
Ad-Rec: Advanced Feature Interactions to Address
Covariate-Shifts in Recommendation Networks

Muhammad Adnan⋆ Yassaman E. Maboud⋆ Divya Mahajan† Prashant J. Nair⋆

The University of British Columbia⋆ Georgia Institute of Technology†

{adnan,yassaman,prashantnair}@ece.ubc.ca divya.mahajan@gatech.edu

Abstract

Recommendation models enhance user experiences by utilizing input feature corre-
lations. However, deep learning-based models encounter challenges from changing
user behavior and item features, leading to data distribution shifts. Effective cross-
feature learning is crucial in addressing this. We introduce Ad-Rec, an advanced
network that leverages feature interaction techniques to tackle these issues. It uti-
lizes masked transformers to learn higher-order cross-features while mitigating data
distribution drift. Our approach improves model quality, accelerates convergence,
and reduces training time. We demonstrate scalability of Ad-Rec and its superior
model quality through extensive ablation studies.

1 Introduction

Recommendation models, essential for personalized recommendations in web services, have evolved
from traditional collaborative filtering to deep learning-based approaches like neural collaborative
filtering [Koren et al., 2009, He et al., 2017, Naumov et al., 2019, Zhao et al., 2019, Ishkhanov
et al., 2020]. However, deep learning models face challenges due to dynamic user behavior and
evolving item features, causing distribution shifts and performance degradation [Naumov et al., 2019,
Ishkhanov et al., 2020, Guo et al., 2017]. This paper aims to address these challenges.

Deep learning recommendation models include neural networks, embedding lookups, and feature
interactions. Feature interactions integrate latent representations from various inputs to generate
personalized recommendations. While non-sequential models rely on user activity, sequential and
session-based models consider historical interactions, to account for order and context.

Feature interaction is vital in recommendation tasks, enhancing both non-sequential and sequential
models with valuable insights [Naumov et al., 2019, Ishkhanov et al., 2020, Guo et al., 2017].
However, deep learning-based recommendation models face challenges due to covariate shifts.
Manually identifying cross-features becomes impractical with numerous features, hindering model
generalization. To address this, deep neural network (DNN) based feature interaction techniques have
emerged [Cheng et al., 2016, Guo et al., 2017, Lian et al., 2018, Shan et al., 2016, Song et al., 2019,
Chen et al., 2019, Li et al., 2019], enabling the extraction of higher-order features. Yet, including
irrelevant feature interactions can introduce noise and overfitting [Xiao et al., 2017, Zhu et al., 2021,
Khawar et al., 2020, Liu et al., 2020, Su et al., 2021]. Additionally, modeling all interactions in the
same space limits generality and pattern diversity.

Our paper introduces Ad-Rec, a masked transformer-based solution addressing covariate shifts,
removing irrelevant cross-features, and modeling diverse feature interactions. Ad-Rec incorporates
three key elements: LayerNorm for internal covariate shift mitigation, Multi-head Attention for
enhanced generalization, and Attention Masks for eliminating irrelevant cross-features. Ad-Rec

Machine Learning for Systems Workshop at 37th NeurIPS Conference, 2023, New Orleans, LA, USA.

Input Features

Q11 Q12 Q13

Q22 Q23

Q32 Q33

Q21

Q31

Q11 Q12 Q13

Q22 Q23

Q32 Q33

Q21

Q31

K11 K12 K13

K22 K23

K32 K33

K21

K31

K11 K12 K13

K22 K23

K32 K33

K21

K31

V11 V12 V13

V22 V23

V32 V33

V21

V31

V11 V12 V13

V22 V23

V32 V33

V21

V31

Q K V

Feed Forward Network

L ×

LayerNorm (Covariate Shift)

User Query

Item Query

Category
Query

Dense Inputs Sparse Inputs

MLP Embedding

Concat

Positional
Encoding

User Key

Item Key

Category
Key

User Value

Item Value

Category
Value

Attention HeadAttention Head

LayerNorm (Covariate Shift)

Higher Order
Cross Features

S123S123 S213S213 S312S312S123 S213 S312

MaskMask

(a) Masked Transformer-based Feature Interaction

C11 C12 C13

C22 C23

C32 C33

C21

C31

C11 C12 C13

C22 C23

C32 C33

C21

C31

Cross Features (f)

0.5 0.45 0.05

0.6 0.1

0.29 0.7

0.3

0.01

0.5 0.45 0.05

0.6 0.1

0.29 0.7

0.3

0.01

0.5 0.45 0.05

0.6 0.1

0.29 0.7

0.3

0.01

0.5 0.45 0.05

0.6 0.1

0.29 0.7

0.3

0.01

0.5 0.45 0.05

0.6 0.1

0.29 0.7

0.3

0.01

0.5 0.45 0.05

0.6 0.1

0.29 0.7

0.3

0.01

0.5 0.45 0.05

0.6 0.1

0.29 0.7

0.3

0.01

0.5 0.45 0.05

0.6 0.1

0.29 0.7

0.3

0.01

0.5 0.45 0.05

0.6 0.1

0.29 0.7

0.3

0.01

0.5 0.45 0.05

0.6 0.1

0.29 0.7

0.3

0.01

0.5 0.45 0.05

0.6 0.1

0.29 0.7

0.3

0.01

0.5 0.45 0.05

0.6 0.1

0.29 0.7

0.3

0.01

0.10.1

Mask (θ)
0.5 0.45 0.05

0.6 0.1

0.29 0.7

0.3

0.01

0.5 0.45 0.05

0.6 0.1

0.29 0.7

0.3

0.01

0.5 0.45 0.05

0.6 0.1

0.29 0.7

0.3

0.01

0.5 0.45 0.05

0.6 0.1

0.29 0.7

0.3

0.01

0.5 0.45 0.05

0.6 0.1

0.29 0.7

0.3

0.01

0.5 0.45 0.05

0.6 0.1

0.29 0.7

0.3

0.01

0.52 0.48 0

0.6 0.1

0.3 0.7

0.3

0

0.52 0.48 0

0.6 0.1

0.3 0.7

0.3

0

0.5 0.45 0.05

0.6 0.1

0.29 0.7

0.3

0.01

0.5 0.45 0.05

0.6 0.1

0.29 0.7

0.3

0.01

0.5 0.45 0.05

0.6 0.1

0.29 0.7

0.3

0.01

0.52 0.48 0

0.6 0.1

0.3 0.7

0.3

0

Attention
Heads (α)

Masked (α)
Attention Heads

VV

LayerNorm

(b) Masked Multi-Head Self-Attention

Figure 1: (a) The masked transformer-based feature interaction enables efficient higher-order cross-
features by using embedding tables and masking to eliminate irrelevant cross-features. LayerNorm
further enhances cross-feature quality. (b) Masked multi-head self-attention employs scalar masks
for diverse cross-feature patterns, aided by LayerNorm for faster convergence and improved learning.

effectively captures feature interactions at various orders amidst covariate shifts. In our experiments
across diverse non-sequential and sequential models, Ad-Rec achieves the target AUC in 58% training
iterations on average, outperforming the state-of-the-art DCN-v2 [Wang et al., 2021]. This results in
a training speedup of 1.4× across seven different models and four real-world datasets [CriteoLabs,
a,b, Kaggle, Alibaba].

2 Proposed Architecture: Ad-Rec

Ad-Rec uses a masked transformer-based approach (Figure 1a) to handle data drift, reduce noise
from irrelevant cross-features, and capture diverse patterns for higher-order interactions. It also
incorporates a Bottom MLP (MLPbot) for dense inputs xdense and performs embedding for sparse
inputs xsparse. The combined output forms the feature sequence z0 ∈ R(N+1)×D capturing joint
embeddings of N + 1 input features, each associated with a latent vector of size D.

This design empowers Ad-Rec to model feature interactions across multiple dimensions, addressing
the challenge of capturing diverse patterns for higher-order cross-features. In deep learning-based
recommender systems, the feature sequence z0 is either used directly or dot-product-based feature
interactions are computed as lower triangle(z0 × zT0) to extract second-order cross-features. Ad-
Rec relies on a masked multi-head attention block to create relevant cross-features while excluding
irrelevant ones. This mechanism is visually illustrated in Figure 1b. Each input feature zi has
query and key-value pairs learned in h subspaces, corresponding to the number of attention heads.
This allows for capturing diverse cross-features in multiple subspaces. This is achieved through
linear projection using matrices Wh

Q, Wh
K, and Wh

V ∈ RD×D′
, where D′ = D

h . Specifically, the
projected query, key, and value vectors for feature i in subspace h are denoted as zhqi = ziW

h
Q,

zhki = ziW
h
K, and zhvi = ziW

h
V, respectively. The correlation between feature i and feature j under

a specific subspace h is represented by the attention head αh
i,j (Equation 1), where ⟨·⟩ denotes the

inner product.

