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Abstract

Code is increasingly becoming a core data modality of modern machine learning
research impacting not only the way we write code with conversational agents like
OpenAI’s ChatGPT, Google’s Bard, or Anthropic’s Claude, the way we translate
code from one language into another, but also the compiler infrastructure underly-
ing the language. While modeling approaches may vary and representations differ,
the targeted tasks often remain the same within the individual classes of models.
Relying solely on the ability of modern models to extract information from un-
structured code does not take advantage of 70 years of programming language and
compiler development by not utilizing the structure inherent to programs in the data
collection. This detracts from the performance of models working over a tokenized
representation of input code and precludes the use of these models in the compiler
itself. To work towards better intermediate representation (IR) based models, we
fully utilize the LLVM compiler infrastructure, shared by a number of languages,
to generate a 182B token dataset of LLVM IR. We generated this dataset from
programming languages built on the shared LLVM infrastructure, including Rust,
Swift, Julia, and C/C++, by hooking into LLVM code generation either through
the language’s package manager or the compiler directly to extract the dataset of
intermediate representations from production grade programs. Our dataset shows
great promise for large language model training, and machine-learned compiler
components.

1 Introduction

In several pieces of previous work (8; 14), the transformative potential of machine learning was
harnessed, machine-learned heuristic replacements developed, and in some cases (21) the heuristics
were upstreamed to the main LLVM codebase, improving all code run through LLVM when the ML
heuristics are enabled. Orthogonal to the replacement of heuristics with machine learning, a large
number of people have explored the ordering of compiler passes (4; 10). While the learning of
pass orderings was initially held back by the lack of easy-to-access, high-performance reinforcement
learning environments to validate new reinforcement learning strategies, this has by now been
addressed with the introduction of CompilerGym (4). In contrast, the learning of entirely new
heuristics, optimization passes, and other compiler components with large language models (22; 3)
to realize the transformative potential of this model class is held back partially by the lack of large
datasets of high-quality code to train such models properly. Models are only trained on smaller
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Figure 1: Size distribution of LLVM intermediate representation (IR) bitcode within ComPile before
de-duplication within and among languages. Projects that we considered small and pooled had less
than 100MB of bitcode.

datasets, such as Anghabench (5), Exebench (2), and HPCORPUS (11), or sometimes rely on
synthetic benchmarks. Small datasets ultimately lead to smaller, worse-performing models (9).

1.1 Contributions

Focussing on the paradigm of taking a pre-trained basic building block, a “foundation model”, we
pose the question "What does a modern, large code training dataset for compilers actually look
like?" and construct a high-quality dataset of a similar scale to existing LLM datasets solely at the
level of LLVM-IR. Within this context, we associate quality with the usage of code, with code being
used more often being of higher quality for our purposes. Correctly being able to reason about very
widespread code in production systems is incredibly important for compiler work. In the short term,
we believe our dataset will enable the training of larger language models for compilers useful for an
ever broader array of downstream tasks after fine-tuning, and in the long-term enable use-cases such
as direct performance prediction to obtain a reliable runtime estimate without ever running a single
line of code. To these goals, our work makes the following contributions:

• The introduction of a 2.4TB dataset of textual LLVM-IR from Rust, Julia, Swift, and C/C++
with {182B, 119B, 102B, 87B} tokens at a vocabulary size of {10k, 50k, 100k, 200k }
respectively. The pre-deduplication size distribution is shown in Figure 1.

• Open-sourcing of our workflow and compiler tooling to construct massive-scale IR datasets.

2 Background

Building upon package ecosystems as sources of intermediate representation is ideal due to the
large amount of packaged code and the abstraction over the build systems of individual projects. In
addition, package ecosystems act as a filter. Only code that gets used in production systems will get
packaged. The build system abstraction is due to a common build wrapper that builds recipes which
often specify exact build steps, including an exact specification of dependencies. Modifying these
build processes allows us to take advantage of this existing infrastructure. In this work, we choose to
specifically focus on utilizing package managers that explicitly allow setting compiler flags, such as
the from-source package manager Spack (6) that is focused on high-performance computing (HPC).

