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Abstract

In modern communication systems, efficient and reliable information dissemi-
nation is crucial for supporting critical operations across domains like disaster
response, autonomous vehicles, and sensor networks. This paper introduces a
Multi-Agent Reinforcement Learning (MARL) approach as a significant step for-
ward in achieving more decentralized, efficient, and collaborative solutions. We
propose a Partially Observable Stochastic Game (POSG) formulation for infor-
mation dissemination empowering each agent to decide on message forwarding
independently, based on their one-hop neighborhood and the degree of connectivity
of each neighbor. This constitutes a significant paradigm shift from traditional
heuristics based on Multi-Point Relay (MPR) selection. Our approach harnesses
Graph Convolutional Reinforcement Learning, employing Graph Attention Net-
works (GAT) with dynamic attention to capture essential network features. We
propose two approaches, L-DGN and HL-DGN, which differ in the information
that is exchanged among agents. We evaluate the performance of our decentralized
approaches, by comparing them with a widely-used MPR heuristic, and we show
that our trained policies are able to efficiently cover the network while bypassing
the MPR set selection process. Our approach promises a first step toward sup-
porting the resilience of real-world broadcast communication infrastructures via
learned, collaborative information dissemination.

1 Introduction

Nowadays, group communication, implemented in a broadcast or multicast fashion, finds a natural
application in different networking systems, such as Vehicular Ad-hoc Networks (VANETs)( Tonguz
et al. [2007], Ibrahim et al. [2020]), with the necessity to disseminate information about the nodes
participating, e.g. identity, status, and position, or crucial events happening in the network. In the
context of broadcast networking systems, Optimized Link State Routing (OLSR) (Dearlove and
Clausen [2014]) is a widely used proactive routing protocol which leverages a technique called Multi
Point Relay (MPR) selection (Qayyum et al. [2002], Adjih et al. [2005]) to optimize information
dissemination. Given a source node sending a message to its neighbors, such a distributed task requires
all the nodes to coordinate and disseminate the information across the network while minimizing the
number of information forwards needed. Thanks to the exchange of “HELLO messages” present in
OLSR, nodes discover information about their two-hop neighborhood and designate specific one-hop
neighbors as responsible for forwarding information they transmit, namely their MPR set.
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Recently, researchers have considered learning communication protocols (Foerster et al. [2016]) with
Multi-Agent Reinforcement Learning (MARL) (Buşoniu et al. [2010]). Nevertheless, learning to
communicate with MARL comes with several challenges. In multi-agent systems, actions taken by
one agent can significantly impact the rewards and state transitions of other agents, rendering the
environment more complex and dynamic, and ensuring that agents develop a shared and consistent
communication protocol, is an area of active research. Methods such as CommNet (Sukhbaatar et al.
[2016]) and BiCNet (Peng et al. [2017]), focus on the communication of local encodings of agents’
observations. Yet another approach, as exemplified by DGN (Jiang et al. [2020]), harnesses the power
of Graph Neural Networks (GNNs) to model the interactions and communications between agents.
By representing the multi-agent system as a graph, DGN captures the complex relations between
agents, facilitating the emergence of effective strategies even when constrained communication may
limit the range of cooperation.

While recent work has considered a MARL approach (Kaviani et al. [2023]) addressing the opti-
mization of goodput (bits of useful data delivered at target location per unit of time) in dynamic
multicast networks, to the best of our knowledge, no MARL-based method involving active, learned
communication by the agents and Graph Convolution has been proposed to address the unique
challenges of optimizing the process of information dissemination within a broadcast network.

In this work, we propose a novel cooperative MARL formulation for information dissemination
and two different architectures, Local-DGN and Hyperlocal-DGN, leveraging Graph Convolu-
tional Reinforcement Learning and Graph Attention Network (GAT) with dynamic attention. Our
experimental study shows that our approach outperforms the widely-used standard heuristic in
achieving network coverage with reduced communication overhead.

Our approach is a first step towards collaborative autonomous agents capable of optimizing informa-
tion dissemination while exploiting communication mechanisms present in broadcast protocols. In
this way, our work underscores the versatility of MARL in present and future, real-world applications
such as information dissemination in social networks (Guille et al. [2013]), space networks (Ye and
Zhou [2021]), and vehicle-safety-related communication services (Ma et al. [2012]).

2 Method

In the proposed decentralized approach, nodes in a network represent agents in a Partially Observable
Stochastic Game (POSG), with the actions available being to forward a message or not. Agents
discover one-hop neighbors and gather information about their neighbors through protocols such as
OLSR (Clausen and Jacquet [2003], Dearlove and Clausen [2014]). It is worth mentioning that, in
such protocols, agents are required to know the unique identifiers of each of their two-hop neighbors,
while in our setting they are only aware of the number of connections their one-hop neighbors have.
The agents receive a reward signal based on their 2-hop coverage and penalties depending on their
behavior and the neighborhood’s activity.

Agents are categorized into active, done, and idle, transitioning between these sets based on message
receipt. Upon receiving the message, agents start their individual experience lasting a fixed number
of steps, named local horizon, representing the portion of the entire dissemination process where the
agent actively interacts with its neighborhood. The dissemination process is discretized into time
steps where active agents act simultaneously.

