[6] GAMBLIN, T., LEGENDRE, M., COLLETTE, M. R., LEE, G. L., MOODY, A., DE SUPINSKI,
B. R., AND FUTRAL, S. The spack package manager: bringing order to hpc software chaos.
p. 1–12.

[7] GUO, Z. C., AND MOSES, W. S. Enabling transformers to understand low-level programs.

[8] HAJ-ALI, A., AHMED, N. K., WILLKE, T., SHAO, Y. S., ASANOVIC, K., AND STOICA, I.
Neurovectorizer: end-to-end vectorization with deep reinforcement learning. In Proceedings
of the 18th ACM/IEEE International Symposium on Code Generation and Optimization (New
York, NY, USA, Feb 2020), CGO 2020, Association for Computing Machinery, p. 242–255.

[9] HOFFMANN, J., BORGEAUD, S., MENSCH, A., BUCHATSKAYA, E., CAI, T., RUTHERFORD,
E., CASAS, D. D. L., HENDRICKS, L. A., WELBL, J., CLARK, A., ET AL. Training
compute-optimal large language models. arXiv preprint arXiv:2203.15556 (2022).

[10] HUANG, Q., HAJ-ALI, A., MOSES, W., XIANG, J., STOICA, I., ASANOVIC, K., AND
WAWRZYNEK, J. Autophase: Juggling hls phase orderings in random forests with deep
reinforcement learning. arXiv:2003.00671 [cs].

[11] KADOSH, T., HASABNIS, N., MATTSON, T., PINTER, Y., AND OREN, G. Quantifying
openmp: Statistical insights into usage and adoption. arXiv preprint arXiv:2308.08002 (2023).

[12] KANDPAL, N., WALLACE, E., AND RAFFEL, C. Deduplicating training data mitigates privacy
risks in language models. In International Conference on Machine Learning (2022), PMLR,
pp. 10697–10707.

[13] KOCETKOV, D., LI, R., ALLAL, L. B., LI, J., MOU, C., FERRANDIS, C. M., JERNITE, Y.,
MITCHELL, M., HUGHES, S., WOLF, T., ET AL. The stack: 3 tb of permissively licensed
source code. arXiv preprint arXiv:2211.15533 (2022).

[14] KULKARNI, S., CAVAZOS, J., WIMMER, C., AND SIMON, D. Automatic construction of
inlining heuristics using machine learning. In Proceedings of the 2013 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO) (Feb 2013), p. 1–12.

[15] LACHAUX, M.-A., ROZIERE, B., CHANUSSOT, L., AND LAMPLE, G. Unsupervised transla-
tion of programming languages. arXiv preprint arXiv:2006.03511 (2020).

[16] LATTNER, C., AND ADVE, V. Llvm: A compilation framework for lifelong program analysis &
transformation. In International symposium on code generation and optimization, 2004. CGO
2004. (2004), IEEE, pp. 75–86.

5



[17] LI, Y., CHOI, D., CHUNG, J., KUSHMAN, N., SCHRITTWIESER, J., LEBLOND, R., ECCLES,
T., KEELING, J., GIMENO, F., DAL LAGO, A., ET AL. Competition-level code generation
with alphacode. Science 378, 6624 (2022), 1092–1097.

[18] MARKOVTSEV, V., AND LONG, W. Public git archive: a big code dataset for all. In Proceedings
of the 15th International Conference on Mining Software Repositories (2018), pp. 34–37.

[19] PURI, R., KUNG, D. S., JANSSEN, G., ZHANG, W., DOMENICONI, G., ZOLOTOV, V.,
DOLBY, J., CHEN, J., CHOUDHURY, M., DECKER, L., ET AL. Codenet: A large-scale ai for
code dataset for learning a diversity of coding tasks. arXiv preprint arXiv:2105.12655 (2021).

