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Abstract

Many modeling tasks involve learning functions which are invariant to certain
types of input transformations. We study a specific class of invariance: semantics-
preserving variable renaming for models of code. We show that vanilla Transformers
trained on renaming-invariant tasks do not exhibit renaming invariance. We
propose Renamer, a Transformer architecture which is itself invariant to semantics-
preserving variable renaming. On a CPU simulation task, Renamer reduces error
by between 24.79% and 52.8% compared to a vanilla Transformer.

1 Introduction
Modeling tasks often require reasoning about invariances of the task, classes of input transformations
for which the output of the task remains unchanged (Snavely, 2019; Bianchi et al., 2022). Ideally a
model itself is invariant to the same classes of input transformations as the underlying task. Violations
of this ideal hurt the model’s generalization on downstream tasks (Alon et al., 2019; Gao et al., 2023).

Renaming invariance. A common invariance for models of code is renaming invariance, invariance
to transformations that change variable names (or other identifiers) in code in a way that preserves
the semantics of the overall code block. Renaming invariance arises when reasoning about formal
languages including programming languages (Chen et al., 2021; Alon et al., 2019; Renda et al.,
2020), mathematics (Lample & Charton, 2020; Polu et al., 2022), and synthetic grammars of natural
languages (Marzoev et al., 2020; Berant & Liang, 2014).

To define renaming invariance, we first define a view mapping as a mapping from an input token to
its view, where a view represents all the information about a token that is salient to the function other
than its relation to other tokens. We then define a referent relation as a binary relation between input
tokens that states whether or not the tokens refer to the same underlying entity. A renaming invariant
function is a function that generates the same output for any bijection of tokens that does not change
tokens’ views and preserves the referent relation.

Consider an example input from a symbolic algebra task: x + y, which has three tokens: x, +, and y. In
this task the information about x and y that is salient to the function is that each is a variable, while the
salient information about + is that it is an addition operator. Thus the view mapping for this task maps x
andy to the same view, and+ to a different view. In this task, all ofx, +, andy refer to different underlying
entities (different variables and the addition operation), and thus are not related by the referent relation.

Renaming invariance in ML for systems. Renaming invariance is a common property of systems
tasks. For example, compilers require accurate predictions of code execution speed, which is invariant
to variable renaming (Mendis et al., 2019; Baghdadi et al., 2021). ML-based bug detection predicts
whether a given code snippet has a bug, which, for closed terms (those with no free variables), is
invariant to variable name choices (Liu et al., 2019; Allamanis et al., 2021; Liu et al., 2023). LLMs
that interact with computer systems often do so through renaming-invariant analysis, generation, and
execution of code (Gao et al., 2023).
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While general-purpose neural network architectures have shown impressive results on learning
functions with renaming invariance (Alon et al., 2019; Renda et al., 2021), neural networks (including
LLMs) are not themselves invariant to renaming (Alon et al., 2019; Gao et al., 2023).

Contributions. We present an approach to enforcing renaming invariance in Transformers:

• We introduce and formally characterize the renaming invariance problem.
• We propose the Renamer, a renaming invariant Transformer model architecture.
• We evaluate the Renamer on a renaming invariant x86 assembly processing task. Renamer

reduces the error compared to a vanilla Transformer model by between 27.58% and 52.80%.

By defining renaming invariance and proposing a Transformer model invariant to renaming, our work
takes a key step towards providing low-error models with provable guarantees.

2 Renaming Invariance in x86 Assembly

This section presents a case study of renaming invariance in a sequence processing task.

Task. Following Renda et al. (2021), we create a neural network surrogate that mimics the behavior
of llvm-mca, a CPU simulator included with the LLVM infrastructure (Lattner & Adve, 2004). As
input llvm-mca takes a basic block of x86-64 assembly, a sequence of assembly instructions with no
jumps or loops. It then predicts the throughput of the basic block on the simulated CPU, which is the
number of CPU clock cycles taken to execute the block when repeated for a fixed number of iterations.
Learning a surrogate of llvm-mca results in faster or more accurate throughput prediction than using
llvm-mca itself (Renda et al., 2021).