In addition to utilizing package managers, we also take advantage of several aspects of the LLVM
compilation infrastructure (16), particularly the Clang C/C++ frontend and LLVM-IR, the inter-
mediate representation LLVM uses. The full process of compilation, such as the one performed
by Clang with LLVM during the compilation of C/C++, is composed of three main stages: the
frontend, the middle-end, and the backend. A compiler frontend has the job of taking a piece of
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Language C C++ Julia Rust Swift Total
Size (Bitcode) 13 GB 81 GB 197 GB 482 GB 5 GB 778 GB

Size (Text) 61 GB 334 GB 1292 GB 1868 GB 22 GB 3577 GB
Dedup. Size (Bitcode) 8 GB 67 GB 130 GB 310 GB 4 GB 518 GB

Dedup. Size (Text) 34 GB 266 GB 856 GB 1221 GB 19 GB 2395 GB
Table 1: Amount of IR contained within ComPile in textual and bitcode form before and after
deduplication.

source code, typically a single source file, sometimes called a translation unit, and generating a
module of intermediate representation that can then be processed by a compiler middle-end, such as
LLVM. A module typically contains multiple functions, referenced globals, and relevant metadata.
Compiler intermediate representations, or IRs, are designed to sit between the source programming
language and the compiler’s output, assembly. They are typically designed to be source-language
and target-agnostic. Within LLVM, the compiler middle-end operates over the IR produced by the
frontend through a series of grouped operations called passes. A pass is designed to perform a specific
task, such as removing dead code, simplifying the control flow graph, or combining instructions.
After optimization, the compiler backend takes over, performing the necessary tasks to transform
the (mostly) target-agnostic IR into target-specific machine code that can be executed on the target
machine. The backend typically performs tasks such as instruction selection, instruction scheduling,
and register allocation. We compose our dataset, ComPile, of LLVM-IR, as it gives a common
framework across programming languages and target platforms. These properties and more make
LLVM-IR a great modality for a compiler-centric dataset useful for compiler tasks such as program
analysis, optimization, and code generation.

3 Dataset Construction

To construct the IR dataset 2, we use a set of curated sources from five different languages. focusing
on code used in production systems. We include the majority of Spack (6), the Rust Crates Index, the
Julia Package Index, the Swift Package Index, and several large single projects. Individual project
sources are defined in .json files. While most projects are hosted in repositories on GitHub, we also
added sources consisting of archived compressed source codes such as tarball files. The builders then
ingest the information from the project on its build system, either through the manifest information,
which contains the information on the building mechanism and commands, or through an ecosystem
specific manifest processed by a script that is then processed into a complete package manifest. Next
in the workflow is the LLVM-IR extraction. Extracting IR depends on the way the IR is presented in
the source. A manifest that contains a list of LLVM bitcode modules extracted from the project is
then created. Leaning into the shared LLVM compiler infrastructure, we are able to take advantage of
existing LLVM tools and LLVM passes to obtain information about the LLVM-IR modules. After
building, IR extraction, and deduplication, the dataset is then ready for downstream usage in analysis
or training capacities. 3

The aim of our IR extraction approach is to extract IR immediately after the frontend, before any
LLVM optimization passes have run. To extract the bitcode into a structured corpus, we take
advantage of the ml-compiler-opt tooling from MLGO (21) as it allows for the extraction of IR
in a variety of cases. During IR extraction, we also collect some additional data, such as debug
information, as it is represented in the IR. We specifically collect bitcode rather than textual IR as
LLVM supports reading bitcode produced by older versions of LLVM but has no such support for
textual IR, which is also easily produced by running llvm-dis over the collected corpus.

Training dataset deduplication can be important for the performance of several key model character-
istics. (1; 12). To this end, We deduplicate the entire dataset presented in this paper at the module
level by computing a combined hash of all global variables and functions, deduplicating based on a
hashing implementation that only captures semantic details of the IR. We chose to deduplicate at the
module level as this ensures the majority of the duplicate code is removed from the dataset while
leaving all significant context within each module for performing module-level tasks.