αh
i,j =

exp⟨zhqi · zhkj⟩∑N+1
m=1 exp⟨zhqi · zhkm⟩

(1)

2

Masking: Ad-Rec uses a masking technique to eliminate irrelevant feature interactions. Each head
h has a mask θ. The masked attention score ⟨zhqi · zhkj⟩ is calculated as follows (Equation 2):

⟨zhqi · zhkj⟩ =
{
⟨zhqi · zhkj⟩, ifαh

i,j > θh

−∞, otherwise
(2)

The recalculated attention head αh
i,j (Equation 3) is obtained by applying the softmax function to the

masked attention scores:

αh
i,j =

exp ⟨zhqi · zhkj⟩∑N+1
m=1 exp ⟨zhqi · zhkm⟩

(3)

Finally, the cross-feature of feature i in subspace h is updated by combining the relevant feature
attentions αh

i,j with the corresponding values zhv (Equation 4):

fhi =

N+1∑
m=1

αh
i,m · zhvm (4)

θh is a head-specific mask that is fixed before training. In this work, a geometric sequence of
decreasing values, such as 1

101 ,
1

102 , . . . ,
1

10h
, was used for the masks of multiple heads. This choice

eliminates irrelevant features. While a single mask could be used for all heads, different masks per
head allow for generalization. Appendix D.4 presents an ablation study on different mask values.

LayerNorm: Ad-Rec utilizes Layer Normalization (LayerNorm) to normalize the output of the
masked attention layer and feedforward network, ensuring stable and efficient training.

LayerNorm (LN), when applied to fhi of the masked attention layer, is defined using Equation 5.

fhi = LN(fhi) =
fhi − µh

i√
σ2
i + ϵ

⊙ γh + βh (5)

Here, µh
i and σ2

i are the mean and variance of fhi across feature dimensions, respectively. The ⊙
operator represents element-wise multiplication. The learnable parameters γh and βh scale and shift
the normalized values. The term ϵ ensures numerical stability.

LayerNorm normalizes the output of the masked attention layer, fhi , to have zero mean and unit
variance across feature dimensions. This mitigates covariate shifts and provides a stable distribution
for subsequent layers. The scale and shift parameters, γh and βh, enable the model to capture
appropriate representations for the recommendation task.

LayerNorm also has a similar effect on the output of the feedforward network. By reducing reliance
on the scale and distribution of the training dataset, it facilitates faster convergence, offers modest
regularization, and improves the efficiency of parameter updates in the recommendation model.

Ad-Rec employs masked multi-head attention (MSA) to learn explicit higher-order cross-features in
multiple subspaces, and the feedforward network (FFN) handles implicit interactions. By stacking
multiple Ad-Rec layers, up to L (Equations 6 and 7), higher-order interactions can be captured more
effectively (see Appendix D.6.1). It also improves performance for larger input feature sequences.

z
′

ℓ = Masked MSA(LN(zℓ−1)) + zℓ−1, ℓ = 1, . . . ,L (6)

zℓ = FFN(LN(z
′

ℓ)) + zℓ, ℓ = 1, . . . ,L (7)

The last layer’s output is concatenated with processed dense inputs, resulting in z (Equation 8).

z = [ydense; zℓ] (8)

The final click-through rate (CTR) is obtained by applying the top MLP (MLPtop) to z (Equation 9).
Thus, the problem is modeled as binary classification using binary cross-entropy (BCE) loss to predict
whether a user will click the target item.

CTR = MLPtop(z) (9)

3

1k 200k 400k 600k
Training Iterations

0.75

0.76

0.77

0.78

0.79

0.80

Ar
ea

 U
nd

er
 C

ur
ve

 (A
UC

)

AUC Target = 0.80

Criteo Kaggle (RM1)

Ad-Rec
DLRM
DeepFM
AutoInt
DCN-v2

0 25k 75k 125k 175k
Training Iterations

0.75

0.76

0.77

0.78

0.79

AUC Target = 0.792

Criteo Terabyte (RM2)

Ad-Rec
DLRM
DeepFM
AutoInt
DCN-v2

0 50k 150k 250k 350k
Training Iterations

0.73

0.74

0.75

0.76

0.77
AUC Target = 0.77

Avazu (RM3)

Ad-Rec
DLRM
DeepFM
AutoInt
DCN-v2

0 20k 40k 60k 80k
Training Iterations

0.88

0.89

0.90

0.91

0.92

0.93

0.94 AUC Target = 0.934
Taobao Alibaba (RM4)

Ad-Rec
DLRM
DeepFM
AutoInt
DCN-v2

Figure 2: Comparison of Ad-Rec’s convergence with baseline feature interaction techniques. The
dotted vertical line represents the training iteration where Ad-Rec reaches the target AUC and stops
training. On average, Ad-Rec achieves target AUC in 50%, 42%, 45%, and 58% lower iterations, as
compared to the DLRM, DeepFM, AutoInt, and DCN-v2 baselines.

3 Experiments and Results

We train recommendation models with varying sizes to represent different classes of at-scale mod-
els [Gupta et al., 2020, Adnan et al., 2022a,b]. Their architecture is presented in Table 1 [Wu et al.,
2019, Zhao et al., 2019].

Table 1: Recommendation Models Architecture and Ad-Rec Configuration (# layers = 1)

Model Dataset
Features Parameters Neural Network Configuration Ad-Rec Configuration Sequential Layer

Dense Sparse Dense Sparse Sparse Bottom Top Num Hidden FFN Type Layers/
Dim MLP MLP Heads Size Config. Heads

RM1 Criteo Kaggle 13 26 287.5k 33.8M 16 13-512-256-64-16 512-256-1 2 16 128
N/A N/ARM2 Criteo Terabyte 13 26 549.1k 266M 64 13-512-256-64 512-512-256-1 8 64 512

RM3 Avazu 1 21 281.4k 9.3M 16 1-512-256-64-16 512-256-1 2 16 128
RM4

Taobao Alibaba 1 3 7.3k 5.1M 16 1-16 22-15-15 2 16 128

TSL 1
RM5 MHA 8
RM6 RNN 5
RM7 Transformer 1

Convergence Analysis: We compare the convergence of Ad-Rec with the baseline models (RM1,
RM2, RM3, and RM4) by setting a target AUC for each model based on prior work Naumov et al.
[2019], Ishkhanov et al. [2020]. The baseline models and Ad-Rec are trained with early stopping to
achieve the target AUC. Figure 2 demonstrates that Ad-Rec achieves the target AUC in fewer training
iterations, thanks to its masked attention-based feature interaction. On average, Ad-Rec achieves
the target AUC in 50%, 42%, 45%, and 58% iterations, surpassing the DLRM, DeepFM, AutoInt,
and DCN-v2 baselines. For a comprehensive analysis of Ad-Rec’s hyperparameters, please refer to
Appendix D.6.

RM1 RM2 RM3 RM4 Average

1000

2000

3000

4000

Tr
ai

ni
ng

 T
im

e
(s

)

Ad-Rec DCN-v2 DLRM DeepFM AutoInt

Figure 3: Absolute training time over multiple runs.
Ad-Rec converges to target AUC in less time, which
translates to a speedup of 1.5×, 2×, 2.1× and 1.4×
over DLRM, DeepFM, AutoInt, and DCN-v2 baselines.

Performance Comparison: Ad-Rec’s
transformer-based feature interaction is
computationally expensive compared to
baselines. The wall clock time is mea-
sured to compare the runtime of training
the recommendation model. As Figure 3
shows, as expected, a single training itera-
tion of Ad-Rec-based training takes more
time. Still, it converges in less number of
training iterations that provides a speedup
of 1.5×, 2×, 2.1× and 1.4× over DLRM,
DeepFM, AutoInt, and DCN-v2 baselines.

4 Conclusion

In this study, we tackled the challenges of covariate shifts and sought to enhance cross-feature
learning while accounting for data drift. Our findings underscored the significance of normalizing
explicit cross-features and eliminating noisy ones to enhance recommendations in unfamiliar data
distributions. To address these challenges, we introduced Ad-Rec, a masked-attention-based feature
interaction technique. Through rigorous experimentation, Ad-Rec consistently outperformed state-of-
the-art baselines, exhibiting superior quality and convergence speed. It achieved higher AUC scores
and accelerated the training process, delivering compelling results across commercial models and
publicly available datasets.

4

References
Muhammad Adnan, Yassaman Ebrahimzadeh Maboud, Divya Mahajan, and Prashant J. Nair. Ac-

celerating recommendation system training by leveraging popular choices. Proc. VLDB En-
dow., 15(1):127–140, jan 2022a. ISSN 2150-8097. doi: 10.14778/3485450.3485462. URL
https://doi.org/10.14778/3485450.3485462.