Observations Oi
i∈I . Each node in the graph has a set of six features, including its number of

neighbors, the number of messages transmitted, and its action history. The latter identifies in which,
if any, of its active turns, the agent forwarded the message. Assuming the local horizon is equal to k,
this last feature can be represented as a binary array of size k. An agent’s observation includes its
own features and those of its one-hop neighbors.

Actions Ai
i∈I . For any time step t, every active agent has two possible actions: to forward or not the

information to their neighbors. Despite being not desirable, active agents are allowed to forward the
information multiple times. If an agent forwards a message, each of its neighbors will receive it.

Rewards Ri
i∈I . At the end of each step every agent is issued with a reward signal. Such signals

are made of two main components, a positive and a negative reward. The positive term rewards
the agent based on its two-hop coverage, i.e. how many one- and two-hop neighbors have been
covered, capturing the ability of observable (the agent’s neighborhood) and unobservable agents to
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Figure 1: The Local-DGN (L-DGN) architecture.

contribute to the dissemination task. One of two different penalties might be issued, based on the
agent’s behavior. If the agent has ever forwarded the message, it will participate in a “neighborhood
shared transmission cost” punishing the agent for the number of forwards sensed in its neighborhood.
Otherwise, the agent will incur a penalty based on the “coverage potential” of its neighborhood,
determined by the size of its most connected neighbor’s neighborhood.

2.1 Local and Hyperlocal Relation Kernels

Our methods, namely L-DGN and HL-DGN, are based on the concept of Relation Kernels, essential
in Graph Convolutional Reinforcement Learning as implemented in the DGN model (Jiang et al.
[2020]). The L-DGN architecture is illustrated in Figure 1, comprising an encoder module with
multiple stages with two GATs layers. The HL-DGN, is presented in Figure 2 and comprises a
simpler architecture, with a single GAT layer and a global max pool operation.

Training is performed in a Double Deep Q Networks (DDQNs) fashion (Hasselt et al. [2016]) while
using n-step Temporal Difference (TD) estimation with n equal to the agent’s local horizon. Both
methods employ full parameter sharing across the agents and a circular replay buffer is utilized to
store tuples of observations, actions, and rewards. Final latent representations are then processed by a
Dueling Q-Network (Wang et al. [2016]) to compute the predicted Q values.

In L-DGN, feature vectors from nodes in local regions are processed with two GATs layers, expanding
the agent’s receptive field to its two-hop neighborhood and enhancing cooperation. This model can
be naturally implemented in broadcast network protocols, allowing agents to share their learned
neighborhood-wise latent representations, instead of MPR sets as seen for OLSR. Such embedding
communication enables better collaboration between the agents while preserving information privacy,
as they do not require explicit communication of two-hop neighbor identifiers. The architecture
utilizes a combination of Multi Layer Perceptron (MLP), multi-headed GATs (Veličković et al.
[2018]), and dynamic attention (Brody et al. [2022]) to produce a final latent representation.

We hypothesize a more communication-
efficient approach by restricting information
exchange. To this end, we remove the second
GAT layer present in L-DGN, which involves
a message exchange process corresponding
to the communication of the MPR sets em-
ployed in OLSR. This leads to the develop-
ment of Hyperlocal-DGN (HL-DGN) (Fig-
ure 2), which aims to reduce communication
overhead. While following the same learning
methods, HL-DGN adopts a simplified pol-
icy parameterization, with a single GAT layer
followed by a global max-pooling layer, in-
spired by traditional approaches seen in Con-
volutional Neural Networks (CNNs) (Cireşan
et al. [2011]).
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Figure 2: The Hyperlocal-DGN (HL-DGN).
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The rationale for using a pooling layer is that agents can make informed decisions by simply
observing their immediate neighbors and processing the neighborhood dynamics from each neighbor’s
perspective, eliminating the need to share their latent representations.

3 Experiments

A first set of 50K connected static graph topologies is generated, with 20 nodes per graph, and no
constraints on the number of one-hop neighbors. In addition, two separate sets of 100 topologies are
used for testing, respectively with 20 and 50 nodes per graph. When training, the environment selects
a random graph, as well as a random node to be the source of the information to disseminate. During
testing a precise node is systematically chosen to be the source in order to encourage reproducibility
and coherence of the results. In our experiments, we set the value of the local horizon to 4.

We conduct a comprehensive comparative analysis involving our two novel methodologies, L-DGN
and HL-DGN, alongside the MPR heuristic, and DGN-R, the variant of DGN (Jiang et al. [2020])
that does not include Temporal Relation Regularization, which is not required in our setting where
agent interaction is temporally bounded by a short local-horizon. To ensure an equitable evaluation,
we maintain consistent hyperparameters and layer dimensions for each layer type across all three
models. In both our proposed methodologies and DGN-R, we employ GAT with dynamic attention.