2The entire dataset will be available on HuggingFace https://huggingface.co/datasets/llvm-ml/ComPile
3Scripts and builders to reproduce the entire dataset are available under the llvm-ir-dataset-utils

subdirectory under https://zenodo.org/doi/10.5281/zenodo.10155760
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Name of Dataset Tokens Size Languages
The Stack (13) - 2.9TB 358 Languages
ComPile (ours) 182B 1 2.4TB Rust, Swift, Julia, C/C++

Code Llama (20) 197B 2 859GB -
TransCoder (15) 163B 744GB C++, Java, Python
AlphaCode (17) - 715.1GB 4 12 Languages

LLM for Compiler Opt. (3) 373M 1GB C/C++

Table 2: Breakdown of Related Datasets.

4 Related Work

Most pretraining datasets for large language models (17; 13; 18) contain large swaths of code,
scraping source code from hosting services like GitHub, and GitLab without taking the quality of
the included code into account. Datasets of this type also do not guarantee that any of the code is
compilable, and often contain auxiliary files such as documentation in Markdown. Complementary
to these large pretraining-scale datasets, there exist a number of smaller, more focused datasets
aimed at the fine-tuning of already pretrained large language models (23; 17; 19). These datasets are
primarily collected through data extraction from coding competitions (17; 19), or the scraping of
curated websites (23). This guarantees a higher level of quality in regards to buildability and structure
for the included code, hence making them more optimal for fine-tuning. However, the data collection
methodology implicitly introduces a lack of variety in the datasets, reducing model performance (7).
For example, coding competititon datasets might include a couple thousand coding exercises which
contain a great many solutions to the same exercises, but yet they are only solving the very same set
of coding problems.

Additionally, there exist a number of domain-specific datasets (11; 2; 5). Often beginning with the
web-scraping of large amounts of code, these approaches modify the resulting code in a number of
ways. Examples include the modification of arbitrary source files to make them compilable (5) or
executable (2). ComPile, while being able to fulfill similar dataset demands, offers a number of key
advantages. The code in our dataset, by means of our dataset construction methodology, consists
only of compilable code, using the same compilation toolchain as used for production deployments
without changing semantics. Collecting IR before optimization allows for IR at any stage of the
compilation pipeline to be easily generated. This allows ComPile to go significantly beyond the
capabilities of previous compiler-targeted datasets.

5 Conclusion

In this work, we presented ComPile, a novel dataset of LLVM-IR collected from a number of package
ecosystems consisting of large production-grade codebases. It is significantly larger than previous
finetuning-focussed, and compiler-focussed code datasets, albeit smaller than large language model-
focussed code pretraining datasets. ComPile’s increased size in combination with its quality-focused
construction methodology not only enables the systematic evaluation of previous work, but opens
up entirely new avenues of research for IR-centric machine learning, and most specifically machine-
learned compiler componentry for which the scale of this dataset paves the way to an entirely new
generation of machine learning models for compilers.
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1 Abstract

Code is increasingly becoming a core data modality of modern machine learning research impacting not only the
way we write code with conversational agents like OpenAI’s ChatGPT, Google’s Bard, or Anthropic’s Claude,
the way we translate code from one language into another, but also the compiler infrastructure underlying the
language. While modeling approaches may vary and representations differ, the targeted tasks often remain the
same within the individual classes of models. Relying solely on the ability of modern models to extract information
from unstructured code does not take advantage of 70 years of programming language and compiler development
by not utilizing the structure inherent to programs in the data collection. This detracts from the performance of
models working over a tokenized representation of input code and precludes the use of these models in the compiler
itself. To work towards the first intermediate representation (IR) based models, we fully utilize the LLVM compiler
infrastructure, shared by a number of languages, to generate a 182B token dataset of LLVM IR. We generated this
dataset from programming languages built on the shared LLVM infrastructure, including Rust, Swift, Julia, and
C/C++, by hooking into LLVM code generation either through the language’s package manager or the compiler
directly to extract the dataset of intermediate representations from production grade programs. Statistical analysis
proves the utility of our dataset not only for large language model training, but also for the introspection into the
code generation process itself with the dataset showing great promise for machine-learned compiler components.