Input specification. We evaluate using a dataset of AT&T-syntax x86-64 basic blocks (Chen
et al., 2019). Figure 1 presents three such basic blocks. AT&T syntax basic blocks are sequences
of instructions, where each instruction consists of an opcode (e.g., mov), a source operand (e.g.,
64(%rsp)), and a destination operand (e.g., %rax). Each operand may be a constant (e.g., $1), a
register (e.g., %rax), or a memory address (e.g., 64(%rsp)). In AT&T syntax x86, the final operand
of an instruction is the destination to which the instruction writes (and may also be read from).

A given register operand consists of a bitwidth and a base register. The bitwidth is how many bits of the
register data are addressed by the register. As an example, %rax addresses all 64 bits of the register data,
%eax addresses the lowest 32 bits, and %ax addresses the lowest 16 bits. The base register is the location
where register data is stored; this is typically indicated by the final several characters of the register (e.g.,
ax in %rax). Base registers belong to different classes (general-purpose, vector, floating-point, etc).

Simulation model. In llvm-mca’s simulation model, predictions depend on the opcodes of each in-
struction in the block, the bitwidth and register class of each operand, and the register dependency graph
with edges between instructions with source and destination operands that share the same base register.

Renaming invariance. Renaming invariance manifests in llvm-mca as invariance to register renam-
ing. When the base register names are renamed in a given block such that none of the register bitwidths,
classes, or dependency graph change, llvm-mca generates an identical prediction for this block.

To formalize this, we say that the view of a given register is its bitwidth and register class. We then
define the referent relation as a binary relation that holds between two registers if they have the same
base register (e.g., as %rax and %eax do); we say that any registers related by the referent relation are
coreferential. Any transformation of registers that maintains both register views and also the referent
relation is a renaming invariant transformation.

Example. Figure 1 presents three x86 basic blocks in AT&T syntax. Figure 1(a) shows the original
block. This basic block has a throughput of 1.6 cycles per iteration in llvm-mca’s model. There are four
unique registers in the basic block: %rsp, %eax, %rax, and %rbp. Registers %rsp, %rax, and %rbp
all have view (64-bit, general-purpose). %eax has the view (32-bit, general-purpose).
Registers %eax and %rax are coreferential as they both share the ax base register. Registers %rsp and
%rbp are not coreferential with any other registers in Figure 1(a).

Figure 1(b) shows a semantically equivalent version of the block. In the new block, %rax was renamed
to %rbx and %eax was renamed to %ebx. Since %rbx has view (64-bit, general-purpose)
and %ebx has view (32-bit, general-purpose), this transformation preserves the views of all
registers. Since %rbx and %ebx are coreferential (and are not coreferential with any other registers),
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mov 64(%rsp), %rax
sub $1, 56(%rbp)
mov 16(%rax), %eax

llvm-mca: 1.68 cycles

(a) Original block.

mov 64(%rsp), %rbx
sub $1, 56(%rbp)
mov 16(%rbx), %ebx

llvm-mca: 1.68 cycles

(b) Invariant renaming.

mov 64(%rax), %rax
sub $1, 56(%ebp)
mov 16(%rax), %eax

llvm-mca: 10.03 cycles

(c) Non-invariant renaming.

Figure 1: Example renamings of an x86-64 basic block. Registers may be renamed as long as each
is renamed to a register with the same bitwidth and the dependency graph is preserved.

this transformation preserves the referent relation. Thus, because the views and referent relation are
preserved, llvm-mca outputs the same timing for the renamed block.

Figure 1(c) shows a version of the block with registers renamed in manner that is not semantically
equivalent. First, views are not preserved: %rbp, which is 64-bit, is renamed to %ebp, which is
32-bit. Second, the referent relation is not preserved: %rsp is renamed to %rax on the first line
while %rax and %eax are not renamed. Each change alters the semantics of the original block. Thus,
llvm-mca outputs a different timing for the renamed block compared to the original block.

Vanilla Transformers are sensitive to register renaming, predicting 1.5 cycles on Figure 1(a) and 2.3
on Figure 1(b). The Renamer more accurately predicts 1.6 cycles for both.