[20] ROZIÈRE, B., GEHRING, J., GLOECKLE, F., SOOTLA, S., GAT, I., TAN, X. E., ADI, Y.,
LIU, J., REMEZ, T., RAPIN, J., ET AL. Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950 (2023).

[21] TROFIN, M., QIAN, Y., BREVDO, E., LIN, Z., CHOROMANSKI, K., AND LI, D. Mlgo: a
machine learning guided compiler optimizations framework. arXiv preprint arXiv:2101.04808
(2021).

[22] YANG, C., WANG, X., LU, Y., LIU, H., LE, Q. V., ZHOU, D., AND CHEN, X. Large language
models as optimizers. arXiv preprint arXiv:2309.03409 (2023).

[23] ZHU, M., JAIN, A., SURESH, K., RAVINDRAN, R., TIPIRNENI, S., AND REDDY, C. K. Xlcost:
A benchmark dataset for cross-lingual code intelligence. arXiv preprint arXiv:2206.08474
(2022).

6



ComPile: A Large IR Dataset from Production Sources

Aiden Grossman1∗ Ludger Paehler2 Konstantinos Parasyris3 Tal Ben-Nun3

Jacob Hegna4 William Moses5 Jose M Monsalve Diaz6 Mircea Trofin7

Johannes Doerfert3
1UC Davis 2Technical University of Munich 3Lawrence Livermore National Laboratory

4University of Minnesota 5University of Illinois Urbana Champaign
6 Argonne National Laboratory 7 Google, Inc.

amgrossman@ucdavis.edu ludger.paehler@tum.de

{parasyris1,talbn,jdoerfert}@llnl.gov jacobhegna@gmail.com

wsmoses@illinois.edu jmonsalvediaz@anl.gov mtrofin@google.com

November 2023

1 Abstract

Code is increasingly becoming a core data modality of modern machine learning research impacting not only the
way we write code with conversational agents like OpenAI’s ChatGPT, Google’s Bard, or Anthropic’s Claude,
the way we translate code from one language into another, but also the compiler infrastructure underlying the
language. While modeling approaches may vary and representations differ, the targeted tasks often remain the
same within the individual classes of models. Relying solely on the ability of modern models to extract information
from unstructured code does not take advantage of 70 years of programming language and compiler development
by not utilizing the structure inherent to programs in the data collection. This detracts from the performance of
models working over a tokenized representation of input code and precludes the use of these models in the compiler
itself. To work towards the first intermediate representation (IR) based models, we fully utilize the LLVM compiler
infrastructure, shared by a number of languages, to generate a 182B token dataset of LLVM IR. We generated this
dataset from programming languages built on the shared LLVM infrastructure, including Rust, Swift, Julia, and
C/C++, by hooking into LLVM code generation either through the language’s package manager or the compiler
directly to extract the dataset of intermediate representations from production grade programs. Statistical analysis
proves the utility of our dataset not only for large language model training, but also for the introspection into the
code generation process itself with the dataset showing great promise for machine-learned compiler components.

2 Datasheet

Motivation

For what purpose was the dataset created? Was
there a specific task in mind? Was there a specific gap
that needed to be filled? Please provide a description.
The dataset was created to enable large scale analysis of
existing compiler techniques and to provide a large, rep-
resentative set of training data for the next generation of
compiler-focused ML models.

Who created this dataset (e.g., which team, research

group) and on behalf of which entity (e.g., company,
institution, organization)?
The dataset was created by a cross-institutional col-
laboration including members from UC Davis, Technical
University of Munich, Lawrence Livermore National Lab-
oratory, University of Minnesota, University of Illinois at
Urbana Champaign, Argonne National Laboratory, and
Google. The primary entity funding the development of
ComPile is Lawrence Livermore National Laboratory.

Who funded the creation of the dataset? If there is an
∗Corresponding author

1



associated grant, please provide the name of the grantor
and the grant name and number.
This work was in parts prepared by Lawrence Liver-
more National Laboratory under Contract DE-AC52-
07NA27344.