2 Datasheet

Motivation

For what purpose was the dataset created? Was
there a specific task in mind? Was there a specific gap
that needed to be filled? Please provide a description.
The dataset was created to enable large scale analysis of
existing compiler techniques and to provide a large, rep-
resentative set of training data for the next generation of
compiler-focused ML models.

Who created this dataset (e.g., which team, research

group) and on behalf of which entity (e.g., company,
institution, organization)?
The dataset was created by a cross-institutional col-
laboration including members from UC Davis, Technical
University of Munich, Lawrence Livermore National Lab-
oratory, University of Minnesota, University of Illinois at
Urbana Champaign, Argonne National Laboratory, and
Google. The primary entity funding the development of
ComPile is Lawrence Livermore National Laboratory.

Who funded the creation of the dataset? If there is an
∗Corresponding author

1



associated grant, please provide the name of the grantor
and the grant name and number.
This work was in parts prepared by Lawrence Liver-
more National Laboratory under Contract DE-AC52-
07NA27344.

Any other comments?
None.

Composition

What do the instances that comprise the dataset
represent (e.g., documents, photos, people, coun-
tries)? Are there multiple types of instances (e.g.,
movies, users, and ratings; people and interactions be-
tween them; nodes and edges)? Please provide a de-
scription.
Each instance within the dataset represents a single

LLVM bitcode module. Depending upon the source lan-
guage, this could represent a single translation unit like
in C/C++, a single target as in Rust, or a package as in
Julia.

How many instances are there in total (of each type,
if appropriate)?
ComPile contains approximately 670,000 modules in its
current form. module count

Does the dataset contain all possible instances or
is it a sample (not necessarily random) of instances
from a larger set? If the dataset is a sample, then
what is the larger set? Is the sample representative
of the larger set (e.g., geographic coverage)? If so,
please describe how this representativeness was vali-
dated/verified. If it is not representative of the larger set,
please describe why not (e.g., to cover a more diverse
range of instances, because instances were withheld or
unavailable).
The dataset is a sample of all possible instances. The
sample is designed to be representative of bitcode mod-
ules that are present in widely-used production applica-
tions, but we do not currently have results quantifying
how representative ComPile is of this population.

What data does each instance consist of? “Raw”
data (e.g., unprocessed text or images) or features?
In either case, please provide a description.
Each instance consists of an LLVM bitcode module in
binary form along with associated provenance informa-
tion, including the project that it was sourced from and
the license information associated with that project.

Is there a label or target associated with each in-
stance? If so, please provide a description.
No, there is not a label or target associated with each
instance in the distributed form of the dataset.

Is any information missing from individual in-
stances? If so, please provide a description, explaining

why this information is missing (e.g., because it was un-
available). This does not include intentionally removed
information, but might include, e.g., redacted text.
No, no information is missing from individual instances.
All instances contain a complete, valid LLVM module
and all associated provenance informtion.

Are relationships between individual instances
made explicit (e.g., users’ movie ratings, social net-
work links)? If so, please describe how these relation-
ships are made explicit.
Some relationships are made explicit. The per-project
provenance information is included directly in each in-
stance, allowing instances to be grouped by their source.
However, other relationships such as the targets that
modules get linked into are not preserved.

Are there recommended data splits (e.g., training,
development/validation, testing)? If so, please pro-
vide a description of these splits, explaining the rationale
behind them.
There is no recommended data split. The best data split
will be highly dependent upon the specific downstream
application that the user is interested in.

Are there any errors, sources of noise, or redundan-
cies in the dataset? If so, please provide a descrip-
tion.
Many of the modules will contain some of the same func-
tions, but no entire module will be exactly the same.
All of the modules are parseable using an up-to-date
LLVM toolchain, but some of them might fail to run
through the optimization pipeline or timeout when per-
forming certain analyses due to bugs in various parts of
the toolchain.