Muhammad Adnan, Yassaman Ebrahimzadeh Maboud, Divya Mahajan, and Prashant J Nair.
Heterogeneous acceleration pipeline for recommendation system training. arXiv preprint
arXiv:2204.05436, 2022b.

Alibaba. User behavior data from taobao for recommendation. https://tianchi.aliyun.com/
dataset/dataDetail?dataId=649&userId=1.

Newsha Ardalani, Carole-Jean Wu, Zeliang Chen, Bhargav Bhushanam, and Adnan Aziz. Under-
standing scaling laws for recommendation models, 2022. URL https://arxiv.org/abs/2208.
08489.

Léon Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the trade, pages
421–436. Springer, 2012.

Qiwei Chen, Huan Zhao, Wei Li, Pipei Huang, and Wenwu Ou. Behavior sequence transformer for
e-commerce recommendation in alibaba. In Proceedings of the 1st International Workshop on Deep
Learning Practice for High-Dimensional Sparse Data, DLP-KDD ’19, New York, NY, USA, 2019.
Association for Computing Machinery. ISBN 9781450367837. doi: 10.1145/3326937.3341261.
URL https://doi.org/10.1145/3326937.3341261.

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye,
Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan Hong,
Vihan Jain, Xiaobing Liu, and Hemal Shah. Wide and deep learning for recommender systems. In
Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, DLRS 2016, page
7–10, New York, NY, USA, 2016. Association for Computing Machinery. ISBN 9781450347952.
doi: 10.1145/2988450.2988454. URL https://doi.org/10.1145/2988450.2988454.

CriteoLabs. Criteo display ad challenge, a. https://www.kaggle.com/c/
criteo-display-ad-challenge.

CriteoLabs. Terabyte click logs, b. https://labs.criteo.com/2013/12/
download-terabyte-click-logs.

Gabriel de Souza Pereira Moreira, Sara Rabhi, Jeong Min Lee, Ronay Ak, and Even Oldridge.
Transformers4rec: Bridging the gap between nlp and sequential / session-based recommendation.
In Proceedings of the 15th ACM Conference on Recommender Systems, RecSys ’21, page 143–153,
New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450384582. doi:
10.1145/3460231.3474255. URL https://doi.org/10.1145/3460231.3474255.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. Deepfm: a factorization-
machine based neural network for ctr prediction. arXiv preprint arXiv:1703.04247, 2017.

U. Gupta, C. Wu, X. Wang, M. Naumov, B. Reagen, D. Brooks, B. Cottel, K. Hazelwood, M. Hemp-
stead, B. Jia, H. S. Lee, A. Malevich, D. Mudigere, M. Smelyanskiy, L. Xiong, and X. Zhang. The
architectural implications of facebook’s dnn-based personalized recommendation. In 2020 IEEE
International Symposium on High Performance Computer Architecture (HPCA), pages 488–501,
2020. doi: 10.1109/HPCA47549.2020.00047.

Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural
collaborative filtering. In Proceedings of the 26th International Conference on World Wide Web,
WWW ’17, page 173–182, Republic and Canton of Geneva, CHE, 2017. International World Wide
Web Conferences Steering Committee. ISBN 9781450349130. doi: 10.1145/3038912.3052569.
URL https://doi.org/10.1145/3038912.3052569.

5

https://doi.org/10.14778/3485450.3485462
https://tianchi.aliyun.com/dataset/dataDetail?dataId=649&userId=1
https://tianchi.aliyun.com/dataset/dataDetail?dataId=649&userId=1
https://arxiv.org/abs/2208.08489
https://arxiv.org/abs/2208.08489
https://doi.org/10.1145/3326937.3341261
https://doi.org/10.1145/2988450.2988454
https://www.kaggle.com/c/criteo-display-ad-challenge
https://www.kaggle.com/c/criteo-display-ad-challenge
https://labs.criteo.com/2013/12/download-terabyte-click-logs
https://labs.criteo.com/2013/12/download-terabyte-click-logs
https://doi.org/10.1145/3460231.3474255
https://doi.org/10.1145/3038912.3052569

Balázs Hidasi and Domonkos Tikk. Fast als-based tensor factorization for context-aware recommen-
dation from implicit feedback. In Proceedings of the 2012th European Conference on Machine
Learning and Knowledge Discovery in Databases - Volume Part II, ECMLPKDD’12, page 67–82,
Berlin, Heidelberg, 2012. Springer-Verlag. ISBN 9783642334856.

Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based
recommendations with recurrent neural networks. arXiv preprint arXiv:1511.06939, 2015.

T. Ishkhanov, M. Naumov, X. Chen, Y. Zhu, Y. Zhong, A. G. Azzolini, C. Sun, F. Jiang, A. Malevich,
and L. Xiong. Time-based sequence model for personalization and recommendation systems.
CoRR, abs/2008.11922, 2020. URL https://arxiv.org/abs/2008.11922.

Kaggle. Avazu mobile ads ctr. https://www.kaggle.com/c/avazu-ctr-prediction.

Farhan Khawar, Xu Hang, Ruiming Tang, Bin Liu, Zhenguo Li, and Xiuqiang He. Autofeature:
Searching for feature interactions and their architectures for click-through rate prediction. In
Proceedings of the 29th ACM International Conference on Information & Knowledge Management,
pages 625–634, 2020.

Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems.
Computer, 42(8):30–37, 2009. doi: 10.1109/MC.2009.263.

Zekun Li, Zeyu Cui, Shu Wu, Xiaoyu Zhang, and Liang Wang. Fi-gnn: Modeling feature interactions
via graph neural networks for ctr prediction. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Management, pages 539–548, 2019.

Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and Guangzhong Sun.
Xdeepfm: Combining explicit and implicit feature interactions for recommender systems. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’18, page 1754–1763, New York, NY, USA, 2018. Association for Computing
Machinery. ISBN 9781450355520. doi: 10.1145/3219819.3220023. URL https://doi.org/
10.1145/3219819.3220023.

Bin Liu, Chenxu Zhu, Guilin Li, Weinan Zhang, Jincai Lai, Ruiming Tang, Xiuqiang He, Zhenguo
Li, and Yong Yu. Autofis: Automatic feature interaction selection in factorization models for
click-through rate prediction. In Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pages 2636–2645, 2020.

MLCommons. Mlperf benchmarks. https://mlcommons.org/en/training-normal-10/.

Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang, Narayanan Sun-
daraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu, Alisson G. Azzolini,
Dmytro Dzhulgakov, Andrey Mallevich, Ilia Cherniavskii, Yinghai Lu, Raghuraman Krish-
namoorthi, Ansha Yu, Volodymyr Kondratenko, Stephanie Pereira, Xianjie Chen, Wenlin Chen,
Vijay Rao, Bill Jia, Liang Xiong, and Misha Smelyanskiy. Deep learning recommendation
model for personalization and recommendation systems. CoRR, abs/1906.00091, 2019. URL
https://arxiv.org/abs/1906.00091.

Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie. Autorec: Autoencoders
meet collaborative filtering. In Proceedings of the 24th International Conference on World
Wide Web, WWW ’15 Companion, page 111–112, New York, NY, USA, 2015. Association
for Computing Machinery. ISBN 9781450334730. doi: 10.1145/2740908.2742726. URL
https://doi.org/10.1145/2740908.2742726.

Ying Shan, T. Ryan Hoens, Jian Jiao, Haijing Wang, Dong Yu, and JC Mao. Deep crossing:
Web-scale modeling without manually crafted combinatorial features. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’16, page 255–262, New York, NY, USA, 2016. Association for Computing Machinery. ISBN
9781450342322. doi: 10.1145/2939672.2939704. URL https://doi.org/10.1145/2939672.
2939704.

6

https://arxiv.org/abs/2008.11922
https://www.kaggle.com/c/avazu-ctr-prediction
https://doi.org/10.1145/3219819.3220023
https://doi.org/10.1145/3219819.3220023
https://mlcommons.org/en/training-normal-10/
https://arxiv.org/abs/1906.00091
https://doi.org/10.1145/2740908.2742726
https://doi.org/10.1145/2939672.2939704
https://doi.org/10.1145/2939672.2939704

Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang, and Jian Tang.
Autoint: Automatic feature interaction learning via self-attentive neural networks. In Proceedings
of the 28th ACM International Conference on Information and Knowledge Management, pages
1161–1170, 2019.

Yixin Su, Rui Zhang, Sarah Erfani, and Zhenghua Xu. Detecting beneficial feature interactions for
recommender systems. In Proceedings of the AAAI conference on artificial intelligence, volume 35,
pages 4357–4365, 2021.

Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec: Sequential
recommendation with bidirectional encoder representations from transformer. In Proceedings
of the 28th ACM international conference on information and knowledge management, pages
1441–1450, 2019.