3 Formalizing Renaming Invariance
Let x ∈ X be an input token from the vocabulary, let [xi] ∈ Xn be a length n sequence of tokens,
and let f : Xn → R be a function over a sequence of tokens.

Let V be a set of views. A view represents the information about a token that is salient to the function
other than its relation to other tokens. The view mapping v : X → V associates tokens with a view.

Let R ⊆ X ×X be the referent relation, a reflexive, symmetric, and transitive relation on X . The
referent relation is a relation which holds between two tokens if they refer to the same object. We use
the notation xR y to denote that R holds between x and y. We also refer to such tokens as coreferential.

Let σ : X → X be a permutation (i.e., a bijection) over the input tokens. σ is view-constrained if
∀x ∈ X.v(x) = v(σ(x)), meaning that all tokens are mapped to a token with the same semantic
role in the function. σ is referent-constrained if ∃. R.∀x, y ∈ X.xR y ⇔ σ(x)R′ σ(y). That is, σ
is referent-constrained if it preserves the referent relation between tokens. Furthermore, σ is semantics-
preserving if it is both view-constrained and referent-constrained. We use σn : Xn → Xn to denote
an element-wise extension of σ to sequences. A function f is renaming invariant for a given view
mapping and referent relation if for all semantics-preserving permutations σn, f([xi]) = f(σn([xi])).

4 Renamer Architecture
In this section we present the Renamer, a renaming invariant Transformer architecture.

Transformers background. A Transformer takes a length-n sequence of tokens [xi] as input, embeds
each individual token, then repeatedly performs self-attention on the resulting embedding sequence.
The sequence content embedding C [xi] ∈ Rn×d is computed token-wise as C [xi]

j = C([xi]j), where
C : X → Rd is an embedding table. Self attention is computed as softmax(M(QKT ))V where Q, K,
and V are linear projections of the token representations, and M : Rn×n → Rn×n is an attention mask
operator. The attention mask operator M , computed from [xi], is defined such that M(A)j,k = −∞
if [xi]j should not attend to [xi]k and M(A)j,k = Aj,k otherwise.

4.1 Renamer Architecture Modifications
Name-to-view anonymization. We anonymize the name of a token to the model by mapping each
token in the input sequence to an embedding that represents only its view. If all input tokens which share
the same view share the same representation when input to the network, then a sequence and its renamed
counterpart will share the same representation. This can be seen as ∀xj ∈ [xi]. C(xj) = C(σ(xj)) ⇒
C [xi] = Cσn([xi]). Thus the embeddings of the input sequence and the renamed input sequence are
identical, meaning that after name-to-view anonymization the Renamer is renaming invariant.

Referent binding. Name-to-view anonymization alone limits the class of functions the Transformer
can represent: all tokens with the same view share the same embedding, so the network can’t
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Table 1: MAPE on original test set

Model Tiny Mini Small

Vanilla 3.30% 1.13% 1.25%
Augmented 3.34% 2.25% 2.36%
Canonicalized 3.03% 0.96% 0.76%
Renamer 2.39% 0.85% 0.59%

Table 2: MAPE on test set with renamed registers

Model Tiny Mini Small

Vanilla 5.26% 2.76% 2.89%
Augmented 3.44% 2.55% 2.36%
Canonicalized 3.03% 0.96% 0.76%
Renamer 2.39% 0.85% 0.59%

differentiate which tokens in the input are coreferential and which are not. To allow this differentiation,
the first layer of the Renamer only applies self-attention between coreferential tokens. This breaks
symmetry between tokens that share the same view but that are not coreferential. We only intervene
on the first layer of the Transformer as once the view symmetry is broken, the Transformer’s
representational capacity is fully restored for future layers so no other interventions are needed.

Given an input [xi] and a referent relation R, we construct the referent attention mask operator
as Mr(A)j,k = Aj,k if [xi]j R [xi]k and Mr(A)j,k = −∞ otherwise, meaning we only compute
attention between coreferential tokens. The representation is then softmax(Mr(QKT ))V .