Is the dataset self-contained, or does it link to or
otherwise rely on external resources (e.g., websites,
tweets, other datasets)? If it links to or relies on exter-
nal resources, a) are there guarantees that they will ex-
ist, and remain constant, over time; b) are there official
archival versions of the complete dataset (i.e., includ-
ing the external resources as they existed at the time
the dataset was created); c) are there any restrictions
(e.g., licenses, fees) associated with any of the external
resources that might apply to a future user? Please pro-
vide descriptions of all external resources and any re-
strictions associated with them, as well as links or other
access points, as appropriate.
The dataset is entirely self-contained and does not rely
on any external resources for its useability.

Does the dataset contain data that might be consid-
ered confidential (e.g., data that is protected by legal
privilege or by doctor-patient confidentiality, data
that includes the content of individuals non-public
communications)? If so, please provide a description.
The data included in ComPile is obtained from publicly
available sources and thus will not contain any confiden-
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tial data that was not already broadly available. How-
ever, we cannot be certain that it does not contain any
confidential information. Our dataset construction tech-
niques should remove most cases of confidential informa-
tion if they are present, like data in project repositories
and comments, but does not eliminate all cases, like data
embedded in code.

Does the dataset contain data that, if viewed di-
rectly, might be offensive, insulting, threatening, or
might otherwise cause anxiety? If so, please describe
why.
We believe that it is unlikely that any representation of
the IR contained within our dataset would have any of
these properties.

Does the dataset relate to people? If not, you may
skip the remaining questions in this section.
No.

Does the dataset identify any subpopulations (e.g.,
by age, gender)? If so, please describe how these sub-
populations are identified and provide a description of
their respective distributions within the dataset.
N/A.

Is it possible to identify individuals (i.e., one or more
natural persons), either directly or indirectly (i.e., in
combination with other data) from the dataset? If so,
please describe how.
N/A.

Does the dataset contain data that might be con-
sidered sensitive in any way (e.g., data that reveals
racial or ethnic origins, sexual orientations, reli-
gious beliefs, political opinions or union member-
ships, or locations; financial or health data; biomet-
ric or genetic data; forms of government identifica-
tion, such as social security numbers; criminal his-
tory)? If so, please provide a description.
N/A.

Any other comments?
None.

Collection Process

How was the data associated with each instance ac-
quired? Was the data directly observable (e.g., raw
text, movie ratings), reported by subjects (e.g., survey
responses), or indirectly inferred/derived from other data
(e.g., part-of-speech tags, model-based guesses for age
or language)? If data was reported by subjects or in-
directly inferred/derived from other data, was the data
validated/verified? If so, please describe how.
After building each piece of software included in the
dataset, the data was directly available. The only in-
formation associated with each instance is provenance
information, which was also readily collected. No labels
or targets are included with each instance.

What mechanisms or procedures were used to col-
lect the data (e.g., hardware apparatus or sensor,
manual human curation, software program, soft-
ware API)? How were these mechanisms or procedures
validated?
We wrote a custom suite of tooling available at

https://zenodo.org/doi/10.5281/zenodo.10155760. The
software pulls lists of software from specific package in-
dices, attempts to build all the specified software, and
extracts LLVM-IR in bitcode form from all of the soft-
ware that successfully built.

If the dataset is a sample from a larger set, what
was the sampling strategy (e.g., deterministic, prob-
abilistic with specific sampling probabilities)?
We included as much IR as possible from package in-
dices where it was feasible to automatically build all the
packages. There was a significant portion of builds that
failed and we also omitted multiple package indices that
we believed would be more difficult to automate collec-
tion from. In addition, there are many projects that are
not included in package repositories that the techniques
we used to collect this dataset would not be able to ob-
tain.

Who was involved in the data collection process
(e.g., students, crowdworkers, contractors) and
how were they compensated (e.g., how much were
crowdworkers paid)?
All collection was automated.

Over what timeframe was the data collected? Does
this timeframe match the creation timeframe of the
data associated with the instances (e.g., recent
crawl of old news articles)? If not, please describe
the timeframe in which the data associated with the in-
stances was created.
The most recent collection of the dataset was performed
in early November of 2023. This version of the dataset
was collected with the most up to date versions of the
package indices available at the time and the latest re-
lease or nightly version of language specific toolchains
depending upon the specific language.