Ruoxi Wang, Rakesh Shivanna, Derek Cheng, Sagar Jain, Dong Lin, Lichan Hong, and Ed Chi. Dcn
v2: Improved deep & cross network and practical lessons for web-scale learning to rank systems.
In Proceedings of the web conference 2021, pages 1785–1797, 2021.

Markus Weimer, Alexandros Karatzoglou, Quoc Le, and Alex Smola. Cofi rank - maximum
margin matrix factorization for collaborative ranking. In J. Platt, D. Koller, Y. Singer, and
S. Roweis, editors, Advances in Neural Information Processing Systems, volume 20. Cur-
ran Associates, Inc., 2007. URL https://proceedings.neurips.cc/paper/2007/file/
f76a89f0cb91bc419542ce9fa43902dc-Paper.pdf.

C. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan, K. Hazelwood, E. Isaac, Y. Jia,
B. Jia, T. Leyvand, H. Lu, Y. Lu, L. Qiao, B. Reagen, J. Spisak, F. Sun, A. Tulloch, P. Vajda,
X. Wang, Y. Wang, B. Wasti, Y. Wu, R. Xian, S. Yoo, and P. Zhang. Machine learning at facebook:
Understanding inference at the edge. In 2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 331–344, Feb 2019. doi: 10.1109/HPCA.2019.00048.

Jun Xiao, Hao Ye, Xiangnan He, Hanwang Zhang, Fei Wu, and Tat-Seng Chua. Attentional
factorization machines: Learning the weight of feature interactions via attention networks. arXiv
preprint arXiv:1708.04617, 2017.

Zhe Zhao, Lichan Hong, Li Wei, Jilin Chen, Aniruddh Nath, Shawn Andrews, Aditee Kumthekar,
Maheswaran Sathiamoorthy, Xinyang Yi, and Ed Chi. Recommending what video to watch next: A
multitask ranking system. In Proceedings of the 13th ACM Conference on Recommender Systems,
RecSys ’19, page 43–51, New York, NY, USA, 2019. Association for Computing Machinery. ISBN
9781450362436. doi: 10.1145/3298689.3346997. URL https://doi.org/10.1145/3298689.
3346997.

Chenxu Zhu, Bo Chen, Weinan Zhang, Jincai Lai, Ruiming Tang, Xiuqiang He, Zhenguo Li, and
Yong Yu. Aim: Automatic interaction machine for click-through rate prediction. IEEE Transactions
on Knowledge and Data Engineering, 2021.

7

https://proceedings.neurips.cc/paper/2007/file/f76a89f0cb91bc419542ce9fa43902dc-Paper.pdf
https://proceedings.neurips.cc/paper/2007/file/f76a89f0cb91bc419542ce9fa43902dc-Paper.pdf
https://doi.org/10.1145/3298689.3346997
https://doi.org/10.1145/3298689.3346997

A Appendix

A.1 High-Level Overview: Deep Learning-based Recommendations with Ad-Rec

Figure 4a illustrates the model architecture of Ad-Rec, a non-sequential deep learning-based recom-
mendation model inspired by DLRM [Naumov et al., 2019]. The model takes two types of inputs:
dense and sparse features. Dense inputs consist of continuous features such as the user’s age or the
time of day. Sparse inputs include categorical features like the user’s location or liked videos.

Multi-layer perceptrons (MLPs) are employed to process the dense inputs, while large embedding
tables handle the sparse inputs, each representing a specific categorical feature. These embeddings,
along with the dense features, are then passed through a feature interaction layer, enabling the
generation of cross-features that capture complex relationships between different features. Next, the
cross-features and dense features are fed into an MLP layer, which predicts the click-through rate
(CTR). The CTR indicates the likelihood of a user clicking on an item, serving as a key metric for
recommendation models. By leveraging the power of deep learning and effective feature interaction,
Ad-Rec enhances the accuracy and performance of recommendation systems.

Figure 4b provides an overview of sequential recommendation models within the context of Ad-Rec.
These models explicitly incorporate the temporal aspect of user-item interactions through a set of
events denoted as ε. Each event ε represents a user u interacting with an item i at a specific time t.

Feature Interaction

Embedding
Lookup

Embedding
Lookup

Dense
Features

Sparse
Features

Sparse
Features

Bottom
MLP

Top
MLP

ydense

y1
sparse yN

sparse

CTRCTR
Pairwise Dot Product

Masked Transformers

DLRM

Ad-Rec

Feature Interaction

Inner ProductDeepFM

Deep and Cross NetworkDCN
Multi-Head Self-AttentionAutoInt

(a) Non-Sequential Recommendation Model

User’s Activity (εt) Ɐ t = 1...Ⴀ

z1 zႠ

MLP

Sequential Layer

CTR

Non-Sequential
Recommendation
Model (Figure 1a)

Non-Sequential
Recommendation
Model (Figure 1a)

TSL
(Ishkhanov et al. 2020)

RNN
(Hidasi et al. 2015)

MHA
(Zhang et al. 2019)

Transformers
(de Souza Pereira et al. 2021)

TSL
(Ishkhanov et al. 2020)

RNN
(Hidasi et al. 2015)

MHA
(Zhang et al. 2019)

Transformers
(de Souza Pereira et al. 2021)

(b) Sequential Recommendation Model

Figure 4: (a) Non-Sequential Deep Learning based Recommendation Model with multiple feature
interaction techniques. (b) Sequential recommendation model with multiple sequential layers.

User behaviour is captured as a sequence of events ε spanning multiple time steps, denoted as
t = {1, . . . , τ − 1}. The sequential recommendation model is then trained to predict the next event at
time step τ , based on the previous event sequence. This shift towards sequential modelling transforms
the organization of the training dataset, as it now represents a sequence of user activities rather than
a simple collection of user interactions with features, as seen in non-sequential recommendation
models. By incorporating temporal dynamics, Ad-Rec enables more accurate and personalized
recommendations in dynamic user environments.

A.2 Application to Sequential Recommendation Models

For sequential recommendation models, we apply Ad-Rec by generating an embedding vector zt for
each event εt using the non-sequential recommendation model. Here, εt represents the event at time
step t, such as a user click or purchase. These embeddings capture event characteristics, including
explicit timing as a dense feature. The width of the last layer in the non-sequential model is adjusted
to match the user-interaction vector’s width, which is then fed into the sequential layer. This produces

8

a sequence of embedding vectors Z (Equation 11).

zt = AdRec(εt) t = 1, . . . , τ (10)
Z = [z1, z2, . . . , zτ−1] (11)
c = SequentialLayer(zτ , Z) (12)

Ad-Rec generates an embedding zt for each event, capturing relevant information about the user-item
interaction. These embeddings are used as input to the sequential layer, which considers the context
and temporal order of earlier events to predict the next event ετ at time step τ (Equation 12). By
leveraging the Ad-Rec embeddings, the model effectively captures user-item interactions within the
sequence, leading to improved recommendation performance.

A.3 Multihead Self-Attention

The standard self-attention mechanism, commonly used in Natural Language Processing (NLP) tasks,
forms a fundamental building block. Given an input sequence z ∈ RN×D, it computes a weighted
sum over all values v in the sequence. The attention weights Aij reflect the pairwise similarity
between query qi and key vj representations of the input tokens.

q,k,v = zUqkv Uqkv ∈ RD×3D (13)

A = softmax(
qkT

√
D

) A ∈ RN×N (14)

SA = Av (15)

Multihead self-attention (MSA) extends the self-attention mechanism by performing H parallel
self-attention operations, where each self-attention is referred to as a “head”. The parameter H is a
hyper-parameter that determines the number of heads. To ensure constant computation and parameter
count with respect to H , the dimension D (Eq. 16) is set to D

H .

MSA(z) = [SA1(z) ; SA2(z) ; . . . ; SAn(z)]Umsa Umsa ∈ RHD×D (16)

A.4 Evaluation Setup

We compare Ad-Rec against four state-of-the-art techniques. DLRM [Naumov et al., 2019] and
DeepFM [Guo et al., 2017] are 2nd order feature interaction while AutoInt [Song et al., 2019] and
DCN-v2 [Wang et al., 2021] are higher-order feature interaction techniques.

We investigate Ad-Rec’s performance using various real-world datasets for both non-sequential and
sequential recommendation tasks. For non-sequential tasks, we employ three datasets: Criteo
Kaggle [CriteoLabs, a], Criteo Terabyte [CriteoLabs, b], and Avazu [Kaggle]. For sequential
recommendation models, we turn to the Taobao User Behavior dataset [Alibaba].

Training Details: We used PyTorch-1.9 for our experiments, building on DLRM [Naumov et al.,
2019] for non-sequential recommendations and TBSM [Ishkhanov et al., 2020] for sequential ones.
All models were implemented identically except for the feature interaction component.