Any other comments?
None.

Composition

What do the instances that comprise the dataset
represent (e.g., documents, photos, people, coun-
tries)? Are there multiple types of instances (e.g.,
movies, users, and ratings; people and interactions be-
tween them; nodes and edges)? Please provide a de-
scription.
Each instance within the dataset represents a single

LLVM bitcode module. Depending upon the source lan-
guage, this could represent a single translation unit like
in C/C++, a single target as in Rust, or a package as in
Julia.

How many instances are there in total (of each type,
if appropriate)?
ComPile contains approximately 670,000 modules in its
current form. module count

Does the dataset contain all possible instances or
is it a sample (not necessarily random) of instances
from a larger set? If the dataset is a sample, then
what is the larger set? Is the sample representative
of the larger set (e.g., geographic coverage)? If so,
please describe how this representativeness was vali-
dated/verified. If it is not representative of the larger set,
please describe why not (e.g., to cover a more diverse
range of instances, because instances were withheld or
unavailable).
The dataset is a sample of all possible instances. The
sample is designed to be representative of bitcode mod-
ules that are present in widely-used production applica-
tions, but we do not currently have results quantifying
how representative ComPile is of this population.

What data does each instance consist of? “Raw”
data (e.g., unprocessed text or images) or features?
In either case, please provide a description.
Each instance consists of an LLVM bitcode module in
binary form along with associated provenance informa-
tion, including the project that it was sourced from and
the license information associated with that project.

Is there a label or target associated with each in-
stance? If so, please provide a description.
No, there is not a label or target associated with each
instance in the distributed form of the dataset.

Is any information missing from individual in-
stances? If so, please provide a description, explaining

why this information is missing (e.g., because it was un-
available). This does not include intentionally removed
information, but might include, e.g., redacted text.
No, no information is missing from individual instances.
All instances contain a complete, valid LLVM module
and all associated provenance informtion.

Are relationships between individual instances
made explicit (e.g., users’ movie ratings, social net-
work links)? If so, please describe how these relation-
ships are made explicit.
Some relationships are made explicit. The per-project
provenance information is included directly in each in-
stance, allowing instances to be grouped by their source.
However, other relationships such as the targets that
modules get linked into are not preserved.

Are there recommended data splits (e.g., training,
development/validation, testing)? If so, please pro-
vide a description of these splits, explaining the rationale
behind them.
There is no recommended data split. The best data split
will be highly dependent upon the specific downstream
application that the user is interested in.

Are there any errors, sources of noise, or redundan-
cies in the dataset? If so, please provide a descrip-
tion.
Many of the modules will contain some of the same func-
tions, but no entire module will be exactly the same.
All of the modules are parseable using an up-to-date
LLVM toolchain, but some of them might fail to run
through the optimization pipeline or timeout when per-
forming certain analyses due to bugs in various parts of
the toolchain.

Is the dataset self-contained, or does it link to or
otherwise rely on external resources (e.g., websites,
tweets, other datasets)? If it links to or relies on exter-
nal resources, a) are there guarantees that they will ex-
ist, and remain constant, over time; b) are there official
archival versions of the complete dataset (i.e., includ-
ing the external resources as they existed at the time
the dataset was created); c) are there any restrictions
(e.g., licenses, fees) associated with any of the external
resources that might apply to a future user? Please pro-
vide descriptions of all external resources and any re-
strictions associated with them, as well as links or other
access points, as appropriate.
The dataset is entirely self-contained and does not rely
on any external resources for its useability.

Does the dataset contain data that might be consid-
ered confidential (e.g., data that is protected by legal
privilege or by doctor-patient confidentiality, data
that includes the content of individuals non-public
communications)? If so, please provide a description.
The data included in ComPile is obtained from publicly
available sources and thus will not contain any confiden-

2



tial data that was not already broadly available. How-
ever, we cannot be certain that it does not contain any
confidential information. Our dataset construction tech-
niques should remove most cases of confidential informa-
tion if they are present, like data in project repositories
and comments, but does not eliminate all cases, like data
embedded in code.