Were any ethical review processes conducted (e.g.,
by an institutional review board)? If so, please pro-
vide a description of these review processes, including
the outcomes, as well as a link or other access point to
any supporting documentation.
No.

Does the dataset relate to people? If not, you may
skip the remaining questions in this section.
No.

Did you collect the data from the individuals in ques-
tion directly, or obtain it via third parties or other
sources (e.g., websites)?
N/A.
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Were the individuals in question notified about the
data collection? If so, please describe (or show with
screenshots or other information) how notice was pro-
vided, and provide a link or other access point to, or oth-
erwise reproduce, the exact language of the notification
itself.
N/A.

Did the individuals in question consent to the col-
lection and use of their data? If so, please describe
(or show with screenshots or other information) how
consent was requested and provided, and provide a link
or other access point to, or otherwise reproduce, the ex-
act language to which the individuals consented.
N/A.

If consent was obtained, were the consenting indi-
viduals provided with a mechanism to revoke their
consent in the future or for certain uses? If so,
please provide a description, as well as a link or other
access point to the mechanism (if appropriate).
N/A.

Has an analysis of the potential impact of the
dataset and its use on data subjects (e.g., a data
protection impact analysis) been conducted? If so,
please provide a description of this analysis, including
the outcomes, as well as a link or other access point to
any supporting documentation.
N/A.

Any other comments?
None.

Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the data
done (e.g., discretization or bucketing, tokenization,
part-of-speech tagging, SIFT feature extraction, re-
moval of instances, processing of missing values)?
If so, please provide a description. If not, you may skip
the remainder of the questions in this section.
We performed a deduplication step based on LLVM’s
StructuralHash to remove duplicate modules from the
dataset. In addition, we filtered by project to only in-
clude projects with permissive licensing.

Was the “raw” data saved in addition to the prepro-
cessed/cleaned/labeled data (e.g., to support unan-
ticipated future uses)? If so, please provide a link or
other access point to the “raw” data.
The raw data was saved, but there are no plans to release
it. There are license constraints imposed by the source
projects that we need to abide by, restricting us from
publishing a completely unfiltered version. In addition,
while LLVM’s StructuralHash is slightly lossy, almost
all of the duplicates it identifies are accurate, and pub-
lishing a dataset that contains many duplicate modules
provides little additional value.

Is the software used to preprocess/clean/label the
instances available? If so, please provide a link or
other access point.
Yes. All of the software used to process the dataset is
available at (llvm-ir-dataset-utils link).

Any other comments?
None.

Uses

Has the dataset been used for any tasks already? If
so, please provide a description.
We have used the dataset internally to perform some
tasks, including training large language models, to good
effect. The results for our usage here are currently un-
published.

Is there a repository that links to any or all papers or
systems that use the dataset? If so, please provide a
link or other access point.
No, there is not currently a repository that links to all
users of the dataset.

What (other) tasks could the dataset be used for?
In addition to large-scale training of machine learning
models, we also believe the dataset could be valuable for
large-scale analyses of existing and classical compilation
techniques.

Is there anything about the composition of the
dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future
uses? For example, is there anything that a future user
might need to know to avoid uses that could result in
unfair treatment of individuals or groups (e.g., stereotyp-
ing, quality of service issues) or other undesirable harms
(e.g., financial harms, legal risks) If so, please provide a
description. Is there anything a future user could do to
mitigate these undesirable harms?
The dataset was collected from a corpus of software at
a specific point in time and with specific toolchain ver-
sions. There have been significant changes in the past
like the migration to opaque pointers that significantly
impact how the IR looks. Major, and even relatively mi-
nor changes in LLVM and the language frontends should
be analyzed before using ComPile to ensure that the data
is representative.

Are there tasks for which the dataset should not be
used? If so, please provide a description.
The dataset is currently not representative of all lan-
guages that contain an LLVM frontend. For example, we
do not include any IR from Fortran. Language specific
tasks where the language is not represented in ComPile
should not currently be performed using ComPile.