We note that, in our setting, all the nodes begin the process simultaneously and, due to assumed
perfect synchronization among nodes, every node diffuses information at precisely the same time.
To this end, a “bootstrap phase” is defined, during which nodes engage in two successive rounds
of HELLO messages, each serving a distinct purpose. The first round establishes the presence of
nodes and forms initial network connectivity. In the second round, nodes exchange the acquired
information within their one-hop neighborhood, leading to each node gaining knowledge of their
two-hop neighborhood. We note that the information exchanged between the nodes in this phase
depends on the approach being used (i.e., neighbors’ ids for MPR, and neighborhood size for all other
methods). After this bootstrap phase, a third round is dedicated to broadcasting pre-calculated MPR
sets or latent representations for, respectively, MPR selection and L-DGN or DGN-R. Summarizing,
the MPR heuristic, DGN-R, and L-DGN, all demonstrate a control message overhead proportional
to three times the number of nodes, while HL-DGN demonstrates an overhead scaled down to two
times the node count, thanks to the absence of the third round of HELLO messages.

Table 1 presents a summary of our re-
sults. We note that with 20 nodes (resp.
50 nodes), HL-DGN successfully attains
full coverage while employing 13.17
(resp. 35.1) data messages requiring one
less round of HELLO messages. More-
over, L-DGN model maintains a high
coverage rate of 99.95% (resp. 93.3%),
with the overall lowest message count
of 11.84 (resp. 25.42). Both the MPR
heuristic and the DGN-R achieve full
coverage, the first employing 12.05 (resp.
30.8), while the second 21.06 (resp.
60.65).

Nodes Method Coverage Data
Messages

Control
Overhead

20
MPR 100% 12.05 60

DGN-R 100% 21.06 60
L-DGN 99.95% 11.84 60

HL-DGN 100% 13.17 40
50

MPR 100% 30.8 150
DGN-R 99.98% 60.65 150
L-DGN 93.3% 25.42 150

HL-DGN 100% 35.1 100

Table 1: Performance comparison.

4 Conclusion

Our results underscore the efficacy of our proposed MARL-based approaches to learning effective
forwarding strategies compatible with communication mechanisms present in widely-used broadcast
protocols, such as OLSR Dearlove and Clausen [2014].

This work paves the way for the integration of learned strategies to optimize forwarding decisions in
real group communication protocols, and to an investigation of more complex and dynamic systems.
Orthogonally, the application of our approach can be extended beyond broadcast networks to the
dissemination of information in domains with higher levels of abstraction, such as social networks.
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5 Appendix

5.1 Hyperparameters

Hyperparameter Value

Training
Training steps 1× 106

Learning rate 1× 10−3

Buffer size 1× 105

Gamma 0.99
Batch size 32

Exploration Decay Exponential
Local Horizon 4

N-Step Estimation 4
Training Frequency 1 every 10 steps

Gradient Steps 1
Parallel Training Envs 40

Experience Replay Uniform
Seed 9

Policy Parameters
MLP Hidden Size 512

GAT Attention Heads 4
GAT Hidden Size 128 (each head)

A-Network Hidden Sizes [128, 128]
V-Network Hidden Sizes [128, 128]

Table 2: Hyperparameters used across our experiments.

5.2 Ablation Study and Convergence

Along with L-DGN, HL-DGN, and DGN-R, we investigate the training performance of three abla-
tions of our proposed architectures, namely DGN-R-Duel, L-DGN-MP, and L-DGN-MPNC. Such
performance is measured in terms of the summation of the returns achieved by each agent that has
participated in the dissemination task, named “graph return” (Figure 3). Given that our environment
is highly dynamic in terms of the entities contributing to the dissemination task at each timestep,
such a metric allows us to understand if the local rewards assigned to each agent correlate with a
desired overall collaboration across the entire graph, measured in terms of summations of the rewards
achieved.

DGN-R-Duel. The implementation of this method lies between L-DGN and DGN-R. Starting from the
latter, we added the dueling network instead of a single MLP stream as the action decoder. Figure 3
shows the positive impact of the dueling network in the final strategy, which significantly outperforms
DGN-R after 600K steps. From such a learning trajectory, we can also deduce the impact of another
main component of our L-DGN, the n-step return estimation proportional to the local horizon. With
the addition of such n-step returns, we obtain our L-DGN architecture, and we can notice how such a
component helps the learned strategy to converge earlier and less abruptly.

L-DGN-MP. This method removes the second GAT layer of L-DGN and replaces it with the global
max pool operator (later adopted by HL-DGN). The concatenation of the output of every encoding
stage is still present here. We can notice a slight drop in performance when compared to L-DGN.

L-DGN-MPNC. This method removes both the second GAT layer of L-DGN, as well as the concate-
nation of the output of every encoding stage. We notice a decrease in performance when compared to
L-DGN. It can also be seen that HL-DGN can be derived from L-DGN-MPNC after the ablation of
the MLP encoding stage and that HL-DGN does not suffer from such performance reduction.

In summary, these ablation studies centered around L-DGN allow us to both understand the strengths
of this approach when compared to DGN-R, as well as motivate the design of the HL-DGN ar-
chitecture, which exhibits a simplified structure, less communication overhead, and only slightly
underperforms in terms of graph return during training.
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Figure 3: Graph return and convergence of the various methods used for the ablation study.
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