Does the dataset contain data that, if viewed di-
rectly, might be offensive, insulting, threatening, or
might otherwise cause anxiety? If so, please describe
why.
We believe that it is unlikely that any representation of
the IR contained within our dataset would have any of
these properties.

Does the dataset relate to people? If not, you may
skip the remaining questions in this section.
No.

Does the dataset identify any subpopulations (e.g.,
by age, gender)? If so, please describe how these sub-
populations are identified and provide a description of
their respective distributions within the dataset.
N/A.

Is it possible to identify individuals (i.e., one or more
natural persons), either directly or indirectly (i.e., in
combination with other data) from the dataset? If so,
please describe how.
N/A.

Does the dataset contain data that might be con-
sidered sensitive in any way (e.g., data that reveals
racial or ethnic origins, sexual orientations, reli-
gious beliefs, political opinions or union member-
ships, or locations; financial or health data; biomet-
ric or genetic data; forms of government identifica-
tion, such as social security numbers; criminal his-
tory)? If so, please provide a description.
N/A.

Any other comments?
None.

Collection Process

How was the data associated with each instance ac-
quired? Was the data directly observable (e.g., raw
text, movie ratings), reported by subjects (e.g., survey
responses), or indirectly inferred/derived from other data
(e.g., part-of-speech tags, model-based guesses for age
or language)? If data was reported by subjects or in-
directly inferred/derived from other data, was the data
validated/verified? If so, please describe how.
After building each piece of software included in the
dataset, the data was directly available. The only in-
formation associated with each instance is provenance
information, which was also readily collected. No labels
or targets are included with each instance.

What mechanisms or procedures were used to col-
lect the data (e.g., hardware apparatus or sensor,
manual human curation, software program, soft-
ware API)? How were these mechanisms or procedures
validated?
We wrote a custom suite of tooling available at

https://zenodo.org/doi/10.5281/zenodo.10155760. The
software pulls lists of software from specific package in-
dices, attempts to build all the specified software, and
extracts LLVM-IR in bitcode form from all of the soft-
ware that successfully built.

If the dataset is a sample from a larger set, what
was the sampling strategy (e.g., deterministic, prob-
abilistic with specific sampling probabilities)?
We included as much IR as possible from package in-
dices where it was feasible to automatically build all the
packages. There was a significant portion of builds that
failed and we also omitted multiple package indices that
we believed would be more difficult to automate collec-
tion from. In addition, there are many projects that are
not included in package repositories that the techniques
we used to collect this dataset would not be able to ob-
tain.

Who was involved in the data collection process
(e.g., students, crowdworkers, contractors) and
how were they compensated (e.g., how much were
crowdworkers paid)?
All collection was automated.

Over what timeframe was the data collected? Does
this timeframe match the creation timeframe of the
data associated with the instances (e.g., recent
crawl of old news articles)? If not, please describe
the timeframe in which the data associated with the in-
stances was created.
The most recent collection of the dataset was performed
in early November of 2023. This version of the dataset
was collected with the most up to date versions of the
package indices available at the time and the latest re-
lease or nightly version of language specific toolchains
depending upon the specific language.

Were any ethical review processes conducted (e.g.,
by an institutional review board)? If so, please pro-
vide a description of these review processes, including
the outcomes, as well as a link or other access point to
any supporting documentation.
No.

Does the dataset relate to people? If not, you may
skip the remaining questions in this section.
No.

Did you collect the data from the individuals in ques-
tion directly, or obtain it via third parties or other
sources (e.g., websites)?
N/A.

3

https://zenodo.org/doi/10.5281/zenodo.10155760


Were the individuals in question notified about the
data collection? If so, please describe (or show with
screenshots or other information) how notice was pro-
vided, and provide a link or other access point to, or oth-
erwise reproduce, the exact language of the notification
itself.
N/A.