Any other comments?
None.
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Distribution

Will the dataset be distributed to third parties out-
side of the entity (e.g., company, institution, organi-
zation) on behalf of which the dataset was created?
If so, please provide a description.
Currently, we are pushing the dataset through an

internal review process. We will upload it to Hug-
gingFace after the review is complete where it will
be available at https://huggingface.co/datasets/llvm-
ml/ComPile. Sadly, we can not provide an exact time-
frame for when the dataset will be publicly available.

How will the dataset will be distributed (e.g., tarball
on website, API, GitHub) Does the dataset have a dig-
ital object identifier (DOI)?
The dataset will be available for download on the

HuggingFace hub https://huggingface.co/datasets/llvm-
ml/ComPile after review approval.

When will the dataset be distributed?
Late 2023.

Will the dataset be distributed under a copyright or
other intellectual property (IP) license, and/or under
applicable terms of use (ToU)? If so, please describe
this license and/or ToU, and provide a link or other ac-
cess point to, or otherwise reproduce, any relevant li-
censing terms or ToU, as well as any fees associated
with these restrictions.
Users of the dataset will need to comply with the li-
censes of the individual projects that compose ComPile.
The authors of ComPile do not impose any additional
restrictions on users of the dataset.

Have any third parties imposed IP-based or other
restrictions on the data associated with the in-
stances? If so, please describe these restrictions, and
provide a link or other access point to, or otherwise re-
produce, any relevant licensing terms, as well as any
fees associated with these restrictions.
Yes, there are restrictions based on the licenses that
the source projects that compose ComPile use. These
include attribution for distribution of the data in ver-
batim form. ComPile only includes projects that are li-
censed under the MIT license, the Apache-2.0 license, the
BSD-3-Clause license, and the BSD-2-Clause license.
The exact terms for each license can be found on the
OSI’s website at https://opensource.org/licenses/.

Do any export controls or other regulatory restric-
tions apply to the dataset or to individual instances?
If so, please describe these restrictions, and provide a
link or other access point to, or otherwise reproduce, any
supporting documentation.
No.

Any other comments?
None.

Maintenance

Who will be supporting/hosting/maintaining the
dataset?
The authors will be continuing to maintain and support
the dataset. It will be hosted on HuggingFace.

How can the owner/curator/manager of the dataset
be contacted (e.g., email address)?
The authors of the dataset can be contacted utilizing
the contacts listed in the list of authors above.

Is there an erratum? If so, please provide a link or
other access point.
No.

Will the dataset be updated (e.g., to correct label-
ing errors, add new instances, delete instances)? If
so, please describe how often, by whom, and how up-
dates will be communicated to users (e.g., mailing list,
GitHub)?
The dataset will be updated periodically to contain the
latest versions of the packages currently included in the
dataset, any new packages added to the package indices
that the data is pulled from. More package indices might
also be added in the future. Additionally, updates of
the dataset will be built against the latest version of the
toolchain available for each specific language to better
represent the contemporary distribution of IR.

If the dataset relates to people, are there applicable
limits on the retention of the data associated with
the instances (e.g., were individuals in question told
that their data would be retained for a fixed period of
time and then deleted)? If so, please describe these
limits and explain how they will be enforced.
The dataset does not relate to people.

Will older versions of the dataset continue to be
supported/hosted/maintained? If so, please describe
how. If not, please describe how its obsolescence will
be communicated to users.
Yes, older versions of the dataset will be available on
HuggingFace to enable comparative analysis over time.

If others want to extend/augment/build
on/contribute to the dataset, is there a mechanism
for them to do so? If so, please provide a descrip-
tion. Will these contributions be validated/verified? If so,
please describe how. If not, why not? Is there a pro-
cess for communicating/distributing these contributions
to other users? If so, please provide a description.
The tooling to construct the dataset is open source and
available at https://zenodo.org/doi/10.5281/zenodo.10155760.

Any other comments?
None.
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