5 Evaluation on llvm-mca
We evaluate Renamer by learning a surrogate of llvm-mca, the CPU simulator discussed in Section 2.

5.1 Task
The task under study is to take an x86-64 basic block as input, and output a prediction of the timing
that llvm-mca would output for this basic block. We evaluate Renamer on the BHive dataset (Chen
et al., 2019), which is a collection of x86-64 basic blocks from a variety of real-world programs. We
remove the 8% of the dataset with instructions with implicit operands.

The views and referent relation for this task are as described in Section 2. The view for each register
is its bitwidth and register class. All other tokens have unique singleton views. The referent relation
holds between any two register tokens that share the same base register (i.e., that point to the same
data). All other tokens are only coreferential with themselves.

5.2 Models

We use the Tiny, Mini, and Small BERT architectures (Devlin et al., 2019). We compare Renamer
against three baselines: Vanilla Transformer is an unmodified BERT architecture. Augmented
Transformer is an unmodified BERT architecture trained on a semantics-preserving register renamed
version of the dataset. Canonicalized Transformer is an unmodified BERT architecture with a
pre-processing step that canonicalizes each basic block before feeding it into the model.

5.3 Results
Standard test set. Table 1 shows the error of each model across BERT sizes on the standard test set.
We find that across all model sizes, the Renamer model matches or outperforms the vanilla, augmented,
and canonicalized models on the original test set.

Renamed test set. We also evaluate the models on a register-renamed version of the test set to test out-
of-distribution generalization. Table 2 shows the error of each model across BERT sizes on the permuted
version of the test set. The performance of the vanilla model is significantly affected by permuting the
registers. In contrast to the vanilla model, Renamer is provably invariant to register perturbations.

6 Conclusion
Renaming invariance is an important property of a range of tasks, from x86 assembly throughput
prediction to symbolic differentiation. We formalize the concept of renaming invariance, and
present the Renamer, a renaming invariant Transformer architecture. We find that the Renamer
results in commensurate or lower in-distribution error than baseline models and is more robust to
out-of-distribution variable names than baseline models. Our work takes a key step towards the goal
of providing low-error models with provable guarantees for tasks with input invariances.
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Figure 2: The range of generated predictions for renamings of the basic block in Figure 1(a).

A Related Work
Anonymization and canonicalization. Anonymizing and the canonicalization of training data is
an area of much focus in fields ranging from ethical AI to privacy-preserving AI. In an effort to reduce
gender and region bias in gendered pronoun resolution Liu (2019) mask individual names by drawing
from a set of canonical names. Similarly, for debiasing and preserving privacy in clinical ML, de-
identification of data is a prevalent technique (Dernoncourt et al., 2016; Liu et al., 2017; Johnson et al.,
2020; Minot et al., 2022). Most work, however, is focused on the process of automatic de-identification
and not on the result of training on de-identified data. Minot et al. (2022) investigate the result of
training on a canonicalized version of medical records. While canonicalization and de-identification
reduce the bias of the model, they suffer from the fact that not every canonical representation of the
same entity is guaranteed to have the same representation, and that inputs which have more entities
than the number of canonical representations trained can’t be represented. Furthermore, training on
de-identified data is often associated with a degradation to network performance.

Transformer invariances. A wide variety of invariances and equivariances have been encoded
into Transformer architectures. Lee et al. (2019) propose Set Transformer, which is invariant to
permutations of the ordering of the input sequence. Fuchs et al. (2020) propose SE (3), which is
equivariant to 3D translations and rotations, and evaluate on a variety of domains ranging from n-body
simulations to point-cloud object classification. Su et al. (2021); Wennberg & Henter (2021) explore
translation invariance in the context of natural language tasks. While these works enforce invariances,
they all deal with spatial or positional invariances. To our knowledge, there is limited prior work on
encoding invariances regarding the content of individual tokens.