Did the individuals in question consent to the col-
lection and use of their data? If so, please describe
(or show with screenshots or other information) how
consent was requested and provided, and provide a link
or other access point to, or otherwise reproduce, the ex-
act language to which the individuals consented.
N/A.

If consent was obtained, were the consenting indi-
viduals provided with a mechanism to revoke their
consent in the future or for certain uses? If so,
please provide a description, as well as a link or other
access point to the mechanism (if appropriate).
N/A.

Has an analysis of the potential impact of the
dataset and its use on data subjects (e.g., a data
protection impact analysis) been conducted? If so,
please provide a description of this analysis, including
the outcomes, as well as a link or other access point to
any supporting documentation.
N/A.

Any other comments?
None.

Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the data
done (e.g., discretization or bucketing, tokenization,
part-of-speech tagging, SIFT feature extraction, re-
moval of instances, processing of missing values)?
If so, please provide a description. If not, you may skip
the remainder of the questions in this section.
We performed a deduplication step based on LLVM’s
StructuralHash to remove duplicate modules from the
dataset. In addition, we filtered by project to only in-
clude projects with permissive licensing.

Was the “raw” data saved in addition to the prepro-
cessed/cleaned/labeled data (e.g., to support unan-
ticipated future uses)? If so, please provide a link or
other access point to the “raw” data.
The raw data was saved, but there are no plans to release
it. There are license constraints imposed by the source
projects that we need to abide by, restricting us from
publishing a completely unfiltered version. In addition,
while LLVM’s StructuralHash is slightly lossy, almost
all of the duplicates it identifies are accurate, and pub-
lishing a dataset that contains many duplicate modules
provides little additional value.

Is the software used to preprocess/clean/label the
instances available? If so, please provide a link or
other access point.
Yes. All of the software used to process the dataset is
available at (llvm-ir-dataset-utils link).

Any other comments?
None.

Uses

Has the dataset been used for any tasks already? If
so, please provide a description.
We have used the dataset internally to perform some
tasks, including training large language models, to good
effect. The results for our usage here are currently un-
published.

Is there a repository that links to any or all papers or
systems that use the dataset? If so, please provide a
link or other access point.
No, there is not currently a repository that links to all
users of the dataset.

What (other) tasks could the dataset be used for?
In addition to large-scale training of machine learning
models, we also believe the dataset could be valuable for
large-scale analyses of existing and classical compilation
techniques.

Is there anything about the composition of the
dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future
uses? For example, is there anything that a future user
might need to know to avoid uses that could result in
unfair treatment of individuals or groups (e.g., stereotyp-
ing, quality of service issues) or other undesirable harms
(e.g., financial harms, legal risks) If so, please provide a
description. Is there anything a future user could do to
mitigate these undesirable harms?
The dataset was collected from a corpus of software at
a specific point in time and with specific toolchain ver-
sions. There have been significant changes in the past
like the migration to opaque pointers that significantly
impact how the IR looks. Major, and even relatively mi-
nor changes in LLVM and the language frontends should
be analyzed before using ComPile to ensure that the data
is representative.

Are there tasks for which the dataset should not be
used? If so, please provide a description.
The dataset is currently not representative of all lan-
guages that contain an LLVM frontend. For example, we
do not include any IR from Fortran. Language specific
tasks where the language is not represented in ComPile
should not currently be performed using ComPile.

Any other comments?
None.

4



Distribution

Will the dataset be distributed to third parties out-
side of the entity (e.g., company, institution, organi-
zation) on behalf of which the dataset was created?
If so, please provide a description.
Currently, we are pushing the dataset through an

internal review process. We will upload it to Hug-
gingFace after the review is complete where it will
be available at https://huggingface.co/datasets/llvm-
ml/ComPile. Sadly, we can not provide an exact time-
frame for when the dataset will be publicly available.