Non-sequential models (RM1, RM2, and RM3) used SGD [Bottou, 2012] with batch sizes of 128
(RM1 and RM3) and 1024 (RM2). Learning rates were 0.01 (RM1), 0.1 (RM2), and 0.2 (RM3).
Sequential models (RM4, RM5, RM6, and RM7) employed Adagrad [Duchi et al., 2011] with a
learning rate of 0.05 and a batch size of 128. We conducted five independent runs and reported mean
and standard deviation results.

Evaluation Metrics: For evaluating the performance of our recommendation models, we use the
Area Under Curve (AUC) metric, as established by the MLPerf community [MLCommons, Cheng
et al., 2016, Guo et al., 2017, Li et al., 2019]. We also track testing accuracy and BCE loss.

9

B Related Work

Enhanced Models: Recommendation models, crucial for personalized experiences, often face
limitations in capturing complex feature interactions using traditional methods like collaborative
filtering (CF) and matrix factorization (MF) [He et al., 2017, Koren et al., 2009, Weimer et al., 2007,
Hidasi and Tikk, 2012]. Deep learning models, including MLP, neural networks, autoencoders, and
GRU, improve feature interaction modeling [Cheng et al., 2016, Zhao et al., 2019, Naumov et al.,
2019, Sedhain et al., 2015, Hidasi et al., 2015]. While sequential and session-based models address
temporal aspects [Ishkhanov et al., 2020, Chen et al., 2019, Sun et al., 2019, de Souza Pereira Moreira
et al., 2021], challenges in capturing intricate feature relationships remain.

Learning Feature Interactions: Recommendation models have evolved to better capture feature
interactions, with deep learning methods such as MLP, neural networks, autoencoders, and GRU
[Cheng et al., 2016, Zhao et al., 2019, Naumov et al., 2019, Sedhain et al., 2015, Hidasi et al., 2015].
However, existing approaches primarily focus on lower-order interactions, struggling to capture
higher-order feature interactions. Traditional methods like CF and MF [He et al., 2017, Koren et al.,
2009, Weimer et al., 2007, Hidasi and Tikk, 2012] also have limitations in this regard.

Eliminating Useless Features: Existing methods in recommendation systems aim to enhance feature
interaction modeling. AFM differentiates between feature interactions but fails to eliminate cross-
features [Xiao et al., 2017]. AIM and AutoFIS use selection gating to remove irrelevant interactions
[Liu et al., 2020], and AutoFeature identifies essential interactions with NAS-based techniques
[Khawar et al., 2020]. These methods often address specific aspects and isn’t comprehensive.

C Ad-Rec: Visual Intuition

To analyze the feature interaction of DLRM and Ad-Rec, we randomly sampled a test input from the
real-world Taobao user behaviour dataset [Alibaba]. This input consists of sequential user activity
with a length of 21, a timestamp as a dense feature, and sparse features for user, item, and category.
Notably, the ground truth of the sampled input indicates that it is a negative sample.

(1
,2

)
(1

,3
)

(2
,3

)
(1

,4
)

(2
,4

)
(3

,4
)

Feature Interaction Pairs

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Se
qu

en
tia

l I
nt

er
ac

tio
ns

 (t
)

DLRM
(1

,2
)

(1
,3

)
(2

,3
)

(1
,4

)
(2

,4
)

(3
,4

)

Feature Interaction Pairs

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Ad-Rec

0.1

0.2

0.3

0.4

0.5

C
os

in
e

Si
m

ila
ri

ty

Figure 5: Cosine similarity of feature interaction in the real-world
Taobao dataset: one dense and three sparse features for a single
user.

Figure 5 presents the cosine sim-
ilarity heat map, comparing the
feature interaction of DLRM and
Ad-Rec. In DLRM, the feature
interaction is based on dot prod-
uct calculations, while Ad-Rec
employs masked attention. The
features involved in the interac-
tion include the user’s activity
timestamp (feature 1), user ID
(feature 2), item ID (feature 3),
and item category (feature 4).

Examining the sequential inter-
action at timestamp t = 2 in
Figure 5, we observe contrast-
ing behaviour between DLRM
and Ad-Rec. We observe that
DLRM’s dot product-based fea-
ture interaction provides close
similarity across all pairs. Con-
trary to this, Ad-Rec’s masked
attention-based feature interac-
tion considers Query (Q) and
Key (K) projections. Applying a
mask with 1

103 value reveals no
features being masked (note that
the mappings of attention heads
can be found in Appendix D.7).

10

Figure 6: Principal Component Analysis (PCA) to represent high-dimensional sequential user activity
in 2-dimensional space. This compares DLRM and Ad-Rec generated embedding vectors for the
RM4 model. Note that the next item (denoted by ⋆) is a negative sample. Thus, a large Euclidean
distances between the next item and sequential interaction clusters indicate a higher quality model.

The highest weight is assigned to feature pair (2, 3), indicating a strong correlation between user ID
and item ID. In contrast, other pairs such as (1, 2), (1, 4), (2, 4), and (3, 4) show weak alignment,
implying a primarily negative sample. Unlike DLRM’s dot product-based feature interaction, Ad-Rec
captures this information.

C.1 Sequential Embedding Vectors’ Feature Interaction

The quality of sequence embedding vectors (Z) plays a crucial role in the prediction quality of
sequential recommendation. To better understand the patterns within these vectors, we utilize
Principal Component Analysis (PCA) to map the embedding vectors (with a width of 16) into a
2-dimensional space. In this space, similar interactions are grouped closely together, while dissimilar
interactions are distanced apart. The proximity of the next item’s placement to historical item
interactions indicates a higher probability of the user clicking on that item. Figure 6 depicts the PCA
plot for sequential embedding vectors generated by both feature interaction methods, as explained
in Section C. Each method generates 21 embedding vectors, representing the user’s historical
interactions, with the next item shown by a star symbol (⋆).

In the plot, closely related interactions form clusters, and the relative Euclidean distance between
clusters signifies their correlation. For DLRM-based feature interaction, we observe that all sequential
interactions are clustered together, resulting in four closely located clusters in the Euclidean space.
On the other hand, Ad-Rec-based feature interaction generates more distinct clusters based on the
type of user interactions. The sequential layer predicts the likelihood of the user clicking on the next
item vector based on the placement of the next item embedding in relation to the user’s sequential
embedding vectors.

Interestingly, we notice that Ad-Rec-based feature interaction generates an embedding vector for
the next item that is situated far away from previous user interactions, indicating that the next item
does not have a strong connection to the user’s sequential interactions. Conversely, for DLRM-based
feature interaction, the next item is located within the cluster, suggesting a close relationship with
most previous interactions. The placement of Ad-Rec-generated sequence vectors and subsequent
item vectors aligns with the ground truth, as the input represents a negative sample.

D Ablation Studies

To understand the effect of different components of Ad-Rec on the overall quality of recommendation
models, we conducted multiple ablation studies.

11

D.1 Positional Embedding

While positional embeddings are commonly used in language tasks to preserve word order, they
are not utilized in Ad-Rec for recommender systems. Despite this, we evaluated 1-D positional
embeddings to encode spatial information of features.

In our sensitivity study, we explored different ways of encoding the spatial information of features
using positional embeddings inspired by NLP models. We considered two cases:

• No positional information: This case involved using only feature embeddings and providing
them as-is to the transformer encoder. This approach was the default across all other
experiments in the paper.

• 1-dimensional positional embedding: We treated the input features as a sequence of
features, assigning each sparse feature and dense feature vector a position based on the
embedding table position for language models. We added position embeddings to the feature
inputs just before feeding them to the Transformer encoder. The dimension of the position
embedding was kept similar to the sparse feature dimension, and the number of position
embeddings was equal to the number of features.

Equation 17 demonstrates the incorporation of positional embeddings into the input features. The
feature inputs and their respective embeddings were summed with the position embeddings.

z0 = [MLP(xdense);x
1
sparseE

1; ; xN
sparseE

N] +Epos E ∈ RM×D, Epos ∈ R(N+1)×D

(17)

Table 2 presents the evaluation results comparing the models with and without positional embeddings.
Our hypothesis was that since the Multi-Head Attention block exhibits permutation-equivariance,
the position of a feature in the input sequence does not encode useful information. Therefore, the
models that directly input the raw features to the masked transformer encoder, facilitating higher-order
feature interaction, performed the best. Incorporating 1-dimensional positional embeddings led to a
degradation in model performance, even worse than the DLRM baseline. Notably, in certain models
like RM3, incorporating 1-dimensional positional embeddings prevented the model from converging.