B Renaming Sensitivity Case Study

Figure 2 presents a case study of each model’s predictions on the basic block presented in Figure 1(a).
The figure on the left is a histogram and corresponding density plot of predictions on semantically
equivalent renamings of the basic block. To generate this plot, we uniformly sample 100,000 valid
semantics-preserving register permutations σ, apply the permutation to the original block, then evaluate
each model on the permuted block. The models under study are single trials of the best-performing
BERT-Tiny models. The ground-truth timing for this basic block as output by llvm-mca is 1.68 cycles.

The vanilla model generates a range of predictions for permutations for this block, ranging from 1.11
cycles to 4.86 cycles. The predictions generated by the vanilla model are multimodal, though there
are no clear indicators for which mode a given block will induce. The augmented model generates
a significantly smaller range of predictions – though there is some variation on the order of one
thousandth of a cycle, the predictions are essentially constant at 1.12 cycles. By construction, Renamer
generates constant predictions for this basic block of 1.72 cycles.
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C Training Details of llvm-mca

System. We evaluate using Pytorch-1.2.0 (Paszke et al., 2019), HuggingFace 4.17.0 (Wolf et al.,
2020). Training is performed using an NVIDIA Tesla-V100.

Evaluation methodology. Each reported metric is the mean and the standard error of that metric
across five trials with different random seeds. In each table of reported results, we use a Kruskal-Wallis
test to determine if there is a significant difference between the means of the results of the models
(with p = 0.05), and then a post-hoc Conover test to determine which models have the best error (again
with p = 0.05), which are then bolded. 2

Hyper-parameters. Across all models, we use the AdamW optimizer with a β1, β2 of 0.9 and 0.999
respectively.

We empirically determine the learning-rate, weight-decay, and dropout through a grid search over
the hyper-parameters, selecting the hyper-parameter configuration which has the lowest validation
error for the vanilla model. The hyper-parameters swept over are: learning-rate {3× 10−4, 1× 10−4,
5× 10−5, 1× 10−5}, weight-decay {0.0, 0.01}, and dropout {0.0, 0.1}.

Based on this sweep, the Tiny and Mini models use a learning rate of 3× 10−4 and the Small models
use 1× 10−4.

All models have a weight decay of 0.01, a dropout of 0, a batch size of 64, max sequence length of
128, and are trained for 500 epochs following Renda et al. (2021).

Objective. Following Chen et al. (2019) the loss and error metric are identical and are defined as
the mean absolute percentage error (MAPE): LMAPE =

∑
x,y∈D

|f(x)−y|
y .

D Evaluation on llvm-mca: Training Efficiency

In this section we evaluate the efficiency with which the vanilla, augmented, canonicalized, and
Renamer models achieve various test errors on the llvm-mca task.

The time to process an input is the same across all models as they all have the same number of
parameters, and Renamer only leverages components of the Transformer architecture (i.e. embedding
table, attention mask) which the vanilla, augmented, and canonicalized architectures also employ.
Since the time to train for an epoch is the same for all architectures, we directly compare the number
of epochs needed to achieve comparable test error.

Figure 3 plots efficiency curves for the various model sizes on the BHive dataset. Each line shows the
epochs required (on the y axis) to reach a given test error (on the x axis) for a given modeling approach.
A more efficient model requires fewer epochs to reach a given target test error (i.e., lower is better).

Across all model sizes, Renamer achieves the same performance with significantly fewer training steps
than the vanilla, augmented, and canonicalized models. This speedup is reflected in the gap between the
MAPE versus epochs of training curves for the vanilla, augmented, canonicalized, and Renamer models.

We evaluate the speedup quantitatively by comparing the minimum number of epochs required to
achieve the same best test error. Renamer reaches the best error of the vanilla model with 213, 123,
and 290 fewer epochs for the Tiny, Mini, and Small architectures respectively, which corresponds
to a relative decrease in steps to achieve the same performance of 42.77%, 24.75%, and 59.06%. As
compared to the augmented model, Renamer requires 214, 403, and 419 fewer epochs for the Tiny,
Mini, and Small variants respectively, which corresponds to a relative decrease in steps to achieve
the same performance of 42.89%, 81.25%, and 83.80%. Finally, Renamer achieves the same error
as the canonicalized model with 155 and 59 fewer epochs for the Tiny and Mini variants respectively,
which corresponds to a relative decrease in training steps of 31.00% and 11.82%.