How will the dataset will be distributed (e.g., tarball
on website, API, GitHub) Does the dataset have a dig-
ital object identifier (DOI)?
The dataset will be available for download on the

HuggingFace hub https://huggingface.co/datasets/llvm-
ml/ComPile after review approval.

When will the dataset be distributed?
Late 2023.

Will the dataset be distributed under a copyright or
other intellectual property (IP) license, and/or under
applicable terms of use (ToU)? If so, please describe
this license and/or ToU, and provide a link or other ac-
cess point to, or otherwise reproduce, any relevant li-
censing terms or ToU, as well as any fees associated
with these restrictions.
Users of the dataset will need to comply with the li-
censes of the individual projects that compose ComPile.
The authors of ComPile do not impose any additional
restrictions on users of the dataset.

Have any third parties imposed IP-based or other
restrictions on the data associated with the in-
stances? If so, please describe these restrictions, and
provide a link or other access point to, or otherwise re-
produce, any relevant licensing terms, as well as any
fees associated with these restrictions.
Yes, there are restrictions based on the licenses that
the source projects that compose ComPile use. These
include attribution for distribution of the data in ver-
batim form. ComPile only includes projects that are li-
censed under the MIT license, the Apache-2.0 license, the
BSD-3-Clause license, and the BSD-2-Clause license.
The exact terms for each license can be found on the
OSI’s website at https://opensource.org/licenses/.

Do any export controls or other regulatory restric-
tions apply to the dataset or to individual instances?
If so, please describe these restrictions, and provide a
link or other access point to, or otherwise reproduce, any
supporting documentation.
No.

Any other comments?
None.

Maintenance

Who will be supporting/hosting/maintaining the
dataset?
The authors will be continuing to maintain and support
the dataset. It will be hosted on HuggingFace.

How can the owner/curator/manager of the dataset
be contacted (e.g., email address)?
The authors of the dataset can be contacted utilizing
the contacts listed in the list of authors above.

Is there an erratum? If so, please provide a link or
other access point.
No.

Will the dataset be updated (e.g., to correct label-
ing errors, add new instances, delete instances)? If
so, please describe how often, by whom, and how up-
dates will be communicated to users (e.g., mailing list,
GitHub)?
The dataset will be updated periodically to contain the
latest versions of the packages currently included in the
dataset, any new packages added to the package indices
that the data is pulled from. More package indices might
also be added in the future. Additionally, updates of
the dataset will be built against the latest version of the
toolchain available for each specific language to better
represent the contemporary distribution of IR.

If the dataset relates to people, are there applicable
limits on the retention of the data associated with
the instances (e.g., were individuals in question told
that their data would be retained for a fixed period of
time and then deleted)? If so, please describe these
limits and explain how they will be enforced.
The dataset does not relate to people.

Will older versions of the dataset continue to be
supported/hosted/maintained? If so, please describe
how. If not, please describe how its obsolescence will
be communicated to users.
Yes, older versions of the dataset will be available on
HuggingFace to enable comparative analysis over time.

If others want to extend/augment/build
on/contribute to the dataset, is there a mechanism
for them to do so? If so, please provide a descrip-
tion. Will these contributions be validated/verified? If so,
please describe how. If not, why not? Is there a pro-
cess for communicating/distributing these contributions
to other users? If so, please provide a description.
The tooling to construct the dataset is open source and
available at https://zenodo.org/doi/10.5281/zenodo.10155760.

Any other comments?
None.

5

https://huggingface.co/datasets/
https://huggingface.co/datasets/
https://huggingface.co/datasets/
https://huggingface.co/datasets/
https://opensource.org/licenses/
https://zenodo.org/doi/10.5281/zenodo.10155760

	Introduction
	Contributions

	Background
	Dataset Construction
	Related Work
	Conclusion
	Acknowledgements
	Abstract
	Datasheet