Table 2: Results of ablation study on positional embeddings with single epoch training.
Model AUC Test Accuracy (%) BCE Loss

No Pos. Emb. 1-D Pos. Emb. No Pos. Emb. 1-D Pos. Emb. No Pos. Emb. 1-D Pos. Emb.
RM1 0.801 0.796 78.70 78.34 0.455 0.461
RM2 0.790 0.786 81.22 80.94 0.423 0.426
RM3 0.775 Not Converge 83.76 Not Converge 0.382 Not Converge

Figure 7 illustrates that recommendation models achieve convergence in significantly fewer training
iterations when no spatial information is added to the input feature embeddings. Even the model with
1-dimensional positional embedding requires more training iterations than the baseline DLRM with
second-order cross-features to reach the target AUC.

1k 100k 200k 300k 400k 500k
Training Iterations

0.72

0.74

0.76

0.78

0.80

Ar
ea

 U
nd

er
 C

ur
ve

 (A
UC

)

AUC Target = 0.80

Criteo Kaggle (RM1)

No Pos. Emb.
1-D Pos. Emb.

0 40k 80k 120k
Training Iterations

0.73

0.75

0.77

0.79

AUC Target = 0.792

Criteo Terabyte (RM2)

No Pos. Emb.
1-D Pos. Emb.

1k 50k 150k 250k
Training Iterations

0.45

0.50

0.55

0.60

0.65

0.70

0.75
AUC Target = 0.77

(Does not Converge)

Avazu (RM3)

No Pos. Emb.
1-D Pos. Emb.

Figure 7: Model convergence with and without positional embedding.

12

Table 3: Comparing the impact of LayerNorm (LN) in Ad-Rec to handle covariate shift.

Model AUC BCE Loss
Ad-Rec w/ LN Ad-Rec w/o LN Ad-Rec w/ LN Ad-Rec w/o LN

RM1 0.801 (1e-4) 0.795 (2.4e-4) 0.455 (1.4e-3) 0.460 (1.4e-3)
RM2 0.790 (1.8e-4) 0.785 (2.2e-4) 0.423 (9.4e-5) 0.426 (1.4e-4)
RM3 0.775 (3.2e-4) 0.771 (1.8e-4) 0.382 (1.2e-4) 0.385 (1.4e-4)
RM4 0.949 (1.9e-3) 0.944 (2.8e-3) 0.232 (8.3e-3) 0.247 (7.4e-3)
RM5 0.895 (2.1e-3) 0.890 (2.8e-3) 0.361 (2e-3) 0.366 (5.9e-3)
RM6 0.852 (2.6e-3) 0.823 (7.3e-3) 0.400 (4.2e-4) 0.427 (6.3e-3)
RM7 0.940 (1.8e-3) 0.930 (2e-3) 0.272 (5.6e-3) 0.284 (4.8e-3)

D.2 Ablation Study for Covariate Shift

We evaluate the importance of LayerNorm in Ad-Rec with an ablation study that removes the
LayerNorm layer while keeping the rest of the architecture unchanged. Table 3 shows a decrease in
the AUC metric and an increase in the BCE Loss when LayerNorm is omitted. Thus LayerNorm is
key to handle data distribution drift, promoting faster, and more stable convergence in Ad-Rec.

D.3 Computational Cost Analysis

To compare the computational cost of Ad-Rec-based feature interaction, we trained DLRM and
Ad-Rec using a fixed computational budget and compared the training quality metric (AUC). Figure 8
shows that Ad-Rec dominates DLRM on this performance-compute trade-off. Similar trends are
observed for other remaining models (RM2 and RM4).

102 103 104

0.70

0.72

0.74

0.76

0.78

AU
C

Training Compute [gigaFLOPs]

Criteo Kaggle (RM1)

DLRM
Ad-Rec

102 103

0.72

0.73

0.74

0.75

0.76

0.77

Avazu (RM3)

DLRM
Ad-Rec

Figure 8: Model quality versus computational cost for different models. Ad-Rec outperforms state-
of-the-art DLRM with the same computational budget.

D.4 Mask Analysis

In our ablation study, we examined the impact of masking and the choice between a fixed mask value
or different mask values for each attention head. Three scenarios were considered: no mask, a fixed
mask value for all heads, and different mask values for each head. Table 4 illustrates the advantages
of employing distinct mask values for each head, highlighting the superiority over using a fixed mask
value or no masking.

Models trained with masking generally demonstrate improved AUC compared to models without
masking, as masking effectively eliminates irrelevant cross-features that can degrade prediction
quality. However, determining the optimal mask threshold presents a challenge. Different models
require different mask thresholds (θ), and selecting an unsuitable mask can harm prediction quality
by eliminating important features. Prior approaches [Liu et al., 2020, Khawar et al., 2020, Zhu
et al., 2021] tackle this issue by training models specifically to learn such features, but this approach
incurs computational costs and lacks generalizability across models or even the same model with

13

Table 4: Ablation Study. Mask (θ) Analysis with Single Epoch Training - AUC Mean (std deviation).
The ‘No Mask’ entry indicates a scenario containing no masking. The numbers in other entries show
fixed mask values across all heads, and Ad-Rec employs different mask values across each head.

Model Mask Value (θ)
No Mask 0.1 0.01 0.05 0.001 0.005 Ad-Rec

RM1 0.801095 (3.17e-4) 0.801269 (3.74e-4) 0.801357 (2.2e-4) 0.801055 (4.33e-4) 0.801112 (4.82e-4) 0.801199 (1.14e-4) 0.80153 (1.09e-4)
RM2 0.790164 (2.44e-4) 0.790222 (1.84e-4) 0.790214 (1.92e-4) 0.790176 (8.07e-5) 0.790185 (4.56e-4) 0.790179 (1.71e-4) 0.790224 (1.56e-4)
RM3 0.775091 (4.85e-4) 0.775081 (7.9e-4) 0.775044 (4.08e-4) 0.775344 (9.2e-4) 0.775637 (2.1e-4) 0.77587 (3.21e-4) 0.775971 (4.3e-4)
RM4 0.9453581 (2.88e-3) 0.9421871 (6.46e-3) 0.9465051 (2.57e-3) 0.9430625 (3.67e-3) 0.9434243 (4.54e-3) 0.9406334 (1.45e-3) 0.9494345 (1.9e-3)
RM5 0.8940437 (2.87e-4) 0.8938943 (2.93e-4) 0.89249 (2.04e-3) 0.8866167 (9.16e-3) 0.8882817 (5.43e-3) 0.8892716 (4.01e-3) 0.8955358 (7.65e-3)
RM6 0.8500284 (1.73e-3) 0.840935 (8.25e-3) 0.8453409 (6.09e-3) 0.8424109 (6.67e-3) 0.8491047 (5.64e-3) 0.8374637 (4.19e-3) 0.8520705 (2.61e-3)
RM7 0.9323605 (1.45e-3) 0.9319719 (5.68e-3) 0.9326281 (1.05e-3) 0.9337075 (1.84e-3) 0.9317426 (8.62e-3) 0.9327804 (1.45e-3) 0.9404412 (1.82e-3)

different sizes. In contrast, Ad-Rec addresses this challenge by utilizing different mask values for
each attention head, facilitating better generalization. If an important feature is eliminated in one
head, it can be compensated for by other attention heads, resulting in a higher-quality model.

D.5 Evaluation Metrics for a Training Epoch

Table 5 compares evaluation metrics for a single training epoch. Across all models and datasets, Ad-
Rec consistently outperforms the baselines regarding AUC. On average, Ad-Rec improves the AUC
metric by 0.012, 0.008, 0.006, and 0.001 compared to the DLRM, DeepFM, AutoInt, and DCN-v2
baselines. Although higher-order feature interaction techniques may exhibit lower performance in
certain models and datasets, Ad-Rec showcases superior generalization capabilities. It consistently
outperforms other feature interaction techniques.