2https://scikit-posthocs.readthedocs.io/en/latest/tutorial/#non-parametric-anova
-with-post-hoc-tests
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Figure 3: llvm-mca: Model efficiency on the original (unperturbed) test set. Each point on a curve
corresponds to the number of epochs needed to reach a given test error for the specified architecture.

Table 3: Symbolic Algebra: Error of different
model variants on the original test set.

Model size

Model BERT-Small

Vanilla 0.79% ±0.13%
Canoncalized 0.71% ±0.14%
Renamer 0.80% ±0.06%

Table 4: Symbolic Algebra: Error of different
model variants on the augmented test set.

Model size

Model BERT-Small

Vanilla 4.68% ±0.69%
Canoncalized 4.98% ±0.56%
Renamer 2.38% ±0.16%
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E Evaluation on Symbolic Algebra

We next evaluate Renamer on a symbolic algebra task, comparing against a suite of baselines.
We show that on this task, Renamer matches the in-distribution error, and is able to generalize to
out-of-distribution inputs better than a suite of baseline models.

E.1 Task

We evaluate Renamer on an invariant modification of Lample & Charton (2020)’s Backward dataset.
Each input in the dataset is composed of a pair of expressions and the corresponding label is whether
one expression is the partial derivative of the other with respect to the variable x. We present two
examples below:

(sin x ?
= cos x, true)

(mul a0 cos x ?
= add a0 x, false)

Tokens in the dataset include standard mathematical operators (add, sub, mul, pow, sin, cos, etc.),
coefficient variables (a0, a1, and a2), and input variables (x, y, and z).

Variable renaming invariance in Backward dataset. For this task, coefficient variables can be
renamed to any other coefficient variable, input variables other than x can be renamed to any other
input variable other than x. The variable x and operators cannot be renamed.

Thus, the view mapping maps: coefficient variables to the view coefficient, input variables other
than x, to the view input-nonx, the variable x to the view input-x, and operators to the view
operator.

We define two tokens to be coreferential if they are the same variable – that is, every token is only
coreferential with itself.

Dataset. We use the same dataset generation technique as Lample & Charton (2020)’s Backward
dataset, but randomly pair each expression with its derivative with probability 0.5, and a random other
expression from the dataset with probability 0.5. This turns the task into an invariant classification task,
rather than the equivariant generation task it is in Lample & Charton (2020). The generated modified
Backward dataset is composed of a training set of 300,000 examples, and validation and test set of
9128 and 9139 examples respectively.

E.2 Evaluation Methodology
Models. The details of the models used are the same as those defined in Section 5.2. However, for this
symbolic algebra task we only use the BERT-Small model size (the largest model evaluated in Section 5).

System. The system details and other evaluation methodology are the same as those in Appendix C.

Hyper-parameters. We use the same hyper-parameters as the those for BERT-Small reported in
Appendix C, with the exception of training for 50 epochs (rather than 500).

Objective. We train the model using the cross entropy loss, and report the classification error on
the test set.

E.3 Results

We again present results on the vanilla, canonicalized, and Renamer models on the original test set
and an extended version of the test set. We again define test error as the test error of the epoch with
the lowest validation error.

Standard test set. Table 4 presents the test errors of all models on the standard test set, achieving
between 0.71% and 0.80% error. We find that all models perform similarly well on the original test set:
the statistical test discussed in Appendix C does not distinguish between the errors from any model.

Extended test set. We also evaluate on a version of the test set extended with an additional coefficient
variable, labeled a3. This experiment tests the hypothesis that the Renamer generalizes better to unseen
variable names than all other models.
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While the performance of all models decreases on the extended test set, we find that on the extended
test set Renamer significantly outperforms all other models. The vanilla model achieves an error
of 4.68% on the extended test set while Renamer reaches an error of 2.38%, a 49.1% decrease in
error compared to the vanilla model. Similarly, the canonicalized model achieves an error of 4.98%,
meaning the Renamer has a 52.2% decrease in error compared to the canonicalized model.
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