Table 5: Evaluation Metric Comparison with Single Epoch Training - Mean (stddev)

Model AUC BCE Loss
DLRM DeepFM AutoInt DCN-v2 Ad-Rec DLRM DeepFM AutoInt DCN-v2 Ad-Rec

RM1 0.798 (1.9e-4) 0.796 (1.6e-4) 0.795 (8.12e-5) 0.796 (2.9e-4) 0.801 (1e-4) 0.459 (1.5e-3) 0.461 (1.6e-3) 0.461 (1.4e-3) 0.460 (1.3e-3) 0.455 (1.4e-3)
RM2 0.788 (1.8e-4) 0.783 (1.5e-4) 0.785 (1.5e-4) 0.786 (8.29e-5) 0.790 (1.8e-4) 0.424 (1.4e-4) 0.428 (1.5e-4) 0.426 (7.25e-5) 0.426 (5.14e-5) 0.423 (9.4e-5)
RM3 0.768 (9.5e-4) 0.763 (3.4e-3) 0.763 (7.8e-4) 0.772 (1e-3) 0.775 (3.2e-4) 0.386 (3.8e-4) 0.390 (2.6e-4) 0.390 (3.6e-4) 0.384 (5e-4) 0.382 (1.2e-4)
RM4 0.933 (1.3e-4) 0.939 (6.6e-4) 0.942 (1.5e-3) 0.947 (5.8e-3) 0.949 (1.9e-3) 0.267 (3.4e-3) 0.257 (1.3e-3) 0.254 (3.8e-3) 0.237 (1.5e-2) 0.232 (8.3e-3)
RM5 0.869 (4.2e-4) 0.881 (1.1e-4) 0.893 (5.5e-3) 0.894 (1.5e-3) 0.895 (2.1e-3) 0.378 (1.8e-4) 0.360 (6.3e-3) 0.363 (1.9e-3) 0.361 (3.2e-3) 0.361 (2e-3)
RM6 0.840 (7.1e-3) 0.850 (1e-3) 0.849 (2.8e-3) 0.855 (1.3e-3) 0.852 (2.6e-3) 0.385 (1.4e-3) 0.388 (3.7e-3) 0.388 (7.2e-3) 0.375 (1.1e-3) 0.380 (4.2e-3)
RM7 0.920 (1.8e-3) 0.934 (1.3e-3) 0.932 (6e-3) 0.940 (5.2e-3) 0.940 (1.8e-3) 0.299 (1.1e-3) 0.269 (2.8e-3) 0.279 (1.2e-3) 0.255 (1.3e-3) 0.254 (5.6e-3)

D.6 Ad-Rec: Masked Transformer Hyper-parameters Analysis

To evaluate the robustness of our Ad-Rec model, we conducted an extensive study by varying
the hyperparameters of the transformer encoder. Table 6 provides an overview of the different
hyperparameters considered in this sensitivity analysis.

Table 6: Scaling hyper-parameters of transformer encoder.

Num Layers Num Heads Dropout Ratio Non-Linear Activation Hidden Size Linear Config.
N H D A dmodel dff
1 1 0.01 ReLU 16 128
2 2 0.05 GeLU 64 512
4 4 0.1

8 0.2
16 0.3

D.6.1 Number of Layers

We investigated the impact of the number of masked transformer layers (N) in the RM1 model while
keeping other hyperparameters constant. Figure 9 showcases the test accuracy and BCE loss for the
RM1 model. Our observations revealed that increasing the number of masked transformer layers
did not yield significant benefits due to the smaller sequence length of RM1 (27 features). However,
we anticipate that models with a larger number of features and longer sequence lengths would
demonstrate improved AUC with more masked transformer layers. This is because higher-order
feature interaction becomes more valuable when there are more features. In large-scale industrial
datasets, the number of sparse features can reach thousands. For instance, the Meta synthetic
dataset1, which cannot be used for training due to its synthetic nature, contains 856 sparse features.
Nevertheless, it highlights the scale at which Ad-Rec can significantly enhance prediction accuracy.

1https://github.com/facebookresearch/dlrm_datasets

14

0 100k 200k 300k
Training Iterations

76%

77%

78%

Te
st

 A
cc

ur
ac

y

Criteo Kaggle (RM1)

Ad-Rec N-1
Ad-Rec N-2
Ad-Rec N-4
DLRM

0 100k 200k 300k
Training Iterations

0.46

0.48

0.50

B
C

E
 L

os
s

Criteo Kaggle (RM1)
Ad-Rec N-1
Ad-Rec N-2
Ad-Rec N-4
DLRM

Figure 9: Test Accuracy and BCE Loss with varying layers of Ad-Rec masked transformer.

0 100k 200k 300k
Training Iterations

76%

77%

78%

Te
st

 A
cc

ur
ac

y

Criteo Kaggle (RM1)

Ad-Rec H-1
Ad-Rec H-2
Ad-Rec H-4
Ad-Rec H-8
Ad-Rec H-16
DLRM

0 10k 20k 30k 40k 50k 60k
Training Iterations

79.5%

80%

80.5%

81%

Criteo Terabyte (RM2)

Ad-Rec H-1
Ad-Rec H-2
Ad-Rec H-4
Ad-Rec H-8
Ad-Rec H-16
DLRM

0 50k 100k 150k 200k 250k
Training Iterations

83%

83.2%

83.5%

83.8%
Avazu (RM3)

Ad-Rec H-2
Ad-Rec H-4
Ad-Rec H-8
DLRM

0 20k 40k 60k 80k
Training Iterations

76%

80%

84%

88%

Taobao Alibaba (RM4)

Ad-Rec H-1
Ad-Rec H-2
Ad-Rec H-4
Ad-Rec H-8
DLRM

Figure 10: Trends in test accuracy by varying the number of attention heads of masked transformer
for RM1, RM2, RM3, and RM4 models. Models with missing head (RM3 and RM4 with 16 heads)
means the model could not converge.

D.6.2 Number of Attention Heads

We employ masked multi-head attention to enable higher-order feature interactions across multiple
subspaces. This technique divides a single embedding vector into multiple heads of the same length,
allowing for parallel execution and feature interaction within different subspaces. The number
of attention heads (H) varies from 1 to 16 for each model (RM1, RM2, RM3, and RM4). The
relationship between the test accuracy and the number of attention heads is illustrated in Figure 10.
Notably, the computational complexity remains unchanged as all the heads are concatenated at the
end, and each head operates on a portion of the embedding vector.

Our observations indicate that models with an intermediate number of heads consistently converge and
yield higher accuracy. In contrast, the RM3 model fails to converge when using a single-head model,
emphasizing the importance of feature interaction in multiple subspaces. Furthermore, when the
number of heads equals the length of the embedding vector D (i.e., H = D), the feature interaction
becomes excessively fine-grained, leading to model divergence. For the RM3 and RM4 models, it
was observed that neither model converged when using (H = 16) and (D = 16), reinforcing the
need for an appropriate balance in the number of attention heads to achieve optimal performance.

D.6.3 Dropout Ratio

The masked transformer architecture incorporates a residual connection, depicted in Figure 1a, to
ensure effective information flow and gradient propagation. Additionally, a dropout mechanism
prevents overfitting by randomly replacing input features with random features. To investigate the
impact of the dropout ratio on model predictions, we varied the ratio across all models, ranging from
0.01 to 0.3.

Figure 11 showcases the relationship between the dropout ratio and test accuracy. Our findings
consistently demonstrate that lower dropout values (0.01 - 0.05) yield superior predictions across
all models. These smaller dropout ratios enable cross-features to incorporate with the original raw
features, facilitating improved learning of implicit interactions. As the dropout ratio increases, the
test accuracy gradually declines, eventually approaching the performance of the baseline DLRM
model when the dropout ratio reaches 0.3.

15

0 100k 200k 300k
Training Iterations

76%

77%

78%

Te
st

 A
cc

ur
ac

y

Criteo Kaggle (RM1)

Ad-Rec D-0.01
Ad-Rec D-0.05
Ad-Rec D-0.1
Ad-Rec D-0.2
Ad-Rec D-0.3
DLRM

0 10k 20k 30k 40k 50k 60k
Training Iterations

79.5%

80%

80.5%

81%

Criteo Terabyte (RM2)

Ad-Rec D-0.01
Ad-Rec D-0.05
Ad-Rec D-0.1
Ad-Rec D-0.2
Ad-Rec D-0.3
DLRM

0 50k 100k 150k 200k 250k
Training Iterations

83%

83.2%

83.5%

83.8%
Avazu (RM3)

Ad-Rec D-0.1
Ad-Rec D-0.2
DLRM

0 20k 40k 60k 80k
Training Iterations

76%

80%

84%

88%

Taobao Alibaba (RM4)

Ad-Rec D-0.01
Ad-Rec D-0.05
Ad-Rec D-0.1
Ad-Rec D-0.2
Ad-Rec D-0.3
DLRM

Figure 11: Trends in test accuracy by varying dropout ratio of residual connection in masked
transformer for RM1, RM2, RM3, and RM4 model. Models with missing dropout values (RM3 with
a dropout of 0.01 and 0.05) mean the model could not converge.

The diminishing test accuracy with higher dropout ratios can be attributed to introducing more
random features into the cross-features. These additional random features may disrupt the underlying
patterns and relationships in the data, negatively impacting model performance. This finding aligns
with previous research [Song et al., 2019], which utilizes raw features without dropout in multi-head
attention-based cross-features to learn higher-order interactions. However, in the case of Ad-Rec, a
smaller dropout ratio is employed during training to enhance generalization, while dropout is removed
during inference for optimal performance.

D.6.4 Non-Linear Activation

Figure 12 presents the investigation into the impact of non-linear activation functions on test accuracy.
Surprisingly, transitioning from the default ReLU activation to GeLU activation does not yield any
noticeable effect on the test accuracy of the models. Regardless of the chosen non-linear activation
function, all models across different datasets converge to the same point.

This finding suggests that the specific type of non-linearity employed in the activation function does
not significantly influence the extraction of cross-features. It indicates that the masked transformer
architecture is robust to different non-linearities, and the models can effectively capture and learn the
underlying interactions between features regardless of the specific activation function used.

0 100k 200k 300k
Training Iterations

76%

77%

78%

Te
st

 A
cc

ur
ac

y

Criteo Kaggle (RM1)

Ad-Rec ReLU
Ad-Rec GeLU
DLRM

0 10k 20k 30k 40k 50k 60k
Training Iterations

79.5%

80%

80.5%

81%

Criteo Terabyte (RM2)

Ad-Rec ReLU
Ad-Rec GeLU
DLRM

0 50k 100k 150k 200k 250k
Training Iterations

83%

83.2%

83.5%

83.8%
Avazu (RM3)

Ad-Rec ReLU
Ad-Rec GeLU
DLRM

0 20k 40k 60k 80k
Training Iterations

76%
78%
80%
82%
84%
86%
88%

Taobao Alibaba (RM4)

Ad-Rec ReLU
Ad-Rec GeLU
DLRM

Figure 12: Trends in test accuracy by changing the non-linear activation of a feed-forward network of
the masked transformer. It does not have any effect on the model quality.

D.7 Scaling laws of Recommendation Models

We conducted scaling ablation studies on DLRM-style recommendation models. Scaling the em-
bedding dimension had the most significant improvement while scaling the model size had minimal
effect on model quality. In the ablation studies with Ad-Rec, we evaluated model quality using
masked-attention-based feature interaction while keeping the model size and computational budget
fixed. Table 7 provides an overview of the scaled components and their corresponding configurations,
along with the model size in terms of parameters. This analysis allows us to assess the impact of
scaling on model quality. Previous research [Ardalani et al., 2022] has explored the scaling laws
for non-sequential recommendation models, particularly focusing on Click-Through Rate (CTR) in
DLRM-style models. Their findings revealed that increasing the model size did not significantly
enhance accuracy, while training on more data led to slight improvements. In contrast, Figure 13
demonstrates the behaviour of model loss as different components, including the Ad-Rec loss, are
scaled. Interestingly, even with fewer parameters (approximately half), Ad-Rec outperforms other

16

models regarding convergence speed. This emphasizes the significance of higher-order feature inter-
action, eliminating irrelevant features, and addressing covariate shifts in improving the representation
of input features. Merely scaling existing components or increasing the size of training datasets
does not yield comparable results. The success of Ad-Rec opens up new avenues for research in
recommendation model architecture.

1k 100k 200k 300k 400k
Training Iterations

0.450
0.455
0.460
0.465
0.470
0.475
0.480
0.485
0.490

BC
E

Lo
ss

Criteo Kaggle (RM1)
Ad-Rec (540.8M)
DLRM (540.7M)
DLRM Top MLP (542.1M)
DLRM Bot MLP (542M)
DLRM Emb. Dim (1.08B)
DLRM All Comp. (1.08B)

0 20k 60k 100k
Training Iterations

0.42

0.43

0.44

0.45

0.46

Criteo Terabyte (RM2)
Ad-Rec (2.701B)
DLRM (2.70B)
DLRM Top MLP (2.701B)
DLRM Bot MLP (2.701B)
DLRM Emb. Dim (5.399B)
DLRM All Comp. (5.401B)

1k 50k 150k 250k
Training Iterations

0.385

0.390

0.395

0.400

0.405

0.410 Avazu (RM3)
Ad-Rec (150.37M)
DLRM (150.24M)
DLRM Top MLP (151.59M)
DLRM Bot MLP (151.44M)
DLRM Emb. Dim (300.08M)
DLRM All Comp. (302.64M)

0 20k 40k 60k 80k
Training Iterations

0.25

0.30

0.35

0.40

0.45

0.50 Taobao Alibaba (RM4)
Ad-Rec (82.57M)
TBSM (82.55M)
TBSM Top MLP (82.55M)
TBSM Bot MLP (82.55M)
TBSM Emb. Dim (165.1M)
TBSM All Comp. (165.1M)

Figure 13: Recommender models were studied to understand the impact of component scaling on
model quality. Despite a small training dataset, Ad-Rec outperformed these scaled models.

Table 7: Scaling Recommendation Models Components

Model Scaling Sparse Neural Network Configuration Model
Component Dimension Bottom MLP Top MLP Parameters

RM1 (N/A) DLRM 16 13-512-256-64-16 512-256-1 540.7M
RM1 (N/A) Ad-Rec 16 13-512-256-64-16 512-256-1 540.8M
RM1 Sparse Emb. Dim 32 13-512-256-64-32 512-256-1 1.08B
RM1 Top MLP 16 13-512-256-64-16 1024-768-512-256-1 542.1M
RM1 Bottom MLP 16 13-1024-768-512-256-128-64-16 512-256-1 542M
RM1 All Comp. 32 13-1024-768-512-256-128-64-32 1024-768-512-256-1 1.08B

RM2 (N/A) DLRM 64 13-512-256-64 512-512-256-1 2.7B
RM2 (N/A) Ad-Rec 64 13-512-256-64 512-512-256-1 2.701B
RM2 Sparse Emb. Dim 128 13-512-256-128 512-512-256-1 5.399B
RM2 Top MLP 64 13-512-256-64 1024-768-512-512-256-128-1 2.701B
RM2 Bottom MLP 64 13-1024-768-512-256-128-64 512-512-256-1 2.701B
RM2 All Comp. 128 13-1024-768-512-256-128 1024-768-512-512-256-128-1 5.401B

RM3 (N/A) DLRM 16 1-512-256-64-16 512-256-1 150.24M
RM3 (N/A) Ad-Rec 16 1-512-256-64-16 512-256-1 150.37M
RM3 Sparse Emb. Dim 32 1-512-256-64-32 512-256-1 300.08M
RM3 Top MLP 16 1-512-256-64-16 1024-768-512-256-128-64-1 151.59M
RM3 Bottom MLP 16 1-1024-768-512-256-128-64-16 512-256-1 151.44M
RM3 All Comp. 32 1-1024-768-512-256-128-64-32 1024-768-512-256-128-64-1 302.64M

RM4 (N/A) DLRM 16 1-16 15-15 82.55M
RM4 (N/A) Ad-Rec 16 1-16 15-15 82.57M
RM4 Sparse Emb. Dim 32 1-32 15-15 165.10M
RM4 Top MLP 16 1-16 32-15-15 82.55M
RM4 Bottom MLP 16 1-8-16 15-15 82.55M
RM4 All Comp. 32 1-16-32 32-15-15 165.10M

D.8 Masking Analysis

We randomly sampled test samples from each dataset to examine the impact of masking on each
attention head and its role in enhancing predictions by eliminating irrelevant features. We then
plotted the attention weights for each attention head with and without a mask. Figures 14,15, and16
showcase the attention weights for the RM1, RM2, and RM3 models, respectively. These plots
provide insights into how different attention heads learn feature interactions in multiple subspaces
and how attention weights vary across different attention heads. By employing different mask
values for each attention head, masking selectively masks out attention weights of irrelevant features,
redistributing the attention weight across other relevant features accordingly.

17

Figure 14: Attention Weights for RM1 model across 2 heads. The unmasked head contains original
attention weights, while the masked head contains attention weights after masking. X and Y axes
contain 27 features with 0 as dense feature vectors, while others are sparse feature vectors. Highlighted
features are the masked features that are irrelevant.

18

Figure 15: Attention Weights for RM2 model across 8 heads. The unmasked head contains original
attention weights, while the masked head contains attention weights after masking. X and Y axes
contain 27 features with 0 as dense feature vectors, while others are sparse feature vectors. Highlighted
features are the masked features that are irrelevant.

19

Figure 16: Attention Weights for RM3 model across 2 heads. The unmasked head contains original
attention weights, while the masked head contains attention weights after masking. X and Y axes
contain 22 features with 0 as dense feature vectors, while others are sparse feature vectors. Highlighted
features are the masked features that are irrelevant.

20

	Introduction
	Proposed Architecture: Ad-Rec
	Experiments and Results
	Conclusion
	Appendix
	High-Level Overview: Deep Learning-based Recommendations with Ad-Rec
	Application to Sequential Recommendation Models
	Multihead Self-Attention
	Evaluation Setup

	Related Work
	Ad-Rec: Visual Intuition
	Sequential Embedding Vectors' Feature Interaction

	Ablation Studies
	Positional Embedding
	Ablation Study for Covariate Shift
	Computational Cost Analysis
	Mask Analysis
	Evaluation Metrics for a Training Epoch
	Ad-Rec: Masked Transformer Hyper-parameters Analysis
	Number of Layers
	Number of Attention Heads
	Dropout Ratio
	Non-Linear Activation

	Scaling laws of Recommendation Models
	Masking Analysis

